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The dynamics of a low-dimensional ensemble consisting of a network of five discrete phase
oscillators is considered. A two-parameter synchronization picture, which appears instead of the
Arnol’d tongues with an increase of the system dimension, is discussed. An appearance of the
Arnol’d resonance web is detected on the “frequency–coupling” parameter plane. The cases of
attractive and repulsive interactions are discussed.
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1. Introduction

Investigation of ensembles of interacting oscillators
is an important problem with applications in var-
ious fields such as radiophysics, laser physics, bio-
physics, dynamics of gene networks, etc. [Pikovsky
et al., 2001; Landa, 1996; Balanov et al., 2009;
Glass & Mackey, 1988; Kuramoto, 1984]. Tradi-
tionally, the Kuramoto model, which is used for
such purposes, represents a set of globally coupled
phase oscillators [Pikovsky et al., 2001; Landa,
1996; Kuramoto, 1984; Strogatz, 2000; Acebrón
et al., 2005; Maistrenko et al., 2004]. The main
effect observed in this system is an appearance
of a coherent state in the medium field generated
by the ensemble (Kuramoto transition). However,
the medium field model is efficient in the case
that the network contains a very large number of
oscillators. At the same time, it is interesting to
study the behavior of low-dimensional ensembles
containing a relatively small number of oscillators.
It is important for various applications, for exam-
ple in biophysics when several subsystems with
different natural rhythms interact with each other.

This problem is also fundamental in the following
context. Each new element addition into the sys-
tem adds a new frequency. As a result, an emer-
gence of high-dimensional quasiperiodic oscillations
associated with the multidimensional invariant tori
becomes possible. Variation of at least one funda-
mental frequency may initiate various resonant con-
ditions. Due to the coupling of “each-to-each” type,
the number of such resonances is maximal in the
network of oscillators. With an increase in the cou-
pling, a hierarchy of resonances is observed. This is
a situation when low-dimensional tori arise on the
surfaces of high-dimensional tori. One can expect a
complicated structure of such resonances. Thus, this
problem may be interpreted as a generalization of
the Arnol’d tongues to the multifrequency systems.

At transition to systems with multifrequency
quasiperiodicity, however, we have to apply new
methods of analysis. Indeed, it is necessary to
identify quasiperiodic regimes of different dimen-
sions and details of the internal organization of
the domains of their existence. This problem can
be solved by using a Lyapunov analysis, which
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should be performed at each point of the param-
eter plane. Then the analysis of the spectrum of
Lyapunov exponents enables us to determine the
type of regime. However, a solution of such a
problem leads to the following difficulty. With an
increase in number of oscillators, the computation
time required for the regime definition at each
point in the parameter space becomes very large.
This can be partially overcome by using a simple
model and transition from the flow systems to the
maps. The simplest method for constructing the
maps is to replace time derivatives by finite differ-
ences in the dynamic equations. This approach is
used, for example, in the conservative chaos the-
ory (Chirikov–Taylor map) [Zaslavsky, 2007], in
constructing “predator–sacrifice” discrete models
[Ghaziani et al., 2011; Han & Liu, 2011], for the
simplest variants of genetic networks (Andrecut–
Kauffman map) [de Souza et al., 2012; Andrecut &
Kauffman, 2007], in the analysis of normal forms
of some bifurcations (Bogdanov map) [Arrowsmith
et al., 1993], etc.

It should be noted, however, that the rela-
tionship between continuous and discrete models is
quite a tricky question.1 The dynamics of the dis-
crete model inherits partly the properties of the pro-
totype system, but in many ways is richer in regard
of possible nonlinear phenomena. This is true even
for the simplest case of two-element systems when
discretization procedure leads to a transition from
the classical Adler equation to the sine circle map
[Pikovsky et al., 2001; Landa, 1996; Balanov et al.,
2009]. Increasing the number of oscillators leads to
the need to move from circle map to a map defined
on the torus of sufficiently high dimension.

This approach is sufficiently constructive for
studying networks consisting of elements with com-
plex dynamics. For example, it was used for net-
works with a large number of elements in a recent
paper [Barlev et al., 2010]. Low-dimensional dis-
crete networks with three and four elements have
been investigated in [Vasylenko et al., 2004] and
[Maistrenko et al., 2010], respectively. The case of
three oscillators is relatively simple. One of the
main results is an appearance of the threshold cou-
pling value for the domain of the complete syn-
chronization among all oscillators [Vasylenko et al.,
2004]. For the four interacting oscillators a prob-
lem is much more complicated. In [Maistrenko

et al., 2010], the authors focused on the situation
of the spectrum with an equidistant frequency pat-
tern. They introduced a single frequency parameter
which determines a frequency detuning for all oscil-
lators. Thus, a possibility of various resonances in
the system is significantly weakened in this formu-
lation of the problem.

In this paper, we investigate an ensemble of five
globally coupled discrete phase oscillators. We con-
sider the spectrum with a nonequidistant frequency
pattern. Four frequencies remain constant and one
frequency is varied. With this approach, the selected
oscillator turns out to be at a resonance with any
of the remaining oscillators, or with some clusters
in the network. Thus a scan is performed on net-
work properties via sweeping the frequency of the
“test” oscillator. This method of “testing oscilla-
tor” may be promising and subsequently extrapo-
latable to more complex networks of large numbers
of oscillators.

2. Two-Parameter Investigation
of Oscillation Regimes

Let us consider a network with five discrete phase
oscillators, constructed analogously to [Barlev
et al., 2010; Vasylenko et al., 2004; Maistrenko
et al., 2010] as follows:

ψn → ωn + ψn + µ

5∑

i=1

sin(ψi − ψn). (1)

Here ψi is the phase of ith oscillator, ωi is its natural
frequency, µ is the coupling parameter.

A dimension of system (1) can be lowered by
one. For this purpose, we introduce relative phases
of the oscillators

θ = ψ2 − ψ1, ϕ = ψ3 − ψ2,

α = ψ4 − ψ3, β = ψ5 − ψ4.
(2)

Let us define difference frequencies ∆i relative
to the first oscillator, i.e. ∆i−1 = ωi− ω1. Thus, we
obtain:

θ → ∆1 + θ + µ[−2 sin θ + sinϕ+ sin(ϕ+ α)

+ sin(ϕ+ α+ β) − sin(θ + ϕ)

− sin(θ + ϕ+ α) − sin(θ + ϕ+ α+ β)],

1See, in this connection, e.g. [de Lima et al., 2013].
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ϕ→ ∆2 − ∆1 + ϕ+ µ[−2 sinϕ+ sin θ

+ sinα− sin(θ + ϕ) − sin(ϕ+ α)

+ sin(α+ β) − sin(ϕ+ α+ β)],

α→ ∆3 − ∆2 + α+ µ[−2 sinα+ sinϕ

+ sinβ + sin(θ + ϕ) − sin(ϕ+ α)

− sin(α+ β) − sin(θ + ϕ+ α)],

β → ∆4 − ∆3 + β + µ[−2 sin β + sinα

+ sin(ϕ+ α) − sin(ϕ+ α+ β)

− sin(α+ β) + sin(θ + ϕ+ α)

− sin(θ + ϕ+ α+ β)].
(3)

Choose the natural frequencies of the described
system in the following way. Equations (3) contain
only differences between natural frequencies. There-
fore, frequency of one of the oscillators (e.g. of the
first one) can be fixed. We fix also frequencies of
the third, fourth and fifth oscillators in such a way
that the frequency parameters have unequal values:
∆2 = 0.1,∆3 = 0.45, ∆4 = 1. Frequency of the
second oscillator will be varied by changing of the
frequency parameter ∆1.

For analyzing of system (3) we use the method
of the charts of Lyapunov exponents [Baesens et al.,
1991; Khibnik et al., 1998; Broer et al., 2008;
Kuznetsov et al., 2011; Emelianova et al., 2013].
According to this method, first we select a point
in the parameter plane and calculate all Lyapunov
exponents of system (3). Then, we color this point in

accordance with the type of a regime. In such a way,
we scan the entire parameter plane in the selected
range. Figure 1 shows the chart of Lyapunov expo-
nents in the plane of the coupling parameter µ
versus the second oscillator frequency ∆1. The
general view of the chart is presented in Fig. 1(a),
and Fig. 1(b) gives its fragment which illustrates the
basic multifrequency resonances. The color palette
is specified in the figure caption, so that we can
reveal:

• periodic attractor P with all the negative Lya-
punov exponents;

• two-frequency regime T2 with zero Lyapunov
exponent;

• three-frequency regime T3 with two zero Lya-
punov exponents;

• four-frequency regime T4 with three zero Lya-
punov exponents;

• five-frequency regime T5 with four zero Lyapunov
exponents;

• chaotic regime C with the positive largest Lya-
punov exponent;

• hyperchaos regime H with at least two positive
Lyapunov exponents.

For simplicity, let us call multifrequency
quasiperiodic regimes as domains of tori with
corresponding dimension. But formally, for the
reduced phase system (3), invariant hypersurfaces
are realized.

Figure 2(a) shows the dependence of frequen-

cies ωi = limn→∞
ψ

(n)
i −ψ(0)

i
n , which are observed in

the system, on coupling value. Consider the case

Fig. 1. Chart of Lyapunov exponents for the network of five phase oscillators (3) and its enlarged fragment for ∆2 = 0.1,
∆3 = 0.45, ∆4 = 1.
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(a)

(b)

Fig. 2. (a) Synchronization tree and its enlarged fragment (right) illustrating a complicated structure of this tree and (b) plot
of Lyaponov exponents for the network of five discrete phase oscillators (3). Values of the parameters are ∆1 = −1, ∆2 = 0.1,
∆3 = 0.45.

∆1 = −1 [left border in Fig. 1(b)]. When µ = 0,
the observed frequencies are equal to the natural
frequencies of the oscillators, i.e. according to (3):

ω1 = 0, ω2 = ∆1, ω3 = ∆2,

ω4 = ∆3, ω5 = ∆4.
(4)

In Fig. 2(a) one can see a sequential emer-
gence of clusters which correspond to the consec-
utive merging of “the tree branches”. For example,
the first cluster arises when the first and the sec-
ond oscillators join together. After this, the third
one joins them, etc. It should be noted that the
number of clusters does not strictly correspond to
the dimension of the observed torus. A plot of Lya-
punov exponents in Fig. 2(b) verifies this fact. An
enlarged fragment of the tree in Fig. 2(a, right)
shows that the tree branch is jagged in the domain
where there is multiple alternation of two-frequency,
periodic and chaotic regimes.

Now let us discuss the structure of the param-
eter plane given in Fig. 1. Consider the domain
of small coupling values. One can see that the
five-frequency tori are dominant. However, there
are several tongues of the four-frequency regimes.
At the bottom, they look like traditional Arnol’d
tongues. At some points they touch the ∆1-axis.
We can derive coordinates of these points using
physical consideration. Variation of the frequency
ω1 leads to the consistent resonances between the
second oscillator and the first, third, fourth and
fifth ones. From the definition of frequency detun-
ings ∆i−1 = ωi − ω1, we obtain four resonance
conditions

∆1 = 0, ∆1 = ∆2, ∆1 = ∆3, ∆1 = ∆4. (5)

These values are indicated by vertical arrows in
Fig. 1(b).

We choose the spectrum of oscillators so that
the frequencies of the fourth oscillator and the fifth
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one are sufficiently different. Thus, the two right-
hand tongues in Fig. 1(b) satisfying the conditions
ω4 ≈ ω1 and ω5 ≈ ω1 have a very simple struc-
ture. They represent two domains of four-frequency
tori inside the five-frequency one. In these cases, the
second oscillator is in resonance with only one oscil-
lator, and the other ones are actually independent.
This is a kind of the “individual” resonance.

At the same time, frequencies of the first and
the third oscillators are nearly equal: ω1 ≈ ω3

(∆2 ≈ 0). Therefore, the second test oscillator inter-
acts with this pair at the variation of its frequency
∆1. This is a kind of the “collective” resonance.
In such a case, the synchronization picture is more
complicated and is shown in detail in Fig. 3(a). One
can see that the four-frequency tongues are closed
by edges forming a characteristic oval domain of
three-frequency tori T3. In this case, a cluster of
three oscillators (the first, second and third ones)
may arise.

At the same time, inside the five-frequency
domain T5 there are many thin higher-order tongues
of four-frequency tori. Figure 3(b) illustrates two
types. In the first case, the tongue has a traditional
cusp shape. In the second case, a fan-shaped system
of four-frequency tori is located at the bottom of
the rounded three-frequency domain. Small chaotic
regions may also be observed.

With an increase in the coupling parameter
(µ ≥ 0.05), the five-frequency regimes in Fig. 1 are
replaced by the four-frequency regimes. The corre-
sponding boundary looks like a horizontal line. It is
a saddle-node bifurcation line for the four-frequency

torus. Above this line, there is a characteristic
picture of the Arnol’d resonance web [Broer et al.,
2008] which is shown in Fig. 4(a). In this case,
there is a network of three-frequency domains with
dual-frequency regimes arising at their regions of
intersection. It should be noted that this result is
somewhat unexpected. The resonance web arises
usually on the parameter plane of the fundamental
frequencies of the oscillators [Baesens et al., 1991;
Broer et al., 2008]. In our case, one of the parame-
ters is the coupling. We can give the following expla-
nation of this fact. The oscillation frequency for the
arising cluster depends on the coupling value. Thus,
the resonance conditions occur with simultaneous
variation of the frequency and the coupling. Note
that with an increase in coupling µ the resonance
web structure remains in Fig. 4(a), but the four-
frequency regimes are replaced by the chaotic ones.

For µ ≥ 0.15, the three-frequency region is
observed. In this case, there is also a resonance web,
but it is on the basis of the three-frequency regimes
as is shown in Fig. 4(b).

For larger values of µ, there is a domain of two-
frequency quasiperiodic regimes which looks like a
band [Fig. 5(a)]. There is also a system of higher-
order complete resonances. They look like the tra-
ditional Arnol’d tongues, but with the destroyed
bottoms. One can see diverse kinds of complete
resonances on the chart of periodic regimes in
Fig. 5(b). In this case, the different colors indicate
different periods of cycles of the analyzed map. Near
the bottom of each tongue of periodic regimes, the
system of fan-shaped domains of two-frequency tori

(a) (b)

Fig. 3. (a) Integration of the four-frequency tongues and (b) two higher-order tongues of four-frequency tori. The color palette
is similar to that in Fig. 1.
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(a) (b)

Fig. 4. Resonance web for the network of five discrete phase oscillators (3) inside the domain of (a) four-frequency and
(b) five-frequency tori.

Fig. 5. Higher-order tongues of the complete synchronization embedded in the quasiperiodic domains of different dimension
and chaos. (a) Chart of Lyapunov exponents and (b) chart of periodic regimes; numbers below indicate periods of cycles.

arises. Inside the tongues of periodic regimes, there
is period doubling which leads to chaos with an
increase of the coupling parameter.

3. Comparison with the Dynamics
of the Chain of Oscillators

Now discuss an influence of the coupling geometry
in the system to the synchronization. For this pur-
pose, we compare the above results with the results
for oscillators coupled in a linear chain. In this case,
the phase equations are

ψ1 → ω1 + ψ1 + µ sin(ψ2 − ψ1),

ψ2 → ω2 + ψ2 + µ[sin(ψ1 − ψ2) + sin(ψ3 − ψ2)],

ψ3 → ω3 + ψ3 + µ[sin(ψ2 − ψ3) + sin(ψ4 − ψ3)],

ψ4 → ω4 + ψ4 + µ[sin(ψ3 − ψ4) + sin(ψ5 − ψ4)],

ψ5 → ω5 + ψ5 + µ sin(ψ4 − ψ5).

(6)

For the relative phases (2), we obtain the fol-
lowing system of equations:

θ → θ + ∆1 + µ(−2 sin θ + sinϕ),

ϕ→ ϕ+ ∆2 − ∆1 + µ(−2 sinϕ+ sin θ + sinα),

α→ α+ ∆3 − ∆2 + µ(−2 sinα+ sin β + sinϕ),

β → β + ∆4 − ∆3 + µ(−2 sin β + sinα).

(7)
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(a) (b)

Fig. 6. (a) Chart of Lyapunov exponents for the chain of five phase oscillators (7) and (b) its enlarged fragment. Values of
the parameters are ∆2 = 0.1, ∆3 = 0.45, ∆4 = 1. SNF is saddle-node fan point [Baesens et al., 1991; Emelianova et al., 2013].

Figure 6 shows the corresponding chart of
Lyapunov exponents constructed for the same
values of the parameters as in Fig. 1. In this case,
the number of basic resonance tongues of four-
frequency tori reduces from four to two. This has
a physical explanation. Indeed, variation of the fre-
quency for the second oscillator ω2 may lead to one
of the two possible resonances ω2 = ω1, ω2 = ω3 due
to the coupling geometry in the chain. This provides
the conditions

∆1 = 0, ∆1 = ∆2. (8)

Thus, we obtain an interesting result: the number
of basic tongues of four-frequency tori equals to the
number of nearest neighbors of the oscillator with a
variable frequency. It will also be true for networks
with a more complex coupling topology.

Another conclusion is that the shape of the
complete synchronization domain for the network
and for the chain of oscillators is different [compare
Figs. 1(b) and 6(b)]. In the last case, there are char-
acteristic angles corresponding to the codimension-
two points [Fig. 6(b)]. These points are described
by Baesens et al. [1991] and called saddle-node
fan SNF.

4. System with Anti-Phase
Synchronization

We have considered the dissipative coupling which
tends to equalize the states of oscillators. In the
simplest case of two elements, this type of coupling
leads to the in-phase synchronization. However, the

case of negative values of the coupling is also impor-
tant. In this case, the anti-phase synchronization
is stable for two coupled elements. This type of
coupling is characteristic, for example, for laser
physics when lasers are optically coupled by radi-
ation through the sidewalls of waveguides [Khibnik
et al., 1998; Glova & Lysikov, 2002; Glova, 2003]. It
may be called an active coupling or repulsive inter-
action [Hong & Strogatz, 2012].

Let us discuss the case of an active coupling.
Firstly, consider a chain of oscillators. In this case,
there is a certain symmetry in the system. Indeed,
Eqs. (7) are invariant under a linear change of
variables

µ → −µ, θ → θ + π, ϕ→ ϕ+ π,

α→ α+ π, β → β + π.
(9)

This transformation of variables does not change
the type and stability characteristics of fixed points.
Only a phase shift of π occurs and a change from the
in-phase to anti-phase regimes is observed. There-
fore, the chart of dynamic regimes for the oscilla-
tors with anti-phase synchronization looks exactly
like the chart in Fig. 6. Thus, a complete synchro-
nization between all the subsystems is possible in
the chain of coupled oscillators.

There is another situation in the case of glob-
ally coupled elements. In this case, Eqs. (3) are not
invariant under the change of variables (9) due to
the presence of terms containing the sum of rela-
tive phases. Therefore, a structure of the parame-
ter space for the network of such elements differs
from that for the chain. Figure 7 shows the chart
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Fig. 7. Chart of Lyapunov exponents for the network of
five phase oscillators in case of an active coupling for ∆2 =
0.1, ∆3 = 0.45, ∆4 = 1.

of Lyapunov exponents for the oscillators with anti-
phase synchronization with the same values of fun-
damental frequencies as in Fig. 1. One can see that
for small values of µ, the picture is partly equiva-
lent to the case of the dissipative coupling. Thus, if
two or three oscillators are captured inside the net-
work of coupled oscillators, the system behavior is
qualitatively the same for any sign of the coupling
parameter. For high values of the coupling, there
are great differences between these two situations.
An ordered structure of two-frequency quasiperi-
odic domains, which is typical for the dissipative
coupling, is destroyed. A domain of the complete
synchronization virtually disappears in case of an

active coupling and only a few isolated “islands” of
periodic regimes are visible. Thus, the Kuramoto
transition does not occur for an active coupling.
Instead, the chaotic or even hyperchaotic regimes
are observed.2 This result is important for laser
arrays because it means that the coupling config-
uration of type “each-to-each” is not always a good
method to get coherent radiation.

5. Dynamics of Nonautonomous
System

Suppose now that the network is under the influence
of an external field. Generalizing the approach of
Khibnik et al. [1998] and Anishchenko et al. [2009],
we can obtain the corresponding discrete model:

ψn → ωn + Ω + ψn

+µ

5∑

i=1

sin(ψi − ψn) + b sinψn. (10)

Here b and Ω are respectively amplitude and fre-
quency of external influence.

We choose parameters so that in the
autonomous network, the two-frequency quasi-
periodicity mode will be observed. Chart of
Lyapunov exponents of system (10) in the
frequency–amplitude plane of external field is
shown in Fig. 8. We can see that the external signal
can provide a full synchronization of all oscilla-
tors, although autonomous network demonstrates

(a) (b)

Fig. 8. Lyapunov charts on the plane representing frequency and amplitude of external influence for nonautonomous chain (9).
(a) ∆1 = 0.5, ∆2 = 0.2, ∆3 = 0.9, ∆4 = 2, µ = 0.125 and (b) ∆1 = 2.6, ∆2 = 0.2, ∆3 = 0.9, ∆4 = 2, µ = −0.5.

2Such result is in accordance with the numerical simulation for the network of a large number of oscillators [Hong & Strogatz,
2012].
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quasiperiodicity. Area of full synchronization P has
the form of typical tongue, however, there is an
amplitude threshold effect.

Within the framework of the phase model of the
laser system, Khibnik et al. [1998] demonstrated the
ability to synchronize a system of two anti-phase
oscillators by external signal. Figure 8(b) refers to
the model (10) for the negative coupling constant. It
can be seen that a full synchronization in this case
does not occur, although the external field influ-
ences all oscillators. Thus, a combination of oscilla-
tors with repulsive interaction in the network with
a large number of elements complicates the goal of
their synchronizing by external signal.

6. Conclusion

Two-parameter Lyapunov analysis is an effective
tool for the study of ensembles of discrete phase
oscillators. Another useful trick is a frequency
scanning of the system properties by using one ded-
icated oscillator. Features of the dynamics in low-
dimensional network ensembles are investigated in
the case of five discrete phase oscillators. There are
characteristic domains of different-order resonance
tori. Bottoms of these domains are destroyed and
form the fan-shaped system of domains of higher-
order tori. For medium values of the coupling,
there is Arnol’d resonance web on the “frequency
detuning–coupling” parameter plane. It exists in
both the domains of three- and four-frequency
tori. The case of synchronization of oscillators with
repulsive interaction in the domain of strong cou-
pling is significantly different from the case of
in-phase synchronization, in particular, full syn-
chronization modes are atypical. This also applies
to the case of synchronization by external signal.
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