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Abstract

A model of a generator of quasiperiodic oscillations forced by a
periodic pulse sequence is studied. We analyze synchronization when
the autonomous generator demonstrates periodic, quasiperiodic, re-
spective weakly chaotic oscillations. For the forced quasiperiodic os-
cillations a picture of synchronization, consisting of small-scale and
large-scale structures was uncovered. It even includes the existence of
stable the three-frequency tori. For the regime of weak chaos a partial
destruction of this features and of the regime of three-frequency tori
are found.
Keywords: dynamical system; quasiperiodic oscillations; synchroniza-
tion; Lyapunov exponents.
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1 INTRODUCTION

Quasiperiodic oscillations are wide-spread in different areas of science and
technology [1] - [8]. That is why the problem of synchronization of these
oscillations with an external forcing is very important in nonlinear dynamics.
The problem of synchronization of quasiperiodic oscillations has been studied
less than synchronization of regular and chaotic regimes. There is a large set
of problems in the theory of synchronization of quasiperiodic oscillations
that have not been solved. In particular, autonomous systems forced by an
external action can have different structure: firstly, it can be a system of
coupled self-oscillatory elements [9, 10, 11, 12]; two new variants occur for
cases of dissipative and conservative coupling [13, 14]; further, the equations
of the isolated elements can be of van der Pol equation type, phase equations
like the Adler equation [12, 15] or can be a map for phases (map on a torus)
[16, 17].

The problem when an external force acts on an autonomous system with
a quasiperiodic behavior is very important and attracting. However, in the
literature there are a few models of autonomous systems with quasiperiodic
dynamics, which allowed a physical realization. One of these systems is the
Chua circuit, but this model is described by a piecewise-linear characteris-
tic of nonlinearity and it has remained not enough explored in respect of
quasiperiodic behavior in this system [8, 18]. Recently, in [19, 20, 21] a four-
dimensional system - a modification of the Anishchenko-Astakhov generator
with autonomous quasiperiodic dynamics was suggested for such studies.
However, the research has been very limited by studying an autonomous sys-
tem, when it generates a torus doubling [19, 20]. A system of two coupled
generators of this kind was also studied in [21].

In order to get a complete understanding, the study of synchronization
of quasiperiodic oscillations requires to consider three main directions:
i) synchronization of a resonance cycle on the torus;
ii) synchronization of a quasiperiodic regime with incommensurate frequen-
cies;
iii) synchronization when the torus is destroyed.

The first problem was discussed in [10, 15] for a model of excited cou-
pled elements. But more interesting and even new effects occur, when the
oscillations in the autonomous system are non-regular, quasiperiodic or even
weakly chaotic. This problem will be discussed in the present paper, i.e. we
consider synchronization of autonomous quasiperiodic oscillations and torus
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which is being destroyed under external force. As an autonomous system, we
will use a generator of quasiperiodic oscillations [22, 23]. This generator has
the advantage to have the minimal dimension of phase space, for which an
invariant torus can be generated and it can be realized as electronic circuit
[23]. We will show that in this case new interesting features in the parame-
ter plane appear. As external action we choose periodic sequences of short
pulses. This choice simplifies the interpretation of our results, since between
the pulses the dynamics of the system is autonomous. On the other hand, a
pulsed action is important for various applications, e.g. in biophysics [24].

2 AUTONOMOUS GENERATOR OF QUA-

SIPERIODIC OSCILLATIONS

As an autonomous system we use a generator of quasiperiodic oscillations,
which was recently suggested and described in [22, 23]. It represents the
”hybrid” of a self-generator with a hard excitation and a relaxation generator.
The corresponding equations have the form:

ẍ− (λ + z + x2 − βx4)ẋ + ω2
0x = 0,

ż = µ− x2.
(1)

Here ω0 (ω0 > 0) is main frequency of the generator, the parameter λ (λ ≥ 0)
characterizes negative friction and controls subcritical Hopf bifurcation in
self-generator of hard excitation, β (β > 0) is the response for the saturation
of oscillations at large amplitudes. The parameter λ enters to the equation
as well as z, which characterizes the state of a charging relaxation element,
and its evolution in time is controlled by the second equation. System (1)
has two independent time scales that allows for a two-frequency quasiperi-
odic dynamics. The first time-scale is the period of oscillations of the self-
generator T = 2π

ω0
and the second one is the characteristic recovery time of

the state storage element τ = µ−1. In [22] it was shown that this system can
create quasiperiodic oscillations, but also periodic and chaotic regimes. In
Fig. 1 some examples of phase portrait of system (1) for the Poincaré sec-
tion made at x = 0 and the Fourier spectrum of periodic, quasiperiodic and
chaotic regimes are shown. Figures a), d) correspond to periodic oscillations:
in Fourier spectrum one can see main pike which response to frequency of
self-generator ω0. In Fig. 1 b), e) we see quasiperiodic oscillations. Phase
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Figure 1. The phase portrait in the Poincaré section and Fourier spectrum
for system (1): a) periodic oscillations λ = 0, β = 0.25, ω0 = 2π, µ = 2.2;
b) quasiperiodic oscillations λ = 0, β = 0.25, ω0 = 2π, µ = 0.9; c) chaotic
oscillations λ = 0, β = 0.5, ω0 = 2.7, µ = 0.3.
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portrait has form of closed invariant curve. Fourier spectrum contains a dis-
crete set of equally distant frequency components. Their level decrease to
the left and to the right from the main spectral line corresponding to the
basic operational frequency of the self-oscillatory element. Distance to the
nearest neighbor satellites corresponds to the frequency of the relaxation os-
cillations. At least, Fig. 1 c), f) correspond chaotic oscillations. We would
like to note that this chaotic attractor is result of destruction of torus that
is why the form of phase portrait in Poincaré section is similar to invariant
curve. Also in Fourier spectrum one can see main pike corresponding to ω0

and pike-satellites, but it has noisy component. Later we consider all these
cases excited by a periodic pulse force.

3 SYNCHRONIZATION OF QUASIPERI-

ODIC OSCILLATIONS UNDER EXTER-

NAL FORCING

Let the external signal in the form of periodic sequence of delta-pulses acts
on the model (1):

ẍ− (λ + z + x2 − βx4)ẋ + ω2
0x = A

∑
δ(t− nT ),

ż = µ− x2.
(2)

Here A is the amplitude of the external signal, and T is its period, δ(t−nT )
the Dirac delta-function and n the number of pulses.

For the following discussion it is very important to start by consider-
ing synchronization of the limit cycle before the onset of a Neimark-Sakker
bifurcation which creates an invariant torus. This case corresponds to the
follwing set of parameters β = 0.25, ω0 = 2π, µ = 2.2. In Fig. 2 a chart of
dynamical regimes of system (2) on the parameter plane period vs amplitude
of the external force (T , A) is presented. The color palette was chosen in
correspondence with the period of the regime in the stroboscopic section,
i.e. through the period of the external action T , and the gray color refers
as quasiperiodic and chaotic regimes. We observe a set of Arnold tongues,
among them tongues of period-1 (it corresponds to one fixed point in the stro-
boscopic section) have the largest size. The set of these tongues responds
to resonances on modes of the external force. The distance between these
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Figure 2. The chart of dynamical regimes of excited by pulses generator (2)
in case when limit cycle is realized. λ = 0, β = 0.25, ω0 = 2π, µ = 2.2.
Under chart there is a palette corresponding colors, which will be also used
in Fig. 3 and 7.
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tongues is approximately T = 1, that corresponds to the main period of
oscillations of the generator at ω0 = 2π.

Now we analyze the case of synchronization of quasiperiodic oscillations.
We change the parameter µ, and put it µ = 0.9, which correspond to an
autonomous quasiperiodic regime. In Fig. 3 a chart of the dynamical regimes
and a magnified part are shown. The magnified part was chosen in such a
way, that one can observe much more detailed features of the synchronization
picture. In this case, there is the set of synchronization tongues of period-
1 on the chart of dynamical regimes, which follows through approximately
equal intervals by the period of the external force T ≈ 1. Note, however,
that these tongues are gathered in groups of, approximately, 7-8 tongues;
this time interval corresponds to the second time-scale on the chart T ≈ 8.
For a clearer understanding of this result, in Fig. 3 b) the magnified part
of chart of dynamical regimes, covering the first group of eight tongues of
period-1, is shown.

The occurrence of regular regimes of period-1 implies the opportunity to
stabilize quasiperiodic oscillations by an external signal, such that a com-
plete synchronization of the system by an external signal is realized. This
complete synchronization (in the chart it corresponds to the green color)
has a ”threshold” by the amplitude of the external force. It distinguishes
this form of synchronization from synchronization in a regular regime. The
main features in Fig. 3 are the following: at the beginning the ”threshold”
of complete synchronization is increased with increasing the period of the
external force, but at T ≈ 4 it starts to decrease. At T ≈ 8 the ”threshold”
of synchronization goes to zero but does not reach it; it becomes very low,
almost zero. After this, the sequence repeat not exactly, but it has the same
structure.

To explain the obtained features, let us consider some time realization,
which is shown in Fig. 4 a). The form of oscillations is typical for a quasiperi-
odic regime, where one can distinguish two characteristic time scales: T0 is
the main period of the oscillation of the generator, which at ω0 = 2π equals
T0 = 1; Tpuls is the period of beats of the quasiperiodic oscillations, which
can be estimated as Tpuls ≈ 7 − 81. Since the external force is a sequence
of delta-pulses, then between the pulses the system is autonomous. In turn
through each moment of the time T the coordinate ẋ gets an additive, which
equals to amplitude of pulse A.

1Tpuls was estimated from Fig. 4 a), but also it can be estimated as Tpuls ≈ 2π
ω0
≈ 6.977...
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Figure 3. The chart of dynamical regimes of excited by pulses generator (2)
and its magnified part in case when quasiperiodic regime is realized. λ = 0,
β = 0.25, ω0 = 2π, µ = 0.9.
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Figure 4. Figure a) illustrates different opportunity, leading to synchroniza-
tion of quasiperiodic oscillations with the occurrence of a period-1 regime
within the interval Tpuls. Arrows show different variants of moments of ac-
tions and amplitudes of external action. b) - g) examples of time realizations
demonstrating complete synchronization for non-autonomous system (2) at
A = 10, b) T = 1; c) T = 2; d) T = 3; e) T = 7; f) T = 12, A = 14; g)
T = 16
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In Fig. 4 a) it is clearly shown, that complete synchronization to the
frequency of the external force is possible when the pulses act at the moments
T = T0, T = 2T0, T = 3T0, ... , T = nT0 (green arrows). Of course,
the dynamics of system (2) is not one dimensional and it has two other
variables, and the picture of synchronization is repeated not exactly but has
an approximate character.

In Fig. 4 a) one can see, that with growing n in Eq. (2) the amplitude of
the signal required to induce synchronization, at the beginning increases, and
then decreases. The reason for this is the presence of beats with the period
Tpuls. At T ≈ Tpuls the amplitude of the signal required for stabilization is
almost equal zero. So we have a qualitative explanation of the structure of
the parameter plane period vs amplitude of the external force within one
group of tongues in Fig. 3.

Fig. 4 a) also illustrates, that at T > Tpuls the picture of synchroniza-
tion repeats again (blue arrows). In this case, there is still not an exact
reproduction, as the observed regimes with incommensurate frequencies, and
autonomous oscillations do not reproduce itself accurately. As a result, there
is a second group of 7-8 tongues, etc.

Fig. 4 b) - g) demonstrate complete synchronization of system (2) by
pulses action with different period of external force, how it was described
above. The pulses are marked out by red solid lines. Fig. 4 b) - e) correspond
to the case of synchronization within period Tpuls (T < Tpuls); f) - g) are cases
when T > Tpuls.

System (1) in a quasiperiodic regime is characterized by two incommen-
surate frequencies. When then an external force is added, it becomes possible
to realize quasiperiodic regimes with even three incommensurate frequencies,
i.e. a three-frequency torus. Next we analyze three-frequency tori by means
of the spectrum of Lyapunov exponents of the non-autonomous system (2)
on the parameter plane of the external force. System (2) is characterized by
four Lyapunov exponents Λn, however, since the system is non-autonomous,
one of the exponents always equals zero, i.e. we have to consider only three
Lyapunov exponents and neglect the always zero one. So, in dependence on
the spectrum of Lyapunov exponents, the following regimes are possible in
this system:
P, periodic, 0 > Λ1 > Λ2 > Λ3;
T2, two-frequency torus, Λ1 = 0, 0 > Λ2 > Λ3;
T3, three-frequency torus, Λ1 = Λ2 = 0, Λ3 < 0;
C, chaos, Λ1 > 0 > Λ2 > Λ3.
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Figure 5. The chart of Lyapunov exponents in the vicinity of main tongues of
complete synchronization of the generator (2) and its magnified parts. λ = 0,
β = 0.25, ω0 = 2π, µ = 0.9.
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Fig. 5 presents the chart of regimes, determined with the described rules.
The colors in Fig. 5 were chosen corresponding with the above four types
of regimes, determined by the spectrum of Lyapunov exponents. The scale
was chosen there to emphasize more interesting areas, in particular, near the
main tongues of complete synchronization. In Fig. 5 a) at small amplitudes of
the external signal, we observe three-frequency quasiperiodic oscillations. In
the magnified part of the chart, Fig. 5 b), it becomes clear that in the area of
three-frequency oscillations the set of two-frequency tongues are embedded.
And the largest tongues have thinner ”satellites”. With a further zoom,
Fig. 5 c), an Arnold resonance web 2 [27] is visualized, i.e. there is a set
of narrow bands of two-frequency regimes of the parameter plane. At the
intersections of these bands a small island of periodic regimes of high order
occurs.

In Fig. 6 the dependence of the three Lyapunov exponents on the ampli-
tude of the external pulses at T = 1.44 is shown. In Fig. 6 a)-6 d) the three-
dimensional phase portraits in a stroboscopic section are shown for different
values of the amplitude of the perturbations. At small amplitudes there is an
interval, where the two largest Lyapunov exponents equal zero, which cor-
responds to a quasiperiodic regime with three incommensurate frequencies.
For a decreasing amplitude of the perturbation, we observe the following evo-
lutions: at large enough amplitudes (A ≈ 6) two-frequency tori are realized.
For a decreasing amplitude this torus undergoes a torus-doubling bifurcation
and a doubled two-frequency torus is realized. Then near this doubling-torus
a three-frequency torus occurs (Fig. 6 c), 6 d)).

At the amplitude A > 0.5, there is a quasiperiodic regime with two in-
commensurate frequencies which is characterized by one zero and two neg-
ative Lyapunov exponents and one can see such kind of bubbles. It is well
known, that negative Lyapunov exponent characterizes degree of compres-
sion of neighbor phase trajectories in different directions. The presence of
such bubbles indicates that at varying of amplitude of external force the
degree of compression in two stable directions is changing. The bubbles is
alternated with intervals, where both the smallest exponents is equal. It is
mean that in system has place equal compression of phase trajectories in two

2Usually term ”Arnold resonance web” is used in the theory of conservative chaos
for description corresponding resonance structures in phase space [25, 26]. The way of
construction Arnold resonance web using Lyapunov exponents on the plane of base fre-
quencies in paper [27] was applied to dissipative systems. In our paper we talk about
Arnold resonance web of dissipative systems
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Figure 6. The plot of the three Lyapunov exponents for system (2) and the
phase portrait in stroboscopic sections, λ = 0, β = 0.5, ω0 = 2π, µ = 0.9,
T = 1.44; ) A = 7, b) A = 0.52, c) A = 0.48, d) A = 0.25.
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directions. Then compression in the one of the directions is increased, and
in another direction compression is reduced. The classical dependence of the
Lyapunov exponents, character for bifurcation of doubling of two-frequency
torus is the next: two the largest Lyapunov exponents equal zero, the third
and all following exponents is negative. If we change parameters the third
exponent is increasing and at the bifurcation point become equal zero, and
after that it again decrease and become negative. As result of this bifurcation
two-frequency double torus birth, and on the phase portrait in stroboscopic
section appears additional loop. This transition we can observe in Fig. 6 (a
and (b. At the larger amplitudes one can see, that two the smallest Lya-
punov exponents have similar dynamics, however, the third exponent not
reach zero value, and we do not have a qualities changing of behavior, and
in stroboscopic section we have smooth invariant curve.

4 SYNCHRONIZATION OF TORUS LOOS-

ING SMOOTHNESS UNDER EXTERNAL

FORCING

Finally let us turn to the problem of synchronization by an external force in
the chaotic regime, which occurs as a result of torus which is being destroyed.
This is a very important problem connected with the nature of this chaotic
synchronization.

In Fig. 7 the chart of dynamical regimes for the system excited by pulses
(2) in a chaotic regime are shown. As one can see, in the interval T < 15−16
there is a structure similar to the case of synchronization of quasiperiodic
oscillations. This fact can be explained, because chaos that occurs in the
autonomous system is based on a two-frequency torus loosing smoothness.
That is why the dynamics of this systems has two characteristic time-scales:
T0 = 2.4 and Tpuls = 15− 16, which have formed the corresponding picture.

With an increasing period of the external pulses, in the interval T > Tpuls

the ”threshold” of synchronization is increasing, the bottom of tongues of
synchronization are destroying, and chaotic regimes inside the area of period-
1 occur.
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Figure 7. The chart of dynamical regimes of excited by pulses generator (2)
in case when chaotic regime is realized. λ = 0, β = 0.5, ω0 = 2.7, µ = 0.3.

5 CONCLUSION

We have studied the dynamics of a model of a generator of quasiperiodic os-
cillations under periodic pulse action. When the autonomous system demon-
strates quasiperiodic oscillations, the parameter plane of the non-autonomous
system consists of small-scale and large-scale structures, connected with two
incommensurate time scales of quasiperiodic oscillations of the autonomous
system. Also for this case the existence of three-frequency tori has been
shown. We have revealed a characteristic picture of two-frequency and three-
frequency tori and also a resonance Arnold web has been found.

When analyzing the chaotic regime, we have observed a partial, but not
full, destruction of the small- and large-scale structures. In this case three-
frequency tori are destroyed, but two-frequency, periodic and chaotic regimes
are still existing.

This research was supported by the grants of RFBR No. 14-02-00085
and of RF President program for leading Russian research schools NSh-
1726.2014.2. N.V.S. thanks IRTG 1740 (DFG) for supporting her visit to
The Potsdam Institute for Climate Impact Research.

15



  

References

[1] A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal
Concept in Nonlinear Science (Cambridge University Press, Cambridge,
England, 2001).

[2] P.S. Landa, Nonlinear Oscillations and Waves in Dynamical Systems
(Kluwer Academic Publishers, Dordrecht, 1996).

[3] L.Glass and M.C. MacKey, From Clock to chaos (Princeton University
Press, Princeton, 1988).

[4] A.G. Balanov, N.B. Janson, D.E. Postnov, O. Sosnovtseva, Synchro-
nization: from simple to complex (Springer, 2009)

[5] J.A. Glazier and A. Libchaber, IEEE Trans. Circuits and Systems, 35,
790 (1988).

[6] E.M. Izhikevich, Int.J. of Bif. and Chaos, 10, 1171 (2000).

[7] R. Straube, D. Flockerzi, S.C. Müller and M.J.B. Hauser, Phys. Rev. E,
72, 066205 (2005).

[8] T. Matsumoto, L. Chua, R. Tokunaga, IEEE Transactions on Circuits
and Systems, 34, 240 (1987).

[9] P.M. Battelino, Phys. Rev. A, 38, 1495 (1988).

[10] V. Anishchenko, S. Nikolaev and J. Kurths, CHAOS, 18, 037123 (2008).

[11] Yu. P. Emelianova, A.P. Kuznetsov, I.R. Sataev, L.V. Turukina, Physica
D, 244, 36 (2013).

[12] A.P. Kuznetsov, I.R. Sataev, L.V. Turukina, Comm. Nonlin. Sci. Num.
Sim., 16, 2371 (2011).

[13] M. Ivanchenko, G. Osipov, V. Shalfeev, J. Kurths, Physica D, 189, 8
(2004).

[14] A.P. Kuznetsov, N.V. Stankevich and L.V. Turukina, Physica D, 238,
1203 (2009).

16



  

[15] V. Anishchenko, S. Astakhov and T. Vadivasova, Europhysics Letters,
86, 30003 (2009).

[16] C. Baesens, J. Guckenheimer, S. Kim, R.S. MacKay, Physica D, 49, 387
(1991).

[17] V. Maistrenko, A. Vasylenko, Yu. Maistrenko, E. Mosekilde, Int. J.of
Bif. and Chaos, 20, 1811 (2010).

[18] M.S. Baptista and I.L. Caldas, Phys.Rev.E, 58, No.4, 4413 (1998).

[19] V.S. Anishchenko, S.M. Nikolaev, Tech. Phys. Lett., 31, 853 (2005).

[20] V. Anishchenko, S. Nikolaev and J. Kurths, Phys. Rev. E, 73, 056202
(2006).

[21] V.S. Anishchenko, S.M. Nikolaev, J. Kurths, Phys. Rev. , 76, 040101
(2007).

[22] A.P. Kuznetsov, S.P. Kuznetsov, N.V. Stankevich, Commun. Non-
lin.Sci.Num.Sim., 15, 1676 (2010).

[23] A.Kuznetsov, S.Kuznetsov, E.Seleznev, and N.Stankevich, in Nonlinear
dynamics of Electronic System (VDE-Verlag,Berlin Offenbach, 2012)
pp.100-102.

[24] V.V. Klinshov, V.I. Nekorkin, JETP Lett., 87, 78 (2008).

[25] J. Laskar, Physica D, 67, 257 (1993).

[26] C. Froeschle, E. Lega, M. Guzzo, Celestial Mechanics and Dynamical
Astronomy, 95, 141 (2006).

[27] H. Broer, C. Simó, R. Vitolo, Reprint from the Belgian Mathematical
Society, 767 (2008).

17



  

dynamics of generator of quasiperiodic oscillations forced by periodic sequence pulses is considered; 

small- and large-scale structures for non-autonomous generator were observed; 

three-requency quasiperiodic oscillations are demonstrated; 

Arnold resonance web was shown. 


