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The phenomenon of hard excitation is natural for many electronic oscillators. In particular, in a

gyrotron, a maximal efficiency is often attained in the hard excitation regime. In this paper, we study

the injection-locking phenomena using two models of an electronic maser in the hard excitation

mode. First, bifurcation analysis is performed for the quasilinear model described by ordinary

differential equations for the slow amplitude and phase. Two main scenarios of transition to the

injection-locked mode are described, which are generalizations of the well-known phase-locking and

suppression mechanisms. The results obtained for the quasilinear model are confirmed by numerical

simulations of a gyrotron with fixed Gaussian structure of the RF field. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4935847]

I. INTRODUCTION

In the theory of self-oscillating systems, usually one dis-

tinguishes two different kinds of self-excitation, namely, soft

and hard excitation.1–4 In the soft excitation mode, an unsta-

ble noise-level perturbation grows and evolves into a self-

sustained oscillation. Conversely, in the hard excitation

mode, a self-oscillation settles only for a sufficiently inten-

sive initial perturbation with amplitude exceeding a certain

threshold, while a small perturbation decays. The phenom-

enon of hard excitation is natural for many electronic oscilla-

tors. In particular, in a gyrotron, a maximal efficiency is

often attained in the hard excitation regime.5

In recent years, the problem of injection locking of

microwave electron oscillators has attracted significant inter-

est. The injection locking is widely used to stabilize the radi-

ation frequency and phase of high-power microwave

sources6–10 as well as to reduce transient times.10,11 In addi-

tion, a low-power external driving of a high-power oscillator

may result in the fast frequency step-tuning owing to the

mode switching effect.12–15 Control of radiation frequency is

of primary importance for the electron-cyclotron plasma

heating systems, where several gyrotrons are used that have

to generate a signal at the same frequency.

Injection locking of an oscillator in the hard excitation

mode has been studied in several works (see Ref. 2).

However, the general pattern of synchronization is still

poorly understood. This work is aimed at studying injection-

locked operation of a resonant electronic maser in the hard

excitation mode. The article is organized as follows. In Sec.

II, we introduce a simplified quasilinear model of a single-

mode oscillator with hard excitation driven by an external

harmonic signal. The model is described by the equations for

slowly varying amplitude and phase. In Sec. III, the bifurca-

tion mechanisms leading to the establishment of a synchro-

nous mode are studied analytically and numerically. In Sec.

IV, results of time-domain numerical simulations for a gyro-

tron with the Gaussian fixed structure of the high-frequency

field are presented. Finally, the results and conclusions are

summarized in Sec. V.

II. QUASILINEAR MODEL OF A RESONANT
ELECTRONIC MASER

The quasilinear theory has been widely used to describe

mode interaction processes in gyrotrons,5,16–18 as well as in

many other resonant electron19,20 and optical21 masers.

Following Refs. 5 and 16–21, consider the RF field as a cold

cavity eigenmode with a slowly varying amplitude AðtÞ,
which obeys the excitation equation6

dA

dt
þ x0A

2Q
¼ x0IsU Að ÞAþ x0finj

Q
ei xinj�x0ð Þt; (1)

where x0 is the eigenfrequency, Q is the Q-factor, Is is the

normalized beam current parameter, U ¼ U0 þ iU00 is the

complex gain function, finj and xinj are driving amplitude

and frequency, respectively. In the framework of the quasi-

linear theory,5,16 U is expressed as a polynomial expansion

on jAj2,

U � a� bjAj2 � cjAj4 þ � � � ; (2)

where the complex coefficient a ¼ a0 þ ia00 characterizes lin-

ear gain, while b ¼ b0 þ ib00 and c ¼ c0 þ ic00 characterize

nonlinear effects of first and second order, respectively. The

hard excitation occurs if b0 < 0, i.e., the first-order nonlinear

effect leads to growth of the amplitude instead of saturation.

In such a case, one should retain the cjAj4 term in Eq. (2)

assuming that c0 > 0.

After substituting Eq. (2) into Eq. (1) and introducing

normalized variables

tnorm ¼
x0Isc0

jb0j2
t; Anorm ¼ A

ffiffiffiffiffiffiffi
c0

jb0j

s
exp �i xinj � x0ð Þt
� �

;
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we obtain (the subscript “norm” is omitted hereafter)

dA

dt
þ iXA ¼ rþ 1þ ibð ÞjAj2 � 1þ icð ÞjAj4

� �
Aþ f : (3)

In Eq. (3), f ¼ finj

QIs

c0

jb0j2 and X ¼ c0 xinj �x0 1þ Isa00ð Þð Þ
x0Isjb0 j2

are the nor-

malized driving amplitude and frequency mismatch, respec-

tively, r ¼ ða0 � 1
2QIs
Þ c0

jb0 j2 is the mode increment,

b ¼ b00=jb0j, and c ¼ c00=c0.

III. ANALYSIS AND SIMULATION OF THE
QUASILINEAR MODEL

A. Fixed points and analysis of their stability

Let us rewrite Eq. (3) as a system of two ordinary differ-

ential equations (ODEs) for real amplitude and phase,

A ¼ a exp ðiuÞ,

da

dt
¼ rþ a2 � a4ð Þaþ f cos u;

du
dt
¼ �Xþ ba2 � f

a
sin u: (4)

Henceforth, we assume c ¼ 0, which is reasonable in a typi-

cal case.17

Consider a fixed-point solution of Eq. (4), a ¼ a0

¼ const, u ¼ u0 ¼ const. When �1=4 < r < 0, the free-

running oscillator (f ¼ 0) has two non-trivial fixed-point

solutions

a6
0 ¼

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4r
p

2
; (5)

which correspond to the stable and unstable limit cycles, i.e.,

hard excitation is possible. In addition, there exists a zero so-

lution a0 ¼ 0, which is stable at r < 0.

When f > 0, a fixed-point solution of Eq. (4) corre-

sponds to a phase-locked state of the oscillator. One can eas-

ily derive an equation, which determines the resonant curves,

i.e., the amplitude of the locked oscillation as a function of

the frequency X,

½ðrþM �M2Þ2 þ ðX� bMÞ2�M ¼ f 2; (6)

where M ¼ a2
0 is the normalized intensity.

To investigate the stability of the fixed points, consider

a slightly perturbed solution a ¼ a0 þ ~a, u ¼ u0 þ ~u, where

the perturbations evolve as ~a; ~u � exp ðktÞ. After substitut-

ing into Eq. (4) and linearization, we arrive at the character-

istic equation

k2 þ 2Akþ B ¼ 0;

where

A ¼ �ðrþ 2M � 3M2Þ; (7)

B ¼ ðrþ 2M � 3M2Þ2 þ ðX� 2bMÞ2

� ðð1� 2MÞ2 þ b2ÞM2: (8)

The stability conditions of a fixed point read1,3

A > 0;B > 0:

Equations (6)–(8) allow plotting the resonance curves

together with the stability bounds. Fig. 1(a) presents the

example of the resonance curves for the isochronous oscilla-

tor (b ¼ 0). Different branches of the resonance curves

merge at the critical points

M1;2 ¼
36

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 20r
p

10
; (9)

X ¼ bM1;2; (10)

and at the critical values of the driving force

f1;2 ¼
ffiffiffiffiffiffiffiffiffi
M1;2

p
jrþM1;2 �M2

1;2j: (11)

In Fig. 1(a), these points are shown with white circles.

The A ¼ 0 condition defines two horizontal lines on the

(X, M) plane

M ¼ 1

3
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3r
p� �

; (12)

which are the bounds of Andronov–Hopf (AH) bifurcation.

The B ¼ 0 condition defines two closed curves, which are

the bounds of saddle-node (SN) bifurcation. Accordingly,

there exist two different mechanisms of synchronization.

FIG. 1. Resonance curves (a) and synchronization tongues (b) for

r ¼ �0:21, b ¼ 0. “1” and “2” denote the domains of injection locking and

regenerative amplification, respectively. The domain of beating is shaded.
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The phase/frequency locking mechanism is associated with

the SN bifurcation, while synchronization via suppression of

the natural oscillation is associated with the AH one.1–4

In addition, using Eqs. (6)–(8), one can plot the stability

bounds on the (X, f) plane presented in Fig. 1(b). On the con-

trary to the well-known pattern of synchronization for an os-

cillator with soft self-excitation,1–5 these bounds have a form

of two synchronization tongues, which correspond to injec-

tion locking of the stable (the inner tongue) and unstable (the

outer tongue) limit cycle, respectively.

In the hard excitation mode, only a sufficiently large

perturbation evolves into a stable periodic self-oscillation,

while a perturbation with amplitude below certain threshold

decays.1–5 Thus, the driven oscillator may operate as a regen-

erative amplifier of a small input signal. In Fig. 1(a), only the

states above the upper bound correspond to the phase-locked

self-oscillation (domain 1), while the states below the lower

one (domain 2) correspond to the regenerative amplification.

The domain of unstable steady states is shaded. Note that in

Fig. 1(b) at small X, two SN bounds partially overlap. In this

domain, bistability is observed, i.e., both injection locking

and amplification modes are stable. Between the upper and

lower bounds of AH bifurcation, there are no stable fixed

points. In this domain, only quasi-periodic oscillation with

two independent frequencies exists. Such a regime is known

as beating.

Figs. 2–4 illustrate transformation of the resonance

curves and synchronization tongues with variation of the pa-

rameter of reactive nonlinearity b. Similar to the oscillator

with soft excitation,1–4 the resonance curves acquire

FIG. 2. Resonance curves (a) and synchronization tongues (b) for

r ¼ �0:21, b ¼ �0:1.

FIG. 3. Resonance curves (a) and synchronization tongues (b) for

r ¼ �0:21, b ¼ �0:192.

FIG. 4. Resonance curves (a) and synchronization tongues (b) for

r ¼ �0:21, b ¼ �0:22. The global bifurcation of the unstable cycle is

shown by dots in Fig. 4(b).
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frequency shift X ¼ bM. The synchronization tongues touch

the X axis in different points X1;2 ¼ bða6
0 Þ

2
, where a6

0 is

given by Eq. (5).

Moreover, with the increase in b, two bounds of SN

bifurcation merge into one, as shown in Figs. 3(a) and 4(a),

and two distinct synchronization tongues merge accordingly

[Figs. 3(b) and 4(b)]. The scenario of merging has been

described in detail in Ref. 22, where injection locking of a

general model of a self-oscillatory system with coexisting

stable and unstable limit cycles has been studied.

B. Simulation of the injection locking scenarios

Direct numerical integration of Eq. (4) not only confirms

the results of stability analysis presented in Sec. III A but

also reveals scenarios of transition to the synchronous mode.

First, consider the case of small X when the frequency-

locking scenario of synchronization is observed as a result of

SN bifurcation. In Fig. 5, phase portraits in different regimes

are presented at different values of X and f . The correspond-

ing points in the (X; f ) plane are shown in Fig. 6. Below the

both synchronization tongues, there exist two limit cycles

and a stable fixed point O, which originates from the stable

zero solution of the free-running oscillator [Fig. 5(a)]. This

point corresponds to the regenerative amplification mode as

noted above in Sec. III A, while the stable cycle corresponds

to the beating mode. The unstable cycle separates the basins

of two attractors.

When X decreases, the SN bifurcation occurs, which

means the birth of the saddle S1 and the unstable node N1 on

the unstable limit cycle [Fig. 5(b)]. With further decrease in

X, the second SN bifurcation takes place. Now, the saddle S2

and the stable node N2 appear on the stable limit cycle [Fig.

5(c)]. The stable point N2 corresponds to the injection-

locked mode.

When we increase the driving force and cross the upper

bound of the SN bifurcation domain, the saddle S2 collides

the unstable node N1 [Fig. 5(d)]. This bifurcation results in

change of the configuration of the basins of attraction of the

fixed points. In Fig. 5(c), the basin of the node N2 is located

above the stable manifolds of the saddle S1, i.e., the high-

amplitude injection-locked state settles if the initial ampli-

tude is large enough. In contrast, in Fig. 5(d), the basin is

FIG. 5. Phase portraits illustrating tran-

sition to synchronization via the fre-

quency locking scenario: r ¼ �0:21,

b ¼ 0:0, corresponding values of f and

X are shown in Fig. 6. In (c)–(e), basins

of attraction of the high-amplitude

injection-locked state are shaded.

FIG. 6. Enlarged part of the (X; f ) plane with points at which phase portraits

of Figs. 5 and 8 are plotted.
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bounded by the stable manifold of the saddle S1. In such a

case, there appears the band of initial phases near uð0Þ � p,

where the system proceeds to the low-amplitude state O
regardless of the initial amplitude value. The process of

injection locking is sensitive to the initial phase, and this sen-

sitivity persists until the second saddle-node bifurcation

occurs, i.e., the saddle S1 collides the low-amplitude stable

point O. After that, the bistability vanishes and only one sta-

ble point N2 remains [Fig. 5(f)]. Thus, the frequency-locking

scenario for the oscillator with hard excitation has obvious

differences from the case of soft excitation.1–4

At larger frequency mismatch, a slightly different

behavior is observed. The stable manifold of S1 collides with

the unstable manifold of S2. Now, the unstable manifold of

S2 does not close in the node N2 but leads in the stable point

O instead. The phase portrait for this situation is presented in

Fig. 5(e). In the phase plane, it remains five fixed points but

the basins of attractions change their configuration in the

same way as in the previous case.

When the reactive nonlinearity is significant and the

bounds of SN bifurcation merge, the frequency-locking sce-

nario is somewhat different. Let us choose b ¼ �0:22. The

corresponding resonance curves and synchronization tongues

are shown in Fig. 4. If the driving frequency is chosen close

enough to the free-running oscillator frequency, the first SN

bifurcation occurs at the stable cycle [Fig. 7(a)]. With the

increase in f , the unstable cycle collides with the unstable

manifold of the saddle. The corresponding phase portrait is

presented in Fig. 7(b). This global bifurcation results in the

change of the configuration of the basins of attraction similar

to the situation described in Fig. 5(e). One of the unstable

manifolds of the saddle leads to the low-amplitude stable

point O instead of N, and at 0:55p < uð0Þ < 0:68p, all phase

trajectories tend to the low-amplitude state. This is con-

firmed by Fig. 7(c) where transient processes for different

values of uð0Þ are shown.

Another scenario is observed at larger values of X. In

Fig. 5(a), both cycles encircle the phase cylinder, i.e., the

phase exhibits infinite drift. When we approach the bound of

AH bifurcation, the unstable limit cycle exhibits transforma-

tion shown in Fig. 8(a). Now it lies on the side of the phase

cylinder surrounding the fixed point. Such a cycle is named

contractible. With either an increase in f or a decrease in X,

it contracts to the O point, which becomes an unstable focus

[Fig. 8(b)]. The stable cycle exhibits the same transforma-

tions. First, transition to the contractible cycle occurs, as

shown in Fig. 8(c). Now the phase u does not drift but oscil-

lates in a finite band. Such a behavior is sometimes called

“phase trapping.” Finally, only one stable point remains,

which corresponds to the injection-locked state [Fig. 8(d)].

This is a generalization of the transition to synchronization

via suppression of natural oscillation.1–4 During the suppres-

sion scenario, the beating amplitude gradually decreases to

zero, while during the frequency locking, the beating period

tends to infinity.

C. Regenerative amplification below the threshold
of hard excitation

Special attention should be paid to the case when the os-

cillator operates below the threshold of hard excitation

(r < �1=4), and no oscillation is possible in the free-

running system. However, applying the driving signal gives

rise to the oscillation with high output power and efficiency.

Similar nonlinearly driven oscillation regimes have been

demonstrated for gyrotron forward-wave23 and backward-

wave24 masers. In Fig. 9(a), the pattern of resonance curves

is presented for r ¼ �0:27. Similar to Fig. 4(a), in Fig. 9(a)

there are two domains of stable single-frequency oscillation.

In both domains, the oscillator operates as a regenerative am-

plifier but the output power in the upper domain is much

greater than in the lower one.

In Fig. 9(b), the SN and AH bifurcation bounds on the

(X; f ) plane are presented (cf. Sec. III A). The beating domain

is shaded. In this domain, the driving signal leads to excitation

of the oscillator natural frequency. Minimal threshold of

FIG. 7. Phase portraits illustrating

the global bifurcation of the unstable

limit cycle: r ¼ �0:21, b ¼ �0:22,

X ¼ �0:2, f ¼ 0:037 (a), and 0.04 (b).

Basins of attraction of the high-

amplitude injection-locked state are

shaded. (c) Transient processes for

að0Þ ¼ 1:0 and different values of uð0Þ.
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transition to the high-amplitude regime is attained at f ¼ f1,

where f1 is defined by Eq. (11). When we cross the lower SN

bound, a saddle S and node N are born on the phase plane. A

typical phase portrait is presented in Fig. 9(c). Thus, inside

the SN bound both high-amplitude and low-amplitude modes

coexist. The basin of attraction of the high-amplitude state has

the same structure as in Figs. 5(d) and 7(b). When we cross

the upper SN bound, the saddle S collides with the stable point

O. After this, only the large-amplitude mode exists.

At r ¼ �1=3, the two bounds of the AH bifurcation

coincide (see Eq. (12)), and the domains of beating on the

(X;M) plane vanish. With further decrease in r, the bound of

SN bifurcation shrinks and disappears.

IV. INJECTION LOCKING OF A GYROTRON WITH
FIXED GAUSSIAN STRUCTURE OF THE RF FIELD

The quasilinear approximation is valid only at a slight

excess of the start-oscillation threshold. In this section, we

consider a more adequate time-domain model of a gyrotron

with fixed structure of the RF field.5 In this model, the com-

plex gain factor U is obtained from numerical integration of

the equations of motion

dp

df
þ i Dþ jpj2 � 1
� �

p ¼ iAfs fð Þ: (13)

Here, p is the complex normalized electron orbital momen-

tum, D ¼ ð2=b2
?Þð1� xH=x0Þ is the mismatch between the

cavity mode eigenfrequency x0 and the cyclotron frequency

xH , f ¼ ðb2
?=2bjjÞx0z=c is the normalized axial distance,

b? ¼ v?=c; bjj ¼ vjj=c, and fsðfÞ describes the axial RF-

field structure of the cavity mode. For a gyrotron, a Gaussian

field profile

fs fð Þ ¼ exp �3
2f
fk

� 1

� �2
" #

; 0 � f � fk

often provides a good approximation.5

FIG. 8. Phase portraits illustrating the

transition to synchronization via the

suppression scenario: r ¼ �0:21,

b ¼ 0:0, corresponding values of f and

X are shown in Fig. 6.

FIG. 9. Resonance curves (a) and stability domains on the (X; f ) plane (b)

for r ¼ �0:27, b ¼ �0:1; phase portrait for f ¼ 0:05, X ¼ �0:05 (c). In (c),

the basin of attraction of the high-amplitude state N is shaded.
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From integration of the equations of motion, Eq. (13),

with the boundary condition

pðf ¼ 0Þ ¼ exp ðiu0Þ; u0 2 ½0; 2pÞ; (14)

one can find the harmonic of the bunched current

J ¼ 1

2p

ð2p

0

pdu0: (15)

Substituting Eq. (15) into the excitation equation, Eq. (1),

yields

dA

ds
þ A ¼ iIs

ðfk

0

J f; sð Þf �s fð Þdfþ 2finj exp iXsð Þ; (16)

where s ¼ x0t=2Q is the normalized time.

The electron orbital efficiency is

g ¼ 1� 1

2p

ð2p

0

jp fkð Þj2du0:

Maximal efficiency g � 0:7 is attained at Is ¼ 0:06,

D ¼ 0:53, and l ¼ 15, where l ¼ fk=
ffiffiffi
3
p

is the normalized

cavity length. In Fig. 10, g as function of the cyclotron reso-

nance mismatch is plotted. Stable and unstable parts of the

curve are shown by solid and dashed lines, respectively. From

this figure, one can see that maximal efficiency is attained in

the hard excitation mode.

We studied injection-locked operation of a gyrotron with

the above-mentioned parameters. In Fig. 11(a), the phase dia-

gram on the driving frequency–driving amplitude parameter

plane is presented. The pattern of the phase diagram is quali-

tatively similar to the quasilinear model studied in Sec. III [cf.

Fig. 2(b)]. Above line 1, the domain of injection locking of

the gyrotron self-oscillation is located. Maximal efficiency of

the phase-locked mode is close to that of the free-running

gyrotron, g � 0:7 [Fig. 11(b)]. With the increase in the injec-

tion power, the efficiency decreases gradually. When the driv-

ing signal amplitude is small enough, the gyrotron operates as

a regenerative amplifier. The domain of stable amplification is

located below line 2 in Fig. 11(a). In this regime, the effi-

ciency is small, g < 0:1. In the area where the phase-locking

and regenerative amplification domains overlap, i.e., below

line 1 but above line 2, there coexist two stable single fre-

quency regimes. In this domain, the oscillator exhibits hyster-

esis, as shown in Fig. 11(b).

In Fig. 10, the orbital efficiency vs. cyclotron resonance

mismatch for a driven gyrotron with finj ¼ 0:05, X ¼ �0:4p
is presented. For these parameters, at D ¼ 0:53, efficiency is

the same as for the free-running gyrotron. The driving allows

pulling in the domain D > 0:55 where there is no free-

running oscillation, i.e., the regime of high-power regenera-

tive amplification discussed in Sec. III C is observed.

However, the efficiency rapidly decreases with D, and at

D � 0:6, a switch to the low-amplitude state occurs. On the

other hand, at D � 0:5 transition to the beating mode occurs.

Fig. 12 illustrates the effect of injection amplitude and

frequency on the interaction efficiency. Fig. 12(a) corre-

sponds to D ¼ 0:53, i.e., to the regime of maximal efficiency

of the free-running gyrotron. The injection-locking band-

width increases with finj that is in agreement with Fig. 11(a).

Maximal efficiency for the locked gyrotron is nearly the

same as for the free-running one, g � 0:7. The maximum

shifts towards lower frequencies with the increase in finj.

The shape of the resonance curves in Fig. 12(a) differs

from that of the quasilinear model [Figs. 2(a) and 3(a)]. At

the right edge of the locking band, the efficiency grows up to

approximately the same values as at the main peak. In such a

regime, a validity of the Gaussian fixed-field approximation

needs further justification. However, the same shape of gðXÞ
curves was reported in Ref. 25 where the injection locking

was simulated using the non-fixed field theory.

In the regenerative amplification mode (D > 0:55), the

resonance curves have similar shape, as shown in Fig. 12(b).

The maximal value of g is about 0.635 for D ¼ 0:57 and rap-

idly decreases with D.

FIG. 10. Orbital efficiency vs. the cyclotron resonance mismatch for the

free-running (finj ¼ 0) and driven (finj ¼ 0:05, X ¼ �0:4p) gyrotron.

FIG. 11. (a) Bounds of injection lock-

ing (1) and regenerative amplification

(2) on the (X; finj) plane for Is ¼ 0:06,

D ¼ 0:53, and l ¼ 15. (b) Efficiency

vs. normalized injection amplitude at

X ¼ �0:3p.
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Similar to the quasilinear model (Sec. III B), the

injection-locking process may be very sensitive to the initial

phase. In Fig. 13, basins of attraction of the high-amplitude

and low amplitude steady states are presented for X ¼ �0:2p,

which corresponds to the apex of the synchronization tongue

in Fig. 11(a). In this simulation, we integrated the gyrotron

equations (13)–(16) with different initial conditions for the

cavity field, Að0Þ ¼ a0 exp ðiu0Þ. In Fig. 13(a), the structure

of the basins looks similar to Fig. 7(a). In fact, the bound

between the two basins is nothing but the unstable limit cycle.

For larger finj, the basins are shown in Figs. 13(b) and 13(c).

They acquire the same structure as in Fig. 7(b), which clearly

indicates the presence of the saddle point, despite the fact that

we are unable to plot the saddle manifolds directly. For

finj > 0:05, the bistability vanishes, and the high-amplitude

steady state establishes even for very small a0.

However, an initial value of amplitude or phase of

the cavity field can hardly be controlled experimentally.

Therefore, we perform the simulation with more realistic initial

conditions, when the driving is injected into the gyrotron oscil-

lator operating in the steady-state free-running mode. In Fig.

14, the corresponding waveforms are presented. The driving

signal finj exp ðiðXsþ wÞÞ is switched on at s ¼ 5, when the

steady-state oscillation with g � 0:7 has already been estab-

lished. Depending on the phase w, the driving can either lock

the high-efficiency oscillation or switch the gyrotron to the

low-efficiency regenerative amplification mode. Thus, the

observed transient behavior of the gyrotron is in good agree-

ment with the predictions of the quasilinear model considered

in Sec. III.

For better understanding of the results presented in this

section, it is important to estimate the power of the injected

signal Pinj. This power can be obtained from the

formula12,26,27

FIG. 13. Basins of attraction of the

high-amplitude (N) and low-amplitude

(O) steady states for X ¼ �0:2p, finj ¼
0:015 (a), 0.035 (b), and 0.0475 (c).

FIG. 14. Orbital efficiency vs. the normalized time for X ¼ �0:2p,

finj ¼ 0:035, and two different values of the initial phase w. The moment

when the driving signal is switched on is shown with the vertical dashed

line.

FIG. 12. Orbital efficiency vs. the nor-

malized injection frequency for differ-

ent values of the injection amplitude

for Is ¼ 0:06, l ¼ 15, D ¼ 0:53 (a),

and D ¼ 0:57 (b).
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f 2
inj ¼

IsQ

Qcpl

Pinj

P0?
;

where Qcpl is the coupling or external Q-factor and P0? is

the beam power associated with the electron gyration. If we

neglect the Ohmic losses, the free-running gyrotron power is

Pf � gf P0?, where gf � 0:7. Assuming that the driver is crit-

ically coupled to the cavity one can easily estimate Pinj=Pf .

For example, three values of finj in Fig. 13 correspond to

Pinj=Pf � 0:5%, 2.9%, and 5.7%, respectively. Thus, in a

typical situation, a rather small driving power is required for

the injection locking.

V. CONCLUSION

In this paper, injection locking of an electronic maser in

the hard excitation mode is studied. Bifurcation analysis of

the quasilinear model (4) described by two ODEs for slowly

varying amplitude and phase is presented. Such a model

describes a wide class of resonant electronic masers16–21

operating in a weakly nonlinear regime. The theoretical

results are confirmed by numerical simulations of the gyro-

tron with fixed Gaussian structure of the RF field.

We found several essential differences from the well-

known synchronization pattern of an oscillator with soft

self-excitation.1–4 There exist two different modes of single-

frequency operation. Depending on the history of the param-

eter values, the oscillator can operate either as a regenerative

amplifier of the input signal or as an injection-locked self-

oscillator. With the smooth variation of the injection power,

hard transitions between these two modes occur. Depending

on the increase or decrease in the injection power, these

transitions occur at different values of finj, i.e., oscillation

hysteresis is observed. The low-amplitude regenerative

amplification mode is stable if the injection power is low

enough. The high-amplitude mode of injection locking is sta-

ble inside the tongue-shaped domain, which is similar to a

usual synchronization tongue. In the bistability domain, the

initial value of the amplitude should be taken large enough

to achieve the high-amplitude mode. Moreover, in a certain

range of finj, there is a very sensitive dependence on the ini-

tial value of the phase.

Below the hard-excitation threshold, when no self-

oscillation in the free-running oscillator is possible, there

appear regimes of regenerative amplification with output

power and efficiency almost as high as in the free-running

oscillator.

ACKNOWLEDGMENTS

This work is supported by the Russian Foundation for

Basic Research Grant No. 15-02-02893a.

1M. I. Rabinovich and D. I. Trubetskov, Oscillations and Waves in Linear
and Nonlinear Systems (Kluwer, Dordrecht, 1996).

2P. S. Landa, Regular and Chaotic Oscillations (Springer, Berlin, 2001).
3A. P. Kuznetsov, S. P. Kuznetsov, and N. M. Ryskin, Nonlinear
Oscillations (Fizmatlit, Moscow, 2005).

4V. Anishchenko, V. Astakhov, A. Neiman, T. Vadivasova, and L.

Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic
Systems. Tutorial and Modern Developments (Springer, Berlin, 2007).

5G. S. Nusinovich, Introduction to the Physics of Gyrotrons (Johns

Hopkins University Press, Baltimore, 2004).
6V. L. Bakunin, G. G. Denisov, and Y. V. Novozhilova, “Frequency and

phase stabilization of a multimode gyrotron with megawatt power by an

external signal,” Tech. Phys. Lett. 40, 382–385 (2014).
7X. Bai, J. Zhang, J. Yang, and Zh. Jin, “Phase locking of an S-band wide-

gap klystron amplifier with high power injection driven by a relativistic

backward wave oscillator,” Phys. Plasmas 19, 123103 (2012).
8R. Z. Xiao, Z. M. Song, Y. Q. Deng, and C. H. Chen, “Mechanism of

phase control in a klystron-like relativistic backward wave oscillator by an

input signal,” Phys. Plasmas 21, 093108 (2014).
9R. Z. Xiao, C. H. Chen, W. Song, X. W. Zhang, J. Sun, Z. M. Song, L. J.

Zhang, and L. G. Zhang, “RF phase control in a high-power high-effi-

ciency klystron-like relativistic backward wave oscillator,” J. Appl. Phys.

110, 013301 (2011).
10�E. B. Abubakirov, A. N. Denisenko, A. P. Konyushkov, E. I. Soluyanov,

and V. V. Yastrebov, “Peculiarities of operation of a relativistic backward-

wave oscillator driven by an external electromagnetic signal,” Radiophys.

Quantum Electron. 57, 372 (2014).
11W. Song, Y. Teng, Z. Q. Zhang, J. W. Li, J. Sun, C. H. Chen, and L. J.

Zhang, “Rapid startup in relativistic backward wave oscillator by injecting

external backward signal,” Phys. Plasmas 19, 083105 (2012).
12G. S. Nusinovich, O. V. Sinitsyn, and T. M. Antonsen, “Mode switching

in a gyrotron with azimuthally corrugated resonator,” Phys. Rev. Lett. 98,

205101 (2007).
13M. Liu, C. Michel, S. Prasad, M. I. Fuks, E. Schamiloglu, and C.-L. Liu,

“RF mode switching in a relativistic magnetron with diffraction output,”

Appl. Phys. Lett. 97, 251501 (2010).
14M. Liu, C.-L. Liu, D. Galbreath, C. Michel, S. Prasad, M. I. Fuks, and E.

Schamiloglu, “Frequency switching in a relativistic magnetron with dif-

fraction output,” J. Appl. Phys. 110, 033304 (2011).
15E. N. Starodubova, S. A. Usacheva, N. M. Ryskin, Y. V. Novozhilova, and

G. S. Nusinovich, “Injection locking of a two-mode electron oscillator

with close frequencies,” Phys. Plasmas 22, 033108 (2015).
16G. S. Nusinovich, “Mode interaction in gyrodevices,” Int. J. Electron. 51,

457–474 (1981).
17G. S. Nusinovich, L. S. Rodygina, and T. M. Tarantovich, “Theory of syn-

chronization of multimode oscillators with hard self-excitation,” Radio

Eng. Electron. Phys. 23, 66–70 (1978).
18M. M. Chumakova, S. A. Usacheva, M. Y. Glyavin, Y. V. Novozhilova,

and N. M. Ryskin, “Mode competition in a two-mode gyrotron with

delayed reflections,” IEEE Trans. Plasma Sci. 42, 2030–2036 (2014).
19L. A. Vainshtein, “General theory of resonant electron autooscillators,” in

High Power Electronics, edited by P. L. Kapitza and L. A. Vainshtein

(Nauka, Moscow, Russia, 1969), pp. 84–129 (in Russian).
20D. I. Trubetskov and A. P. Chetverikov, “Theory of a transition process of

a traveling wave in a high-Q relativistic monotron,” Radiophys. Quantum

Electron. 23, 159–165 (1980).
21W. E. Lamb, Jr., “Theory of an optical maser,” Phys. Rev. 134, A1429 (1964).
22A. P. Kuznetsov and S. V. Milovanov, “Synchronization of a self-

oscillatory system with bifurcation of merging of a stable and unstable

limit cycles,” Appl. Nonlinear Dyn. 11(4–5), 16 (2003) (in Russian).
23C. C. Chiu, K. F. Pao, Y. C. Yan, K. R. Chu, L. R. Barnett, and N. C.

Luhmann, “Nonlinearly driven oscillations in the gyrotron traveling-wave

amplifier,” Phys. Plasmas 15, 123109 (2008).
24Y. S. Yeh, T. H. Chang, C. T. Fan, C. L. Hung, J. N. Jhou, J. M. Huang, J.

L. Shiao, Z. Q. Wu, and C. C. Chiu, “Nonlinear oscillation behavior of a

driven gyrotron backward-wave oscillator,” Phys. Plasmas 17, 113112

(2010).
25N. S. Ginzburg, A. S. Sergeev, and I. V. Zotova, “Time-domain self-

consistent theory of frequency-locking regimes in gyrotrons with low-Q

resonators,” Phys. Plasmas 22, 033101 (2015).
26V. S. Ergakov and M. A. Moiseev, “Theory of synchronization of oscilla-

tions in a cyclotron-resonance maser monotron by an external signal,”

Radiophys. Quantum Electron. 18, 89 (1975).
27G. S. Nusinovich, B. G. Danly, and B. Levush, “Gain and bandwidth in

stagger-tuned gyroklystrons,” Phys. Plasmas 4, 469 (1997).

113107-9 Yakunina, Kuznetsov, and Ryskin Phys. Plasmas 22, 113107 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

80.82.166.91 On: Thu, 19 Nov 2015 08:52:22

http://dx.doi.org/10.1134/S1063785014050034
http://dx.doi.org/10.1063/1.4771690
http://dx.doi.org/10.1063/1.4895598
http://dx.doi.org/10.1063/1.3601522
http://dx.doi.org/10.1007/s11141-014-9520-y
http://dx.doi.org/10.1007/s11141-014-9520-y
http://dx.doi.org/10.1063/1.4742180
http://dx.doi.org/10.1103/PhysRevLett.98.205101
http://dx.doi.org/10.1063/1.3529463
http://dx.doi.org/10.1063/1.3614037
http://dx.doi.org/10.1063/1.4914155
http://dx.doi.org/10.1080/00207218108901349
http://dx.doi.org/10.1109/TPS.2014.2331235
http://dx.doi.org/10.1007/BF01033589
http://dx.doi.org/10.1007/BF01033589
http://dx.doi.org/10.1103/PhysRev.134.A1429
http://dx.doi.org/10.1063/1.3050073
http://dx.doi.org/10.1063/1.3520616
http://dx.doi.org/10.1063/1.4913672
http://dx.doi.org/10.1007/BF01037666
http://dx.doi.org/10.1063/1.872115



