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It is shown, both theoretically and experimentally, that the compacted ceramics can exhibit the properties
of a phononic lattice, i.e., a forbidden gap may arise in the phonon spectrum. The position and width of the
gap in such systems are determined by the average grain size of ceramics, as well as by the thickness and
elastic properties of the grain boundaries. In the case of composites, a dominant role in the gap formation is
played by the most fine-grained phase.
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I. INTRODUCTION

Nowadays considerable attention is paid to the cre-
ation of a new class of nanostructured materials in which
one can control the heat flow Refs. 1–9. Since it is
believed9 that the basic element of such thermocrystals
should be phononic lattices with a wide forbidden gap,
it is an urgent task to find new methods for their syn-
thesis that strike a balance between the thermo-crystal
efficiency and ease of fabrication. One of the methods for
obtaining phononic lattices is the compaction of ceram-
ics from nanopowders. For the first time the possibility
of existence of a forbidden gap in the phonon spectrum
of compacted oxide nanoceramics was suggested in Ref.
10. This idea was then experimentally confirmed11 in
a study of the transport properties of weakly nonequi-
librium phonons at helium temperatures by the phonon
spectroscopy method12 . It turned out that the anoma-
lous growth with temperature of the phonon diffusion
coefficient observed in ceramics with an average grain
size less than 100 nm can be explained by the existence
of such a gap. In our subsequent works, the influence
of the size effects, nanoscale inclusions and pores on the
position and width of the forbidden gap was studied ex-
perimentally in Refs. 13–15. All experimental results
were obtained for standard samples of structural ceram-
ics obtained by magnetic pulse compaction16 which al-
ways exhibit a variation in grain size. The theoretical
studies performed17,18 have shown that the gap in the
phonon spectrum is retained to sufficiently large values
of the grain size dispersion (σ ∼ 0.5), which can be re-
alized with modern technologies of nanoceramic synthe-
sis. Thus, there is good reason to believe that with a
special sample preparation it is relatively easy to obtain
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high-quality phononic crystals with a wide forbidden gap
which can serve as a basis for creating thermocrystals.
In this paper we summarize the results obtained ear-

lier and discuss the possibility of the use of compacted
systems as thermocrystals.

II. EXPERIMENTAL DETERMINATION OF THE

PHONON DIFFUSION COEFFICIENT IN CERAMICS AT

LOW TEMPERATURES

The basic experimental method for our study of
the phonon spectra is the heat pulse or phonon spec-
troscopy method which was proposed and developed in
to study the defect structure of crystalline and amor-
phous solids12,19. The essence of the thermal phonon
method is as follows. A gold film is deposited on one
side of a plate made of the material under study and
placed in a helium bath. The film serving as an injector
of nonequilibrium phonons into the sample is heated by
a short (about 10−7s) current pulse to a temperature Th

such that ∆T = Th − T0 << T0. This condition makes
it possible to investigate the temperature dependence of
phonon scattering by changing the temperature of the
thermostat T0. The opposite side of the plate is coated
with a superconducting bolometer of tin or indium, the
working point of which can be shifted by a magnetic field.
At the temperature of the experiment inelastic phonon-
phonon processes can be neglected, and the scattering
efficiency is determined only by the structural features of
the material and its phonon spectrum. The heat pulse
method is described in more detail in Ref.19.
The time dependence of the bolometer signal for the

ZrO2 : Y r2O3 ceramics with an average grain size of
350 nm is shown in Fig.111. The inset to Fig.1 presents
analogous curves for a similar sample of the same com-
position with the average grain size of 78nm. In both
cases, the curves are bell-shaped with a pronounced am-
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FIG. 1. Time dependence of the amplitude of a nonequilib-
rium phonon radiation signal in a sample with grain size Rg =
359nm: T = 3.81 (1), 3.65 (2), 3.39 (3), 3.11 (4), 2.80 (5),
2.55 (6), and 2.28 K (7). The inset shows analogous curves
for a sample with Rg = 78nm: T = 3.81 (1), 3.43 (2), and
2.78 K (3) (Ref. 11).

plitude maximum at time tmax, which is characteristic of
diffuse phonon propagation. The experiment geometry is
chosen such that the flow of injected phonons obeys the
one-dimensional diffusion equation

∂2T

∂x2
=

1

D

∂T

∂t
, (1)

which allows us to express the phonon diffusion coeffi-
cient through the measured quantities tmax and sample
thickness L: D = L2/2tmax. A model experimental
study of the phonon-impurity interaction20 has shown
that the phonon frequencies forming the maximum of the
diffusion signal detected by the bolometer correspond to
hω = (3− 4)kBT (kB is the Boltzmann constant), which
makes it possible to consider the phonon transport within
the single-frequency model.
The most interesting result following from Fig.1 is that

the temperature dependence of the diffusion coefficient
(∂D/∂T ) is different for ceramics with different average
grain size: ∂D/∂T < 0 for coarse-grained ceramics and
∂D/∂T > 0 for fine-grained ones. This proves to be true
for all investigated ceramics, as evidenced by Fig.2 which
shows the dependence of the phonon diffusion coefficient
on the average grain size of various ceramics at T = 3.8K.
As follows from this figure, close to R = 100nm a transi-
tion is observed from a linear D(R) dependence for large
R values to the exponential decrease in the diffusion co-
efficient for small ones, and it is in this range of R that
the derivative ∂D/∂T < 0 changes sign.
To explain this anomalous behavior of the diffusion co-

efficient,the phonon spectrum of ceramics and its relation
to the phonon diffusion coefficient was discussed in more
detail in Ref. 13, 17, and 18.

FIG. 2. The phonon diffusion coefficient as a function of the
average grain size at T = 3.8 K for the Al2O3 (1) and Y SZ

(2) specimens.

III. PHONON SPECTRUM AND DIFFUSION

COEFFICIENT OF CERAMIC MATERIALS

The model system in Refs. 13, 17, and 18 was con-
sidered to be an elastic medium of density ρ0, the elastic
properties of which are described by one elastic modu-
lus K0 (scalar model) with the dispersion law ω(q) = v0q
(v20 = K0/ρ0, q is the wave vector) for phonons of any po-
larization. The phonon scattering centers were randomly
space distributed spherical shells with outer radius Rg,
thickness d (d/Rg ≪ 1) and elastic parameters v1, ρ1
(K1 = v21ρ1). These shells model the grain boundaries,
and the material inside and outside them the ceramic
grains. In the case of multiphase ceramics the elastic pa-
rameters of the material inside the shell (v2, ρ2) are dif-
ferent from those of the material of matrix grains. The
Green function of a wave propagating in a disordered
medium, in the scalar model has the form

G(q, ω) =
1

ω2 − ω2(q)− Σ(ω, q)
, (2)

where Σ(ω, q) is the self-energy determined by the
phonon elastic scattering at inhomogeneities, which in
the linear with respect to the concentration of scattering
centers approximation is defined by the one-center scat-
tering matrix t(ω) Σ(ω, q) = ct(ω), where c is the relative
concentration of scattering centers.
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FIG. 3. The diffusion coefficient D(x) calculated at cg = 0.5
for different resonance frequencies: xr = 0.5; 1.0; 1.5 (from
bottom up). Upper curve: the case of absolutely hard spheres.

The phonon diffusion coefficient is related to the scat-
tering matrix by the following expression21,22 :

D(x,Rg) =
2v30
RgΦ

x

nImt(x)
= 1/3ltrv0, (3)

where Φ = ∂ ln(x2 + cRet(x)/∂ lnx2, and x = qRg is a
nondimensional frequency. To determine t(x), the stan-
dard problem of scattering of a plane wave by a spherical
shell was solved, and it was found that when the condi-
tion K1/K0 ≪ 1 is satisfied, long-wave phonons are reso-
nantly scattered by shells at a frequency xr = ωrRg/v0 =
√

K1Rg/K0d < 1. From the last inequality it follows that
resonance scattering may be realized only for fine-grained
ceramics, the scattering matrix being represented as

t(ω2) =
3xv0
Rg

2x+ Γx3

x2 − x2
r + Γx3

(4)

where Γ is the resonance width.
A detailed analysis of the phonon spectrum of disor-

dered systems with resonance phonon scattering at de-
fects was carried out in Ref. 22. It was shown that in
this case at a sufficiently high defect concentration, cross
splitting of the acoustic phonon branch is observed, and
in the phonon spectrum there appears a forbidden gap,
i.e. a frequency range in which phonons cannot propa-
gate. According to22 the bottom and top edges of the
gap are defined by the expressions

xbot ≃ x (5)

xtop ≃

√

x2
r +A(n), (6)

where xr is the resonant scattering frequency, A(n) de-
pends on the volume fraction of scattering centers and is
defined by the lattice parameter of the effective perfect

crystal. Thus, in the case of resonance scattering the
phonon spectrum of such disordered systems is similar
to the spectrum of a phononic crystal with a gap. The
gap position is determined by the effective perfect crys-
tal Bragg reflections, near which forbidden zones may
arise, and the gap width by the concentration of spheri-
cal scattering centers (in closely packed ceramics by the
average grain size). Numerical studies of the dependence
of the gap position and width on the system geometry
performed by the FDTD method for different materials
of grains and interfaces showed the validity of the expres-
sions obtained17, as well as the fact that the gap in the
phonon spectrum is retained to a sufficiently large spread
of the grain size about the mean18.

Correspondingly, a forbidden gap may also arise, at
certain values of xr, in the frequency spectrum of the
diffusion coefficient, which is demonstrated by Fig.3. As
follows from the figure, for all values of xr in the limit of
small x there occurs Rayleigh scattering (D(x) ∼ x−4),
while at x >> 1 a purely geometric scattering (D(x) =
const) is observed. In the range of x close to unity a
change in xr may lead to qualitative changes in the be-
havior of the phonon diffusion coefficient, including the

FIG. 4. The phonon diffusion coefficient D(T ) of single-phase
ceramics. From top to bottom: Rg = 135, 132, 78, 64nm.
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opacity of the object to phonons (the gap formation) and
a change in sign of the derivative ∂D/∂x (the presence
of a minimum). It should be noted that at resonance
scattering in the model there remain two independent
parameters: the volume fraction of scattering centers c,
and the resonance frequency
xr that is determined by both geometric and elastic

parameters of the system. In the case of dense single-
phase ceramics c is practically independent of the method
of sample preparation, while the resonance frequency is
easy to control in the process of ceramics manufacturing,
for example, by adding a plasticizer during compaction
or choosing appropriate temperature regime of sinter-
ing. By way of example, Fig.4 presents the experimen-
tal points and the dependences D(T ) calculated in the
framework of this approach in the single-frequency ap-
proximation (ω ∼ T ) for monophase Y SZ ceramics sin-
tered under different temperature conditions and there-
fore differing in grain size. However, the grain size of
these ceramics is not sufficiently small to cause the for-
mation of a gap in the phonon spectrum of nanoceramics,
and for ceramics with a grain size of about 60nm there
exists only a minimum in the D(T ) dependence (see the
inset to Fig.4). At present, it is not possible to obtain
monophase ceramics with a grain size of about 10nm by
compacting, which does not exclude the creation, on their
basis, of composites which contain, along with the main
fraction, a certain amount of the nanostructured phase of
another material. Let us consider the effect of nanosized
inclusions on the phonon spectrum of ceramics.

IV. THE ROLE OF NANOSIZED INCLUSIONS AND

PORES IN THE GAP FORMATION IN THE PHONON

SPECTRUM

The formation of a gap in the frequency spectrum of
the diffusion coefficient when introducing into the ce-
ramic matrix nanosized inclusions of another phase or
pores, is depicted in Fig.5. The figure presents the dif-
fusion coefficients of the two-phase ceramics obtained by
the addition to a Y SZ matrix of nanosized Al2O3 in-
clusions in which during sintering there occurs a phase
transition resulting in the appearance of shrinkage pores.
The size of grains and pores, as well as the pore concen-
tration are determined by the temperature regime of sin-
tering. As follows from the figure, the gap in the phonon
spectrum arises at a pore size of about 10 nm.
Consider in more detail the effect of pores on the

phonon spectrum of ceramics. In the approach used,
the matrix of phonon scattering by spherical pores for-
mally coincides with the resonance matrix (3) for xr = 0.
The gap in this case extends from zero to the top edge
xtop,p =

√

6cpRg/Rp (cp, Rp are, respectively, the volume
fraction of pores and their radius). A similar situation is
observed in the lattice model for the case of phonon scat-
tering by substitutional impurity atoms with an infinitely
large mass22. The absence of acoustic vibrations in dis-

ordered systems, as distinct from the phononic lattices
obtained by creating a superlattice of air cylinders in a
thin plate, is due to the fact that in disordered systems
a plane wave will necessarily be scattered by a defect in
any direction of its propagation. In the case of phonon
scattering by both shells and pores, in the approxima-
tion linear in concentration we have t = cgtg + cptp. For
geometric scattering (x ≫ 1) where the factor Φ from
(3) tends to unity, the diffusion coefficient satisfies the
Matthiessen rule. In the range of x ∼ 1 there arise inter-
ference corrections because Φ is also additive in concen-
tration, and the forbidden gap extends from zero to the
frequency

x2
top =

1

2
(x2

top,g+x2
top,p+

√

(x2
top,g + x2

top,p)
2 − 4x2

rx
2
top,p).

(7)
Obviously, similar results may be obtained in the pres-
ence of other scattering centers, but contrary to the pore
case, the bottom edge of the gap will be other than zero.
Of prime importance here is the fact that inclusions or

FIG. 5. The diffusion coefficient D(x) of composites with the
pore size (from top to bottom) 50nm, 15nm, 11.5nm.
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FIG. 6. The contributions to the phonon diffusion coeffi-
cient of the composite from particular defects: pores (dashed
line), shells around Y SZ (semibold line), and shells around
Al2O3 grains (thin line), and the total diffusion coefficient
(bold line).

pores with a characteristic size smaller than the grain
size of the matrix may play a substantial role even at low
concentrations, shifting the gap (or minimum) to higher
frequencies.
Figure 6 illustrates the formation of a gap in the

phonon spectrum of Y SZ ceramics with a grain size
of 70nm, containing nanosized Al2O3 (Ri = 20nm) in-
clusions and sintering-induced shrinkage pores, the size
of which (Rp = 10nm) is easily calculated. The fig-
ure shows the diffusion coefficients determined by par-
ticular defects: shells (cg = 0.74, ci = cp = 0), pores
(cg = ci = 0, cp = 0.05), and shells around metastable
inclusions of Al2O3 phase (cg = cp = 0, ci = 0.21), as
well as the general diffusion coefficient describing the ex-
perimental results for multiphase ceramics.

V. CONCLUSION

The paper presents the results of the studies of the
phonon spectrum of ceramics obtained by compaction
method, according to which the anomalous dependence
of the phonon diffusion coefficient is caused by a drastic
change in the phonon spectrum due to resonance phonon
scattering at the ceramic grain boundaries. It is theo-
retically shown that in this case there occurs cross split-
ting of the phonon spectrum resulting in the appearance
of a forbidden gap, the position and the size of which
are determined by the average grain size of ceramics and
the elastic properties of interfaces. In the approximation
used all these parameters are related by the expression
for the resonance frequency xr =

√

K1Rg/K0d . 1 which
implies that the gap in the phonon spectrum of ceram-

ics can arise in the case of acoustically soft grain bound-
aries and fine-grained ceramics with an average grain size
of about 10nm. Since monophase ceramics with such a
grain size cannot be currently obtained by compaction
method, the question of how the phonon spectrum may
be affected by nanosized pores and inclusions of other
materials is discussed. It is found that the presence of
inclusions of another phase or pores with a lesser char-
acteristic size than the grain size of the basic material
(matrix), even in relatively small amounts, can lead to
the appearance of a gap in the phonon spectrum and
extend it to h igher frequencies.
Thus, we have experimentally shown that compacted

nanoceramics can exhibit the properties of phononic lat-
tices, namely, the presence of a forbidden gap in the
phonon spectrum. The position and width of the gap
is determined by geometric and elastic parameters which
are readily controlled by technological expedients in the
process of sample synthesis. It should be noted that all
experimental results were obtained on standard samples
of commercial ceramics, so one might expect that in the
case of a special sample preparation (with a narrow grain
size distribution, the use of plasticizers during compact-
ing, and the choice of appropriate sintering conditions),
ceramics may serve as a basis for creating phononic lat-
tices with specified gap parameters.
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