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Different types of critical behavior in conservatively coupled Hénon maps
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We study the dynamics of two conservatively coupled Hénon maps at different levels of dissipation. It is
shown that the decrease of dissipation leads to changes in the structure of the parameter plane and the scenarios
of transition to chaos compared to the case of infinitely strong dissipation. Particularly, the Feigenbaum line
becomes divided into several fragments. Some of these fragments have critical points of different types, namely,
of C and H type, as their terminal points. Also the mechanisms of formation of these Feigenbaum line ruptures
are described.
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I. INTRODUCTION

Nonlinear dynamical systems show a rich variety of
different dynamical regimes, such as stationary points, pe-
riodic and quasiperiodic orbits, as well as chaotic motion,
depending on the system parameters. Bifurcations related to
transitions between these dynamical regimes when a system
parameter is varied have been studied extensively during the
last three decades (see, e.g., [1,2] and references therein).
These studies include the well-known routes to chaos via
period-doubling cascades, quasiperiodicity, and intermittency
([3–6] and references therein). One of the striking features
of chaos is that chaotic parameter regions are interrupted
by periodic motion of different periods appearing in peri-
odic windows [7–9]. Such a close neighborhood of stable
predictable motion on periodic orbits and irregular chaotic
motion makes the system dynamics, particularly in real-world
applications, rather complex, since already slight perturbations
in parameters can shift the system from periodic to chaotic
motion and vice versa. While these windows emerge in many
applications in different disciplines of science (see Ref. [10]
for examples from laser physics, atmospheric science, and
chemistry), leading to quite intricate intertwined structures
in parameter space, such windows are absent in systems
possessing robust chaotic attractors, both hyperbolic ([11] and
references therein) and pseudohyperbolic [12], particularly
Lorenz-like [13–15]. The fine structure of periodic windows
has been investigated for paradigmatic maps such as the
two-parameter quadratic map [16] and the Hénon map [17,18].
In the two-dimensional parameter space such windows have a
typical form which depends on the special type of organization
of bifurcation lines for its main period. The two mostly
common types are spring area and crossroad area structures
[19–21] (periodic windows based on the crossroad area are
often called shrimps [17,22]). Such structures in the parameter
plane have been found in driven, parametrically excited, and
impact oscillators [23–26], electrochemical oscillators [27],
two-gene systems [28], lasers [29,30], population dynamical
systems in ecology, as well as in paradigmatic models such
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as the Rössler system [31]. These shrimp structures have been
demonstrated to be observable in a hardware realization using
electronic circuits [32].

Another important feature of chaotic dynamical systems is
the existence of different types of critical behavior on the
border of chaos. If the transition to chaos occurs via the
cascade of period-doubling bifurcations, the scaling properties
on the border of chaos are in general determined by the
Feigenbaum scaling law [33,34]. Such a situation is typical
for one-dimensional maps. When the phase space as well
as the parameter space are high-dimensional, the transition
to chaos via the Feigenbaum scenario is also a common
situation, and the border of the chaotic region is formed
by the Feigenbaum critical surface to which period-doubling
bifurcations accumulate. This surface could be bounded by
some other surfaces (or lines) with smaller dimension. It
turns out that the structure of the parameter space in the
vicinity of these borders of the Feigenbaum critical surface
and the structure of the phase space on this border has scaling
properties which differ from the Feigenbaum scaling law
([35] and references therein). In terms of the renormalization
group analysis, such critical behavior is associated with saddle
points of the generalized Feigenbaum-Cvitanović equation,
and the number of its eigenvalues with modulus greater than 1
determines the codimension of the critical point [36]. It turns
out that in many cases it is much simpler to observe these
critical points with high codimension in unidirectionally or
mutually coupled systems with period doublings ([35] and
references therein).

The dynamics of nonlinear systems general depends not
only on the nonlinearity but also on the level of dissipation.
There are two main phenomena which characterize the system
dynamics with the change of dissipation. First, while for
strong dissipation the dynamics is characterized by only one
attractor, the coexistence of a multitude of attractors for a
given set of parameters is the norm for weakly dissipative
systems [37]. As the conservative limit is approached, more
and more coexisting attractors appear, as it has been shown
for several model systems such as the standard map [37,38],
the Hénon map [39,40], and in more realistic systems like a
suspension bridge model [41] (see also the review in [42]).
Second, of particular interest is the crossover from dissipative

1539-3755/2015/91(6)/062905(9) 062905-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.062905


SAVIN, KUZNETSOV, SAVIN, AND FEUDEL PHYSICAL REVIEW E 91, 062905 (2015)

to conservative dynamics [43–45]. This crossover is related to
different scaling relations, e.g., for the accumulation of period
doublings at the transition to chaos.

Investigations on weakly dissipative systems are usually
carried out for a low-dimensional map or a system of ordinary
differential equations which is autonomous or periodically
driven. The effect of changes of dissipation on coupled
systems has been only rarely studied, and to our knowledge
only the double kicked rotor has been analyzed to reveal
the extremely high degree of multistability associated with
complexly interwoven basins of attraction [42].

In this paper we try to relate different of the aforementioned
aspects of dynamical systems. We study coupled systems,
changing the dissipation level in order to reveal their different
routes into chaos. In contrast to previous studies of the
bifurcation scenarios in the two-parameter space spanned by
nonlinearity and coupling, we focus on a coupling which
is fixed and conservative, i.e., it does not contribute to an
increase in dissipation. Instead we analyze the dynamics in
the two-parameter space spanned by the two nonlinearity
parameters of the two coupled systems following the approach
developed in [46–48]. Each of the systems, when uncoupled,
exhibits the period-doubling route to chaos. When coupled,
period doublings still occur, but also the quasiperiodicity route
to chaos is observed. Our main aim is to study the critical
behavior associated with the line of Feigenbaum accumulation
points in parameter space. Changing the level of dissipation,
this Feigenbaum line ruptures and one finds several pieces of
that line with different critical behavior at its ends. We show
that this rupture occurs due to the movement of some periodic
window in parameter space when the dissipation is varied.
In fact, the rupture emerges as a result of a “collision” of
this periodic window with the main periodic area possessing
the transition to chaos via the continuous Feigenbaum line in
parameter space. Further decrease of dissipation results in the
appearance of another rupture of the Feigenbaum line caused
by a sequence of Neimark-Sacker bifurcations for cycles from
the period-doubling cascade.

The paper is organized as follows: In Sec. II we present
the model system under investigation, an overview of the
parameter plane evolution and details of the bifurcation
structure of the parameter plane, and the critical behavior at
the border of chaos. In Sec. III we analyze the mechanism of
the rupture of the Feigenbaum line in more detail, and finally
in Sec. IV we summarize the obtained results.

II. TWO CONSERVATIVELY COUPLED HÉNON MAPS

A. The model system

To study the dynamics in coupled dissipative systems,
we focus on two coupled Hénon maps. Choosing these
maps as the simplest paradigms for invertible maps has
several advantages: (i) All results obtained should also occur
when studying models represented by differential equations.
(ii) The single Hénon map, first introduced in [49], is one of the
most studied maps over many years and has been previously
employed to investigate different aspects of critical behavior
on the border of chaos. Though the map itself was constructed
as a paradigmatic theoretical model, it has also been used to

FIG. 1. (Color online) Structure of the parameter plane of Eq. (1)
at b = 0,ε = 0.4. The white line F denotes the transition to chaos
via the Feigenbaum scenario. Areas of different colors correspond
to regions of the existence of cycles possessing certain periods
(see numbers in the figure), Ch denotes the area with a chaotic
dynamics corresponding to a positive larger Lyapunov exponent
(chaotic regime), Q denotes the area in which the Lyapunov exponent
is close to 0 (quasiperiodical regime), and in the white region the
trajectories go to infinity. The sketch of the Feigenbaum line in the
dark rectangle is shown in Fig. 4(a).

describe experimental results, particularly for the description
of the critical behavior in the Rayleigh-Bénard experiment
[50]. (iii) In the limit of infinite dissipation we obtain two
coupled quadratic maps, which have also been widely studied.
In mathematical terms our model system can be written as

xn+1 = λ1 − xn
2 − byn + ε(xn − un), yn+1 = xn,

(1)
un+1 = λ2 − un

2 − bvn + ε(un − xn), vn+1 = un.

Here λ1 and λ2 are the forcing parameters, responsible for
the emergence of the period-doubling cascade in the single
Hénon map, and b is the damping parameter characterizing the
level of dissipation. We use a linear diffusive coupling in the
first variable with coupling strength ε. This coupling is quite
convenient since it will not introduce any extra dissipation in
the system. Hence, in this case it is quite simple to control
the dissipation level, which is given by the Jacobian of the
map J = b2. In the limit b = 1 the system is conservative,
while in the limit b = 0 the dissipation is infinite and Eq. (1)
transforms into two coupled quadratic maps. This allows us to
vary the dissipation continuously in the interval b [0,1], having
well-defined limits on both ends of the interval.

B. Evolution of the parameter plane with decreasing dissipation

In the case of infinite dissipation Eq. (1) turns into the
system of linearly coupled logistic maps. The dynamics of
the latter is investigated rather well [46–48]. The structure
of the (λ1,λ2) parameter plane in this case is shown in
Fig. 1. It is known that besides the transition to chaos via the
Feigenbaum period-doubling cascade, the transition to chaos
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FIG. 2. (Color online) Structure of the parameter plane (a), (c) and its enlarged fragments (b), (d) of (3) at ε = 0.4; b = 0.5 (a), (b), b = 0.7
(c), (d). Color code and symbols as in Fig. 1, black rectangles in the left column are enlarged in the right one. Fragments of the Feigenbaum
line F extending into the “infinity” region correspond to the attractor with a small basin of attraction which coexists with an attractor at infinity
in the corresponding area of the parameter plane.

via quasiperiodicity can also be found in the region close to
the diagonal of the parameter plane. Thereby, there exist two
regions in the parameter plane with different scenarios of the
transition to chaos (let us denote them as F and Q, respectively).
On the border of these two regions the Feigenbaum line of the
transition to chaos terminates in a codimension-2 critical point
associated with the cycle of period 2 in the renormalization
group equation [48]. Such a point is usually called a critical
point of C type [36].

Let us now decrease the dissipation level by increasing the
parameter b towards 1. The structure of the parameter plane
at different b values is shown in Fig. 2. One can see that both
F and Q regions change their structure with the decrease of
dissipation. The quasiperiodicity area becomes much thinner
but spreads into the region far from the diagonal of the
parameter plane; in Figs. 2(b) and 2(d) the Neimark-Sacker
(NS) bifurcation line, marking the border between the period-4
and quasiperiodicity areas, can be seen in the parameter region
where λ1 and λ2 are sufficiently different. This situation
contrasts to the case b = 0 where the quasiperiodicity region
exists only near the diagonal [46–48], as in Fig. 1. The
Feigenbaum line undergoes a rupture, and instead of one line

on each side of the diagonal we observe at b = 0.5 two pieces
[Figs. 2(a) and 2(b)]. Right after the rupture, multistability with
coexisting attractors appears, which can be seen in Fig. 2(b),
where the right fragment of the Feigenbaum line continues
into the area of the period-8 cycle, which means that in this
region of parameter space the stable period-8 cycle coexists
with the sequence of period doublings accumulating at the

TABLE I. Coordinates of the “fold-flip” points at the right end of
the Feigenbaum line at b = 0.3.

Period λ1 λ2

8 1.193 673 93 2.024 231 76
16 1.235 872 29 2.071 835 06
32 1.209 961 71 2.042 504 55
64 1.225 550 98 2.059 834 79
128 1.219 474 00 2.052 973 70
256 1.223 713 98 2.057 745 98
512 1.222 520 07 2.056 395 39
1024 1.223 355 67 2.057 340 09
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FIG. 3. Bifurcation lines of Eq. (1) at increasing values of b,
illustrating the process of formation of the quasiperiodicity area.
Points denote resonance 1:2 points, solid lines – lines of period-
doubling (PD) (outside of a pair of resonance 1:2 points) and
Neimark-Sacker bifurcations (inside of resonance 1:2 points), dashed
lines – fragments of PD lines, corresponding to the unstable cycle.
Each system (a)–(e) consists of two lines, bounding the stability
region of cycle of periods 8 (low line) and 16 (upper line). Values
of parameter b: (a) 0.60; (b) 0.61; (c) 0.62; (d) 0.63; and (e) 0.64.
In case (a) both PD lines are still continuous, in case (b) the NS line
exists only for the period-16 cycle, (c)–(e) line of Neimark-Sacker
bifurcation exists for both cycles.

Feigenbaum line. The dynamics in between the two large
pieces of Feigenbaum lines is even more involved, but this
complicated structure is beyond the scope of this paper. With
further increase of b [b = 0.7 in Figs. 2(c) and 2(d)], a second
Q area arises far from the diagonal of the parameter plane,
which causes an additional rupture of the Feigenbaum line

possessing now three pieces on each side of the diagonal.
From these observations two questions arise:

(1) What does the bifurcation structure around the terminal
points of the fragments of the Feigenbaum line look like?

(2) What is the mechanism of the rupture?
To answer these questions we study the bifurcation structure

in more detail using the continuation software CONTENT [51]
and investigate the critical behavior. It is worth mentioning
here that the Feigenbaum lines shown in the figures are
obtained as the limit of the subsequent period-doubling lines
using the software CONTENT.

When the b value is rather small, the Feigenbaum line
is still continuous. In this case period-doubling (PD) lines
of consecutive periods from the period-doubling cascade
terminate in “fold-flip” points in which one pair of multipliers
has moduli less than 1 while the other two are equal to (–1,
+1) [2]. The coordinates of these points for the right end of
the Feigenbaum line at b = 0.3 are shown in Table I. This
sequence converges to a certain limit, which is the terminal
point of the Feigenbaum line. A similar sequence could be
observed for the second terminal point as well. Such sequences
are known to have the critical points of C type as their limit
[35]. We can conclude that at b = 0.3 the Feigenbaum line
terminates in two C-type critical points, as in two coupled
logistic maps at b = 0 [48]. With increasing b the first rupture
occurs at 0.3218 < b < 0.3219, and at b = 0.5 [Figs. 2(a)
and 2(b)] the Feigenbaum line is already divided into two
fragments in each half of the symmetric parameter plane. The
terminal points of the PD lines are again “fold-flip” points, and
these sequences also converge to C-type critical points.

Further increase of b leads to the formation of a new Q area,
which can be regarded as the formation of the second rupture
of the Feigenbaum line, which occurs at 0.6 < b < 0.61. It
emerges due to the appearance of NS bifurcation lines for all
periodic orbits from the period-doubling cascade starting from
the ones with higher periods: the NS bifurcation for period 2n

appears at smaller value of parameter b than for period n.
In some interval of parameter b, NS bifurcations appear for
all cycles down to period 2. The Feigenbaum line, of course,

FIG. 4. Sketch of the Feigenbaum critical line of Eq. (1) at b = 0 (a) and b = 0.7 (b). [Magnification of the parameter plane parts marked
with black rectangles in Figs. 1 and 2(c)]. F1, F2, F3 denote fragments of the Feigenbaum line, C, C1, C1’, C2, C3, H2, H3 – critical points of
C and H type, correspondingly.
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FIG. 5. Structure of bifurcation lines of Eq. (1) at b = 0.7. PD denotes period-doubling line, NS – line of Neimark-Sacker bifurcation, R2
– resonance 1:2 point, H – location of the critical point of H type. Numbers denote the period of the stable regime in the corresponding area.

ruptures at the lower border of this interval of b. This evolution
of the bifurcation lines with the change of b is shown in Fig. 3.

Figure 4 represents the structure of the Feigenbaum line
for larger b values [b = 0.7 in Fig. 4(b)] compared to the
one for the coupled logistic maps at b = 0 [Fig. 4(a)]. We
note that instead of critical points of C-type, critical points
of another type denoted by H1 and H2 emerge on both ends
of this rupture. Figure 5 represents the picture of PD and NS
lines at the right border of the Q area at b = 0.7 [vicinity of the
point H2 in Fig. 4(b)]. One finds that all period-doubling lines
terminate at the resonance 1:2 points, i.e., points in which one
pair of multipliers have modulus less than 1 while the other
two are equal to (–1,–1) [2]. Such a sequence of points is
typically the route to the critical point of Hamiltonian type, or
H point [35,52]. The coordinates of these terminal points are
presented in Table II. Again they accumulate to a certain limit,
which we assume to be the critical point of H type. Using the
corresponding scaling constant δH = 8.72 . . . [53], we obtain
the expected location of this point at λ1 = 0.280 283 808,λ2 =
3.269 106 587 and calculate the multipliers of cycles of periods
32 and 64 in it. We obtain μ1 = 2.06 and μ2 = 0.48, which are
rather close to the universal values μ1 = 2.057 478 3 . . . and
μ2 = 0.486 031 8 . . . [35]. We conclude that the critical point
of H-type appears here as a terminal point of the Feigenbaum
line. The dynamics on the other side of the Q area is the same,
so that there exists another critical point of H type.

It is worth mentioning that we observe a change of the
type of NS bifurcation for different periodic orbits from the
period-doubling cascade, e.g., it is supercritical for periods n

TABLE II. Coordinates of the resonance 1:2 points converging
to the critical point of H type at b = 0.7 [H2 point in notations of
Fig. 4(b)].

Period λ1 λ2

16 0.280 808 95 3.268 918 02
32 0.280 380 63 3.269 091 24
64 0.280 292 62 3.269 104 45
128 0.280 284 97 3.269 106 34
256 0.280 283 94 3.269 106 56

and 4n while subcritical for periods 2n and 8n. The same
behavior has been obtained in [52] for another system in
a similar situation. Hence, it seems to be typical for the
appearance of the H-type critical point in dissipative systems.

At both sides of the other rupture [left end of fragment F1
and right end of fragment F2 in Fig. 4(b)] the Feigenbaum line
fragments terminate with C-type critical points, similar to the
picture at smaller values of b. The coordinates of the “fold-flip”
terminal points from the converging sequence illustrating this
fact are presented in Table III.

Finally, we have three fragments of the Feigenbaum line
which we call F1, F2, and F3, respectively, going from right
to left [see Fig. 4(b)]. The F1 fragment terminates with critical
points of C type at both ends, while F2 and F3 possess critical
points of different types (C and H, respectively) at their two
ends. This corresponds well with the conjecture about the
possible terminal points of the Feigenbaum line which could
be of C or H type in the general case [36].

III. FORMATION OF THE RUPTURE

So far we have identified the critical behavior in the vicinity
of the terminal points of fragments of the Feigenbaum lines
for different levels of dissipation. But this does not answer

TABLE III. Coordinates of the “fold-flip” points at the left end
of the Feigenbaum line rupture at b = 0.7 [vicinity of C2 point in
notations of Fig. 4(b)].

Period λ1 λ2

8 0.701 900 94 2.818 546 45
16 0.702 444 60 2.814 386 24
32 0.708 273 90 2.808 315 58
64 0.707 596 08 2.809 008 26
128 0.708 476 10 2.808 021 03
256 0.708 173 22 2.808 357 90
512 0.708 365 62 2.808 142 28
1024 0.708 282 59 2.808 235 00
2048 0.708 330 27 2.808 181 67
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FIG. 6. (Color online) Fragments of the parameter plane illustrating the process of the formation of the Feigenbaum line rupture. ε = 0.4,
b values: (a) 0.31, (b) 0.316, (c) 0.321 5, and (d) 0.334. Color code as in Fig. 1. For better representation the period-32 window is shown
fully, while from the period-16 window one part is cut out, since this part would overlay the period-32 window. Both attractors, period-16 and
period-32, coexist and possess different basins of attraction.

the question how the first rupture of the Feigenbaum line is
formed.

In order to reveal the mechanism of this rupture formation,
we have computed a number of charts of dynamical regimes for
different values of dissipation b. First we recall the important
property of chaotic dynamics, that it is interspersed with
periodic windows of different periods [7–9]. The skeletons
of these regions of periodic dynamics within the chaotic
region in the two-dimensional parameter space are the spring
area and crossroad area structures [19–21]. When changing
the dissipation parameter b, these periodic regions “move”
through parameter space, i.e., they change their location as
well as their size. It turns out that for a particular b value one
of the periodic regions collides with the main periodic region
and merges subsequently with it.

To illustrate this process we show several parts of the
parameter plane at ε = 0.4 and different b values in Fig. 6.
In Fig. 6(a) one can see the periodic window based on the
spring area for the period-16 cycle together with the cascade
of the periodic windows consisting of a series of spring areas
for a cycle of period 32, 64 etc. which are highlighted here and
further in Fig. 6(b) by white rectangles. Figures 6(b) and 6(c)

show the evolution of these periodic windows with increasing
b, which results in a merging of the whole structure with the
main periodic area [Fig. 6(d)].

It is necessary to recall here briefly the structure of a typical
periodic window. Crossroad-area and spring-area structures
based on the cycle of period n are formed by two fold lines for
this cycle emanating from a cusp point [19–21]; hence one can
find multistability and the parameter space becomes divided
into two “multistability sheets,” which means that in some
region in the parameter space two attractors with different
basins of attraction and independent dynamics coexist. On each
of these multistability sheets there exists a period-doubling
line. Since the periodic window usually consists of a cascade
of such structures with periods n,2n etc., at each level of this
period-doubling cascade a new splitting of the parameter space
into multistability sheets occurs, and finally at the border of
chaos one obtains a very complicated fractal-like structure with
an infinite number of Feigenbaum line fragments [35,54]. This
complex hierarchical structure of bifurcation lines is located
in small regions of the parameter space and is not at all
related with the usual transition to chaos observed starting
from the main periodic area. However, when the merging of
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FIG. 7. (Color online) Fragments of the parameter plane illustrating the process of the formation of the Feigenbaum line rupture at ε = 0.2.
b values: (a) 0.655 8 and (b) 0.657 5. Color code as in Fig. 1.

this periodic window with the main periodic area occurs, this
complicated bifurcation structure affects also the transition to
chaos from the main periodic area.

Though the rupture of the Feigenbaum line has only
been demonstrated for the coupling ε = 0.4, the described
mechanism of rupture formation exists in a certain interval

FIG. 8. (Color online) Fragments of the parameter plane illustrating the process of the collision of two periodic windows. Pictures in the
right column are the enlargements of the black parallelograms from the left one. ε = 0.37, b values: (a), (b) 0.298, (c), (d) 0.304. Color code
differs from used in Fig. 1: white – chaotic region, gray etc. – periodic windows, the main period of the concerning windows is 16.

062905-7



SAVIN, KUZNETSOV, SAVIN, AND FEUDEL PHYSICAL REVIEW E 91, 062905 (2015)

of the coupling parameter ε. However, it is important to note
that the definite shape of the periodic window involved in
the process of rupture could vary. For example, for ε = 0.2
the described process occurs not with a spring area structure
but with a “ring-shaped” periodic window (see Fig. 7).
Additionally, varying ε and b one can find a transition from
one type of periodic window to another. As an example we
show the collision of this “ring-shaped” structure with another
periodic window based on the crossroad area structure in
Figs. 8(a) and 8(b), which results in the formation of two
spring-area-based periodic windows [Figs. 8(c) and 8(d)]. This
could be interpreted as an indicator for the existence of a highly
complicated connection between different periodic windows
in the four-dimensional parameter space.

IV. SUMMARY

In this paper we have studied two conservatively coupled
Hénon maps with a special focus on the change in the transition
to chaos as the strength of dissipation is varied. In the limit of
infinitely strong dissipation the system turns into two coupled
logistic maps. For this system it is known that in the region
where subsystems are sufficiently nonidentical the transition
to chaos appears via a period-doubling cascade accumulating
at the Feigenbaum line, which marks the transition to chaos.
As dissipation is lowered more complicated dynamics arises,
which involves two ruptures of this Feigenbaum line. The first
rupture yields two fragments which are terminated by critical
points of C type. The second one, leading to the existence
of three fragments of the Feigenbaum line, yields critical

points of another type. This second rupture corresponds to the
emergence of a region of quasiperiodic behavior in parameter
space. The terminal points of the fragments of the Feigenbaum
line facing the quasiperiodic parameter region are both of H
type. This means that those two fragments possess critical
points of different type on each of its ends related to different
scaling properties. This seems to be the typical situation for
maps characterized by more than one parameter according
to theoretical reasoning made in Ref. [36], but our study
demonstrates this phenomenon in numerical simulations.

Additionally we have demonstrated the mechanism of
formation of the first rupture. Our study shows that the
periodic windows, which are usually present in the chaotic
parameter region, are moving with changing parameter values
and approaching the main periodic area. Finally one such
periodic window merges with the main periodic area, giving
rise to the first rupture.
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