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Abstract. The dynamics of three coupled chaotic Rössler systems is 
considered. We discuss scenarios for the evolution of different types of regimes. 
The possibility of two- and three-frequency quasi-periodicity is shown. We 
considered the occurrence of resonanses on three-frequency torus, which leads 
to two-freqiency quasi-periodic regimes. The illustrations in the form of charts 
of the Lyapunov exponents, phase portraits of attractors plotted in the Poincare 
section and bifurcation diagrams are presented. We discuss the type of quasi-
periodic bifurcation in the system. 
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1 Introduction 

The problem related to oscillations of coupled oscillators of different nature remains 
the focus of researchers in different fields of physics, chemistry, biology. The 
examples are radio-electronic oscillators , Josephson contacts, ion traps [1-4], etc. 
One of the interesting aspects is the problem of synchronization of chaotic systems. 
The traditional approach in this case is to study the regimes for which the dynamics is 
chaotic, although it may be both synchronous and asynchronous [4,5]. In the works 
[4,5] the corresponding structure of the parameter plane (frequency detuning –
parameter of coupling) is studied for two coupled Rossler oscillators. Also they 
pointed to the existence of different windows of periodic regimes. We consider here 
another situation when the dynamics of coupled chaotic systems becomes quasi-
periodic. This is explained by a stabilizing effect of dissipative coupling, which, 
however, retains some basic oscillatory rhythm of the individual oscillators. We will 
discuss this problem by the example of three chaotic Rössler oscillators. In this case  
we found not only a two-frequency quasi-periodic regimes, but also three-frequency 
quasi-periodic regimes. 

2 Three Chaotic Oscillators 

Let us consider the system of three coupled Rössler oscillators: 
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Here Δ1 is the frequency detuning between the first and second oscillators and Δ2 is 

the frequency detuning between the first and third oscillators. We fix parameters 
p=0.15, q=0.4 and r=8.5. This corresponds to the chaotic regime in individual 
subsystems.  

Let us disscus the question of how the regimes of different types are embedded in 
parameter space. For this, we use the method of the charts of Lyapumov exponents 
[6-10]. We calculate the spectrum of Lyapunov exponents at each grid point on the 
parameter plane. Then we color these points in accordance with its signature. The 
corresponding chart is given in Fig.1. It is plotted on the (Δ1, μ) plane. The periodic 
regimes lettered by P, two- and three-frequency quasi-periodic regimes T2 and T3 
(with one and two zero Lyapunov exponents respectively), regimes of chaos C (with 
one positive Lyapunov exponent), regimes of hyperchaos HC2 and HC3 (with two 
and three positive Lyapunov exponents respectively) are marked by different colors. 
Regime of “amplitude death” AD is responsible for disappearance of oscillations due 
to their suppression of a dissipative coupling. The color legend is at the right of the 
figure. 

The phase portraits of attractors plotted in the Poincaré section are shown in  
Fig. 2  (The Poincaré section is defined by relations y=0 and x>0). Two-frequency 
torus T2 exists for large values of coupling. In this case Poincaré section is the 
invariant curve close to a circle. Three-frequency torus T3 arises softly from this 
invariant curve as the parameter of coupling is decreased. One can see a very 
intricately shaped invariant curve with a further decrease of coupling. This invariant 
curve corresponds to one of the possible two-frequency resonant tori TR2. Note that 
the number of resonance windows is sufficiently large for these values of the 
frequency detuning. At small coupling the tori are destroyed with the appearance of 
chaos and hyperchaos. 
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Fig. 1. Chart of Lyapunov exponent for the system (1), Δ2=0.05 

 

Fig. 2. Phase portraits of attractors at Poincaré section, Δ1=0.19 and Δ2=0.05 
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Fig. 3 shows the bifurcation diagram for the attractor in the chosen Poincare 
section versus the coupling parameter. This Figure illustrates the bifurcations 
responsible for the arising of invariant tori of different dimensions. Neumark-Sacker 
bifurcation of two-frequency torus occurs at the point NS. The windows of resonant 
limit cycles can be observed in the region of smaller values of coupling. The diagram 
widens sharply at the point QH. This is a point of quasi-periodic Hopf bifurcation [10-
11], where three-frequency torus arises softly from two-frequency torus. Thus, the 
upper boundary of the region of three-frequency tori corresponds to the quasi-periodic 
Hopf bifurcation. 

 

Fig. 3. Bifurcation diagram of system (1), Δ1=0.19 and Δ2=0.05 

Quasi-periodic Hopf bifurcation QH is clearly visible in the enlarged fragment of 
the chart of Lyapunov exponents (Fig. 4). It is a boundary between three-frequency 
and two-frequency regions. One can see also a variety of tongues of two-frequency 
resonant tori. They have characteristic rounded tops, which are located along the QH  
line slightly above it. The tongues are destroyed with the appearance of chaos as the  
coupling decreases. Chaotic dynamics of individual oscillators is responsible for this. 
Note, the transition region from the three-frequency quasi-periodicity to chaos has a 
complex organization. In this region one can see a large number of resonances, which 
are much more numerous than in the case of regular oscillators [9]. 
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Fig. 4. Enlarged fragment of the parameter plane from Fig. 1, QH is a quasi-periodic Hopf 
bifurcation 

3 Conclude 

Thus, the effect of dissipative coupling on the chaotic oscillators can lead not only to 
the chaotic synchronization and appearance of periodic regimes, but also to the 
appearance of two- and three-frequency quasi-periodic oscillations. And quasi-
periodic Hopf bifurcation is responsible for this. The reason is probably that chaotic 
regime is characterized by presence of large number of unstable limit cycles [4]. 
Adding of coupling can stabilize these cycles and this leads to appearance of the set of 
the resonant tori of different types in the dynamics of the system. With increasing of 
the number of chaotic oscillators the tori of higher and higher dimensions can be 
observed. We can expected, that this behavior would be typical for other chaotic 
systems. 

This work was supported by the GrantNSc-1726.2014.2. 
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