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Abstract

Ensembles of several Rössler chaotic oscillators are considered. We
show that a typical phenomenon for such systems is an emergence of
different and sufficiently high dimensional invariant tori. The possi-
bility of a quasi-periodic Hopf bifurcation and a cascade of such bi-
furcations based on tori of increasing dimension is demonstrated. The
domains of resonance tori are revealed. Boundaries of these domains
correspond to the saddle-node bifurcations. Inside the domains of res-
onance modes, torus-doubling bifurcations and destruction of tori are
observed.
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1 Introduction

The problem of interaction between oscillators is a topic of interest in various
fields of physics, chemistry and biology [1-8]. The simplest case is when the
individual oscillators exhibit periodic oscillations. Their interaction can lead
to either synchronization or quasi-periodic oscillations. With an increase in
the number of oscillators in the system, a number of possible incommensurate
frequencies increases. As a result, multi-frequency quasi-periodic oscillations
may arise. The invariant tori of higher dimension correspond to these oscilla-
tions [9-15]. With an increase in the coupling, the tori can be destroyed with
the formation of chaos. In this paper, we discuss an alternative situation.
We consider a system of a small number of coupled chaotic oscillators and
demonstrate an occurrence of the invariant tori of different dimensions with
an increase in the coupling.

The possibility of the quasi-periodic oscillations in coupled systems with
chaos was discussed in [16-18]. An effect of the coupling on the amplitude
dynamics of two coupled Rössler chaotic oscillators was considered in [16],
where the possibility of a two-frequency quasi-periodicity was also discussed.
However, a detailed investigation was not done. In [17-18], the ring of three
identical unidirectionally coupled Lorenz systems was investigated. Not only
two-, but also three-frequency quasi-periodic regimes were revealed. But
only the one-parameter analysis was performed. Three-frequency tori were
detected in a very narrow range of the parameter (about one thousandth).
The emergence of a new frequency was explained in [17,18] by the possibility
of rotational motion of the system and its high degree of symmetry associated
with the identity of the interacting subsystems.

In this paper, the chains and the networks of a small number of the
Rössler chaotic oscillators are considered. It is essential that the oscillators
are non-identical by the frequency parameter. It is known that for two such
oscillators both synchronous and asynchronous chaotic regimes are possible
[19-21]. An approximate location of the domains of these regimes in the fre-
quency mismatch – coupling parameter plane was considered in [19,21]. In
fact, a detailed analysis of this parameter plane reveals its sufficiently com-
plex structure. With an increase in the number of oscillators, the synchro-
nization picture becomes much more complicated. An appropriate analysis
is the subject of this paper. For the completeness of investigation, we start
from the case of two coupled oscillators, and then consider a chain of three
coupled oscillators. After that, we investigate a network of four and five os-
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cillators. A variety of possible dynamical regimes in the system grows with
an increase in the number of oscillators. Two-parameter Lyapunov analy-
sis is usable for the proper investigation [12-15,22-23]. It allows to identify
quasi-periodic regimes of different dimensions and hyperchaos with different
number of the Lyapunov exponents. Another problem discussed in this paper
is a possible type of bifurcations of invariant tori. We find the quasi-periodic
Hopf bifurcations, which correspond to a soft appearance of the torus of
higher dimension [24]. The saddle-node bifurcations are also possible. They
are typical when the resonance tori arise on the surface of a torus of higher
dimension.

2 Two coupled chaotic oscillators

Consider a system of two coupled Rössler oscillators [19-21]:

ẋ1 = −(1−Δ)y1 − z1,
ẏ1 = (1−Δ)x1 + py1 + μ(y2 − y1),
ż1 = q + (x1 − r)z1,

ẋ2 = −(1 + Δ)y2 − z2,
ẏ2 = (1 + Δ)x2 + py2 + μ(y1 − y2),
ż2 = q + (x2 − r)z2.

(1)
Here x, y, z are the dynamic variables, Δ is the frequency mismatch. The

parameters are set to be p = 0.15, q = 0.4, r = 8.5. This corresponds to the
chaotic regime in the individual subsystems.

Let us determine a localization of different dynamical regimes in the fre-
quency mismatch – coupling parameter plane (Δ, μ). To do this, we calculate
the spectrum of Lyapunov exponents of the system (1) at each point in the
parameter plane, and then we color this plane according to the spectrum
structure [12-15,23]. As a result, the following regimes are visualized: P
– periodic regime (one zero exponent), T2 – two-frequency quasi-periodic
regime (two zero exponents), C – chaos (one positive exponent) and HC –
hyperchaos (two positive exponents).

Fig. 1 shows a chart of Lyapunov exponents in the (Δ, μ) parameter
plane1. Inside the domain of periodic regimes P, there is a complete synchro-
nization of oscillators. For large values of Δ, there are oscillations with a limit
cycle which has one fixed point in the Poincaré section (period 1). With an
increase in Δ, this cycle undergoes a period-doubling bifurcations (period 2,

1Compare Fig. 1 with Fig. 2 in [20].
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4, etc.), and then a synchronous chaos occurs. To the right of these domains,
an amplitude death domain (AD) is located where self-oscillations are sup-
pressed by the dissipative coupling. In this case, all Lyapunov exponents are
negative.

Figure 1: Chart of Lyapunov exponents for the system (1). The color palette
is discussed in the text and presented to the right of the figure. Numbers
indicate periods of the system in regime of periodic oscillations (i.e. periods
evaluated as the number of steps in the Poincaré section required for the
repeating of the system’s state).

Below the AD domain, asynchronous regimes arise. At small coupling,
there is hyperchaos, because the system without coupling is divided into
two chaotic oscillators, each having a positive Lyapunov exponent. With
an increase in the coupling, hyperchaos is changed to an ordinary chaos.
Further increase in coupling leads to the appearance of two-frequency quasi-
periodicity. Thus, the coupling suppresses the chaotic component, but re-
tains the classical beatings that are typical for the interacting self-oscillating
systems with limit cycles.
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Portraits of attractors plotted in the Poincaré section2 for the increased
coupling values are presented in Fig. 2. We can see a transition from hyper-
chaos HC to chaos C with further appearance of an invariant curve corre-
sponding to the two-frequency quasi-periodicity T2.

Figure 2: Evolution of an attractor of the system (1) in the Poincaré section
with an increase in the coupling, Δ=0.085.

Thus, there is a “self-oscillating component” in the dynamics of chaotic
oscillators which becomes apparent and initiates quasi-periodic oscillations
when the dissipative coupling is introduced. It can be expected that this
component will also become apparent with an increase in the number of
oscillators. To show this, we consider a chain of three coupled chaotic oscil-
lators. But at first, one more thing should be discussed.

When the coupling is absent, the equations of individual subsystems are
not the strict Rössler equations due to the factor Δ. This factor is responsible
for the oscillation frequency. At the same time, variation of Δ results in the
changing of an excitation degree [20]. This fact is illustrated in Fig. 3 where
the bifurcation tree for an individual oscillator is shown. One can see that
the chaos disappears at ΔC < −0.13. For the coupled oscillators (1), it
results in the appearance of an ordinary chaos instead of hyperchaos at Δ >

2Hereinafter Poincaré section corresponds to the intersection between phase trajectories
and the surface y1 = 0 , x1 < 0 .
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|ΔC | in Fig. 1, because oscillations in the second subsystem become regular.
However, the domain of two-frequency quasi-periodicity is maintained and
weakly depends on this effect. Note that the presence of periodic windows
in a bifurcation diagram is a typical phenomenon for the chaotic oscillators
and becomes apparent in the dynamics of ensembles of coupled non-identical
oscillators. When we discuss network of several elements, we will return to
this property.

Figure 3: Bifurcation diagram of the individual oscillator for r = 8.5.

3 Three Rössler chaotic oscillators

Now consider a chain of three coupled Rössler oscillators:

ẋ1 = −y1 − z1,
ẏ1 = x1 + py1 + μ(y2 − y1),
ż1 = q + (x1 − r)z1,

ẋ2 = −(1−Δ1)y2 − z2,
ẏ2 = (1−Δ1)x2 + py2 + μ(y1 + y3 − 2y2),
ż2 = q + (x2 − r)z2,

ẋ3 = −(1−Δ2)y3 − z3,
ẏ3 = (1−Δ2)x3 + py3 + μ(y2 − y3),
ż3 = q + (x3 − r)z3.

(2)
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Here Δ1 is the frequency mismatch between the first and second oscilla-
tors, Δ2 is the frequency mismatch between the first and third oscillators.

A plot of the four largest Lyapunov exponents as a function of the cou-
pling parameter μ for the system (2) is shown in Fig. 4 for Δ1 = 0.56,
Δ2 = 0.05. One can see that not only two-frequency T2, but also three-
frequency T3 regimes with three zero Lyapunov exponents are possible.

Figure 4: Plot of the largest Lyapunov exponents as a function of the cou-
pling parameter for three coupled chaotic oscillators (2). AH denotes the
Andronov–Hopf bifurcation, NS is the Neimark–Sacker bifurcation, QH cor-
responds to the quasi-periodic Hopf bifurcation. Values of the parameters
are Δ1 = 0.56, Δ2 = 0.05.

With a decrease in μ, there is a following sequence of bifurcations in
Fig. 4. At first, a stable limit cycle arises as a result of the Andronov–Hopf
bifurcation AH, and one zero Lyapunov exponent Λ1 = 0 appears. Then, a
soft birth of a two-frequency torus occurs which is caused by the Neimark–
Sacker bifurcation NS and characterized by two zero exponents Λ1 = Λ2 = 0.
The further decrease in μ leads to a birth of a three-frequency torus with
three zero Lyapunov exponents3. This is caused by the quasi-periodic Hopf
bifurcation QH [25] and easily detected in Fig. 4: before the bifurcation
point, the third and fourth exponents coincide, Λ3 = Λ4. At the point QH,
the third Lyapunov exponent becomes zero, Λ3 = 0, and the fourth one

3The precision in numerical evaluations of zero exponents is up to 10−7.
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Figure 5: Chart of Lyapunov exponents for three coupled Rössler chaotic
oscillators (1). TN denotes the quasi-periodic regime with N incommensu-
rable frequencies. HCN corresponds to the hyperchaos with N positive Lya-
punov exponents. Values of the parameters are p = 0.15, q = 0.4, r = 2.5,
Δ2 = 0.05.

becomes negative again. This is a characteristic feature of this bifurcation
responsible for a soft birth of a three-frequency torus [25].

Two-parameter Lyapunov analysis reveals a distribution of regimes shown
in Fig. 5. The domains of two- and three-frequency quasi-periodic regimes
are sufficiently wide as well as the chaotic and hyperchaotic ones.

The examples of portraits of attractors plotted in the Poincaré section for
the increased coupling values μ are given in Fig. 6. Discuss them and start
with the case of large μ. Fig. 6i represents a two-frequency torus T2 with an
invariant curve close to a circle in the Poincaré section. With a decrease in
μ, a soft birth of a three-frequency torus T3 from the invariant curve occurs,
as is shown in Fig. 6h. The further decrease in μ results in occurrence
of the invariant curves corresponding to the two-frequency resonance tori.
An example is shown in Fig. 6g. If we decrease slightly the coupling value
(only by 0.0001), a three-frequency torus occurs abruptly. Interleaving of
trajectories giving rise to this torus is clearly visible on its surface in Fig. 6f.
This occurs as a result of the hard saddle-node bifurcation of invariant tori.

With further decrease in μ, one can see in Fig. 6d an invariant curve
having complex shape. This curve corresponds to one of the possible two-
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Figure 6: Portraits of attractors plotted in the Poincaré section for three
coupled Rössler chaotic oscillators (2); Δ1 = 0.19, Δ2 = 0.05.

frequency resonance tori. Note that the number of resonance windows is
sufficiently large4. Finally, for small coupling, the tori are destroyed with an
emergence of chaos and then hyperchaos, Fig. 6a-c.

Fig. 7 represents the Fourier spectra of quasi-periodic oscillations for three
coupled chaotic oscillators. The parameter values are the same as in Fig. 6h
and Fig. 6i. Fig. 7a shows the spectrum of three-frequency quasi-periodic
oscillations obtained at a lower value of μ. Fig. 7b refers to the two-frequency
oscillations at higher coupling value. One can see the characteristic spectrum
arrangements which are typical for the quasi-periodic oscillations with the
proper number of incommensurate frequencies.

With an increase in the frequency parameter Δ1, the common picture
remains the same, but the difference between the oscillation frequencies be-
comes stronger. This fact is evident in the Poincaré section of the three-
frequency torus given in Fig. 8.

4It is significantly larger than that for three coupled oscillators (2) in case of regular
oscillations in the subsystems. This results in a visual perception that the three-frequency
domain contains almost no two-frequency synchronization tongues.
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Figure 7: Oscillation spectra for three coupled Rössler chaotic oscillators (2)
plotted inside the quasi-periodic domain; a) μ = 0.0683, b) μ = 0.08.

Figure 8: Poincaré section of the three-frequency torus for the system (2);
Δ1 = 0.56, Δ2 = 0.05.

Fig. 9 shows the bifurcation diagram, i.e. the set of all values of the
variable x1 for different values of the coupling parameter on the attractor in
the chosen Poincaré section. This diagram illustrates bifurcations responsible
for the occurrence of invariant tori of different dimensions. At the point
NS, the Neimark–Sacker bifurcation NS occurs and a two-frequency torus is
born. At this point, a single “branch”, which corresponds to the limit cycle,
becomes so wide that a set of points at given μ occupies a finite interval of
x1-values. At lower values of μ, the windows of resonance limit cycles are
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clearly visible. At the point QH, the bifurcation diagram becomes abruptly
wider again. This is the quasi-periodic Hopf bifurcation point [25], at which
a soft birth of a three-frequency torus from a two-frequency torus occurs.

Figure 9: Bifurcation diagram for three coupled Rössler chaotic oscillators
(2); Δ1 = 0.19, Δ2 = 0.05.

Now discuss the transition region from chaos to three- and two-frequency
tori in the parameter plane. An enlarged fragment of the chart of Lyapunov
exponents is given in Fig. 10. This figure illustrates an embedded system
of resonance tongues of two-frequency tori in the domain of three-frequency
regimes. The tips of these tongues are immersed now in the chaotic domain
and are destroyed.

Examples of portraits of attractors plotted in the Poincaré section inside
the resonance tongue are given in Fig. 11. Above the quasi-periodic Hopf
bifurcation QH, an invariant curve is close to a circle, Fig. 11a. Then, it
becomes more complicated, Fig. 11b. With a decrease in the coupling μ,
one can see a doubling bifurcation of an invariant curve inside the resonance
tongue, Fig. 11c. Note that this bifurcation line is partially visible on the
chart as a set of blue points inside the tongue, because one of the Lyapunov
exponents becomes zero at the bifurcation moment. The further decrease in
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Figure 10: Enlarged fragment of the chart of Lyapunov exponents shown in
Fig. 5.

Figure 11: Portraits of attractors plotted in the Poincaré section for the
system (1) inside the domain of two-frequency resonance torus; a) Δ1 =
0.514, μ = 0.089, b) Δ1 = 0.522, μ = 0.084, c) Δ1 = 0.522, μ = 0.076, d)
Δ1 = 0.52, μ = 0.06.
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μ results in the destruction of a two-frequency invariant torus illustrated in
Fig. 11d.

4 Network of four Rössler chaotic oscillators

Now we consider a more complex system, a network of four chaotic oscillators:

ẋn = −(1 + n−1
3
Δ)yn − zn,

ẏn = (1 + n−1
3
Δ)xn + pyn +

μ
3

∑4
i=1(yi − yn),

żn = q + (xn − rn)zn.
(3)

In this case, the individual oscillators have equidistant frequencies, and
an increase in Δ results in an increase in the frequency mismatch between
all oscillators.

The chart of Lyapunov exponents for the system (3) is shown in Fig. 12.
Different colors indicate periodic regimes P, quasi-periodic regimes T with
a different number of incommensurate frequencies, chaos C and hyperchaos
CH with a different number of positive exponents. The color palette is given
in the figure to the right.

First, we discuss the domain of asynchronous regimes at sufficiently large
frequency mismatches. At the low coupling, hyperchaos with four positive
Lyapunov exponents HC4 is dominant. It is quite natural for a system of four
chaotic oscillators. With an increase in the couling, the number of positive
exponents decreases gradually, and an ordinary chaos C occurs after the HC3
and HC2 transition. At higher μ, a complex alternating pattern of different
regimes is observed. Here, two-frequency tori T2 and three-frequency tori
T3 are typical.

This fact is illustrated in Fig. 13 by plotting the largest Lyapunov expo-
nents as a function of the coupling parameter for Δ = 0.25. One can see a
possibility of a two-frequency torus T2 at the large coupling. With a decrease
in μ, a three-frequency torus occurs as a result of the quasi-periodic Hopf
bifurcation. Windows of two-frequency resonance tori are also clearly visible
on the plot. They are marked by arrows. Their boundaries correspond to
saddle-node bifurcations of tori.

Four-frequency tori are also possible, but they are less typical. They are
reliably identified at high frequency mismatches. The corresponding plot of
five largest Lyapunov exponents is shown in Fig. 14 for Δ = 0.5. At large
coupling, there is a stable steady state. Then, it turns into a stable limit
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Figure 12: Chart of Lyapunov exponents for the network of four chaotic
oscillators (3); p = 0.15, q = 0.4, r = 8.5.

Figure 13: Plot of five largest Lyapunov exponents as a function of the
coupling parameter and characteristic bifurcation points for the system of
four coupled Rössler chaotic oscillators (3) at Δ = 0.25.
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cycle via the Andronov–Hopf bifurcation AH. This limit cycle turns into a
two-frequency torus at the Neimark–Sacker bifurcation point NS. A three-
frequency torus arises at the quasi-periodic bifurcation point QH1. The third
and fourth Lyapunov exponents coincide (Λ3 = Λ4) before the bifurcation
point and equal to zero at this point. Then, the third exponent remains
zero, and the fourth one becomes negative again, which is typical for this
type of bifurcation [25]. As a result of a similar bifurcation QH2, a four-
frequency torus occurs at lower μ. Before this bifurcation, the fourth and
fifth exponents coincide, Λ4 = Λ5.

Figure 14: Plot of five largest Lyapunov exponents as a function of the
coupling parameter and characteristic bifurcation points for the system of
four coupled Rössler chaotic oscillators (3) at Δ = 0.5.

Fig. 15 shows the Fourier spectrum and portrait in the Poincaré section
for the four-frequency torus. We can see that the spectrum consists of the
individual lines, and the four fundamental components are visible. Other
components correspond to the combination frequencies.

Let us return to Fig. 14. With further decrease in the coupling, the saddle-
node bifurcation of tori SNT occurs. This bifurcation results in a reduction
of the torus dimension, and a three-frequency resonant torus arises. In this
case, the fifth Lyapunov exponent always remains negative, which defines
another type of bifurcation [25].

Thus, at high frequency mismatches the observed bifurcation scenario
begins as the Landau–Hopf scenario with a decrease in the coupling [14,26-
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Figure 15: Fourier spectrum and portrait in the Poincaré section for the
system of four coupled Rössler chaotic oscillators (3) inside the domain of
four-frequency torus at Δ = 0.5, μ = 0.14.

27]. Then, however, a three-frequency resonant torus occurs. An appearance
of chaos at lower values of the coupling is caused by the destruction of this
torus.

In the intermediate frequency mismatch range (between Δ ≈ 0.25− 0.5)
on the chart of Lyapunov exponents in Fig. 12, the domains of four-frequency
tori are also visible. It can be clearly seen in the plot of Lyapunov exponents
in Fig. 16. In this case, there is a kind of interaction between the resonances
of different types. For example, a three-frequency resonance torus arises
on the surface of a four-frequency torus with an increase in the coupling,
see Fig. 16. Then, however, a two-frequency resonance torus occurs on its
surface. Thus, a whole hierarchy of different resonances is possible.

Fig. 16 reveals also the specific regimes, which correspond to the two-
frequency tori with a very small Lyapunov exponent. This exponent de-
creases slowly with a decrease in the coupling. For example, see the left
domain of two-frequency tori T2 in Fig. 16.

5 Synchronous and asynchronous

quasi-periodicity

We have discussed only asynchronous regimes which occur in the system (3)
at sufficiently large frequency mismatch Δ. However, synchronous regimes
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Figure 16: Plot of five largest Lyapunov exponents as a function of the
coupling parameter for the system of four coupled Rössler chaotic oscillators
(3) at Δ = 0.375.

have also some new interesting features. For the two chaotic oscillators, a
synchronous regime can be periodic or chaotic [19-21]. For the system (3)
at the low frequency mismatch, both periodic and chaotic regimes are also
possible, see Fig. 12. However, we can see also on the chart in Fig. 12 that
a quasi-periodic regime arises on the basis of the 2-period regime. Fig. 17
illustrates this fact. The corresponding Poincaré section of the doubled two-
frequency torus is shown in Fig. 17, right. At the same time, the regime
is synchronous from the point of view of the phase dynamics. To verify
this, consider the time dependences of the relative phases of the oscillators
in Fig. 17. Here, ϕi is the phase of the i -th oscillator defined as the simple
geometric phase [19-21]. We can see that all three relative phases oscillate
within a limited range. Thus, all phases are captured. However, the regime
is quasi-periodic. The physical nature of such synchronous quasi-periodicity
consists in changing the relative phases with some extra frequency rhythm.

For comparison purpose, Fig. 18 shows a similar plot for the sufficiently
large frequency mismatch Δ. In this case, the regime is also quasi-periodic,
but only relative phases of the first and second, third and fourth oscillators
are mutually captured. The relative phase of the second and third oscil-
lators increases indefinitely (or changes in the whole range from 0 to 2π if
consider 2π-periodicity of the phase). To distinguish this regime, we call it
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Figure 17: Phase portrait, Poincaré section and plots of three relative phases
as functions of time at Δ1 = 0.008, μ = 0.06.

asynchronous quasi-periodicity.

6 Control of the chaos robustness

via the dissipative coupling

As was mentioned above, a variation of Δ for the used form of the individual
Rössler oscillator leads to the situation when both the chaotic regimes and
windows of periodic regimes are possible, see Fig. 3. When there are several
oscillators with different frequency parameters as in the system (3), a peri-
odic regime occurs consistently in different oscillators with variation of Δ.
Therefore, at a very small coupling in Fig. 12, there are windows of hyper-
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Figure 18: Phase portrait, Poincaré section and plots of three relative phases
as functions of time at Δ1 = 0.5, μ = 0.145.

chaos HC3 inside the domain of hyperchaos HC4. The reason is in the fact
that one or another individual oscillator is inside the window of periodical
regime with variation of Δ. Even hyperchaos HC2 is possible, which means
that two individual oscillators are in the periodical regimes. This picture is
actually quite typical and responds to the well-known nonrobust property of
the chaotic systems [28]. The corresponding plots of Lyapunov exponents for
the nonrobust systems are highly jagged.

However, these windows disappear quickly with an increase in the cou-
pling, as Fig. 12 shows. Therefore, it is interesting to consider the plots of
Lyapunov exponents as functions of the frequency parameter Δ at a very
small (Fig. 19a) and not high, but also not so small coupling (Fig. 19b).
Comparing Figs. 19a,b, we note that the plots of Lyapunov exponents be-
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come less jagged. Thus, the dissipative coupling can be a factor that increases
a degree of robustness for the observed chaos. This result is important for
applications.

Figure 19: Plots of Lyapunov exponents illustrating an increase of the chaos
robustness in the ensemble of oscillators; a) μ = 0.003, b) μ = 0.025.

7 Network of five Rössler chaotic oscillators

It is interesting to know if the observed regularities are saved with an in-
crease in the number of oscillators. To answer this question, we consider a
network of five Rössler chaotic oscillators. In this case, it is reasonable to
take into account a non-identity of the parameter r, which is responsible for
the excitation degree of the individual oscillators:

ẋn = −(1 + n−1
4
Δ)yn − zn,

ẏn = (1 + n−1
4
Δ)xn + pyn +

μ
4

∑5
i=1(yi − yn),

żn = q + (xn − rn)zn.
(4)

The chart of Lyapunov exponents for the system (4) is shown in Fig. 20.
Its structure is close to that in case of four coupled oscillators and is compli-
cated by an emergence of new regimes. In particular, there is a possibility
of five-frequency tori T5. At high frequency mismatch (right edge of the
chart in Fig. 20), there is a cascade of quasi-periodic Hopf bifurcations on
the basis of tori of increasing dimension, which corresponds to the Landau–
Hopf scenario [14,26-27]. But this scenario takes place in a narrow range
of the coupling parameter, because new resonances occur rapidly enough.
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However, we note the fact of possible Landau–Hopf scenario and cascade of
quasi-periodic bifurcations of invariant tori in the system of coupled chaotic
oscillators.

Figure 20: Chart of Lyapunov exponents for the network of five chaotic
oscillators (4); p = 0.15, q = 0.4, r1 = 7.3, r2 = 7.6,r3 = 7.9, r4 = 8.2,
r5 = 8.5.

8 The frequency detuning parameters plane

So far, our research has focused on studying the “coupling - frequency detun-
ing” parameters plane of the chaotic oscillators. It is interesting to consider
the frequency detuning parameters space. To this end, let us return to the
case of a chain of three coupled oscillators (2). Fig. 21 illustrates the change
in the (Δ1,Δ2) parameter plane with increasing coupling.

You can see that at low coupling Fig. 21 presents only the chaotic regimes
with different numbers of positive Lyapunov exponents. At the value μ=0.06
of the coupling parameter along with the chaotic there arise quasi-periodic
regimes T2 and T3, Fig. 21b. The domains of two-frequency modes form
numerous bands organized according to the principle of the resonance web.
Note that two of the broadest bands T2 correspond to resonance conditions
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Figure 21: The plane of frequency detunings of three Rössler chaotic oscilla-
tors (2); μ = 0.02 (a), μ = 0.06 (b), μ = 0.1 (c).

of equality for the frequencies of the first and second oscillators (Δ1 = 0),
and the second and third (Δ1 = Δ2), respectively.

At still higher coupling in Fig. 21c the two-frequency quasi-periodicity
modes T2 begin to dominate. In domains that correspond to the above
resonances the chaotic regimes are observed now. In the neighborhood of
the origin the complete synchronization region appears, which corresponds
to the periodic regime P.

Note that the picture of the main resonance bands in Fig. 21b and the
view of the external borders of the area of a complete synchronization on
Fig. 21c are to some extent similar to the much simpler case of three coupled
van der Pol oscillators, see Fig. 1 in [15].

9 Conclusion

In this paper, we show that the high-dimensional quasi-periodicity is char-
acteristic not only for the ensembles of regular oscillators, but also for the
chaotic oscillators with dissipative coupling. High-dimensional tori arise in
the system of three, four and five coupled chaotic oscillators. Their Fourier
spectra look like the classical spectra for the quasi-periodicity with the appro-
priate number of independent frequency components. An emergence of three-
frequency regimes with a decrease in the coupling occurs usually as a result
of a quasi-periodic Hopf bifurcation. With further decrease in the coupling,
a set of resonance tori of different dimensions occurs through saddle-node
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bifurcations. Inside the resonance domains, torus-doubling bifurcations with
the subsequent fractalization and destruction are typical with a decrease in
the coupling. However, an emerging resonance picture in the parameter plane
is very complex and much more complicated than this one for the interacting
regular oscillators. At high frequency mismatches of the subsystems, a cas-
cade of subsequent quasi-periodic Hopf bifurcations for higher-dimensional
tori may be observed in a certain range of the parameters.

What is the nature of high-dimensional quasi-periodicity in the coupled
chaotic systems? We assume that it is caused by the possibility of a great
number of unstable limit cycles embedded in the chaotic attractors. In-
teraction between the subsystems is the cause of their transformation into
invariant tori, and high dissipative coupling stabilizes them. However, this
hypothesis requires further consideration.

This work was supported by the Russian Foundation for Basic Research
grant No.14-02-00085 and by RF President program for Leading Russian
research schools NSh-1726.2014.
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[23] Broer, H., Simó, C. and Vitolo, R., Hopf-saddle-node bifurcation for
fixed points of 3D-diffeomorphisms: Analysis of a resonance ”bubble”,
Physica D, 2008, vol.237, pp. 1773-1799.
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