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The dynamics of the four dissipatively coupled van der Pol oscillators is considered. Lyapunov chart is
presented in the parameter plane. Its arrangement is discussed. We discuss the bifurcations of tori in
the system at large frequency detuning of the oscillators. Here are quasi-periodic saddle-node, Hopf and
Neimark–Sacker bifurcations. The effect of increase of the threshold for the “amplitude death” regime
and the possibilities of complete and partial broadband synchronization are revealed.
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1. Introduction

Synchronization of the ensembles of oscillators is a fundamen-
tal problem. It is problem of a general theoretical interest and it is
important from the point of view of its application in biophysics,
laser physics, electronics, chemistry, etc. [1–5]. The possible types
of dynamical regimes of interacting oscillators are well studied for
a small number of oscillators, or, in contrary, for the large number
of oscillators. It should be noted that the dynamics of the chain
of the oscillators has a number of specific features in comparison
with the dynamics of the network or ring, consisted of the same
number of elements. This is due to the fact that in the chain ele-
ments are not equal, in contrast to the network or ring. They can
have a different number of neighbors depending on the position in
the chain.

In present paper we consider the chain of four van der Pol os-
cillators. We discuss the main types of dynamical regimes typical
for this model. At the same time, we do not use any approxi-
mations (i.e., the Landau–Stuart equations, the phase equations),
except for some estimates. This means that both the limit cycles
and the invariant tori of different dimensions are the attractors
of this system. The presence of tori leads to the possibility of
quasi-periodic bifurcations. We discuss the main types of these bi-
furcations in the system of four coupled van der Pol oscillators.
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Unfortunately, numerical algorithms for searching of the quasi-
periodic bifurcations are very complicated and generally are under
development [6,7]. However, the behavior of the Lyapunov expo-
nents allows the identifications of the bifurcations.

The cases of a chain of two and three oscillators were dis-
cussed in detail in the works [8–10]. Several typical areas can
be distinguished in the parameter plane (the frequency detuning
and the coupling parameter) for the system of two coupled os-
cillators [1–3,8–10]. First, there is a synchronization region with
frequency ratio of 1 : 1. Second, there is a region of quasi-periodic
regimes. The set of synchronization tongues with other rational
frequency ratios is embedded to this region. Another typical region
is a region of the “amplitude death”. It is located at sufficiently
large frequency detuning values. In this case, the following con-
dition must be satisfied: the coupling parameter is greater than
the excitation parameter [1,11]. In this case the dissipative cou-
pling compensates for excitation of the oscillators. Another regime
is observed for the non-identical oscillators [9,12]. In this case the
region of periodic regimes arises between the “amplitude death”
region and the region of the quasi-periodic regimes. It is observed
for arbitrarily large values of the frequency detuning. This region
arises because the first oscillator dominates over the second oscil-
lator, which is suppressed by a dissipative coupling. These regimes
were called broadband synchronization in [12].

There are two types of quasi-periodic oscillations for the case
of three dissipatively coupled oscillators. These regimes correspond
to the two-frequency and three-frequency tori [13]. The resonances
are observed as the parameter of the frequency detuning is small.
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As a result, there is a set of tongues of two-frequency tori em-
bedded in the region of three-frequency tori. For large frequency
detuning the synchronization picture becomes simpler. The three-
frequency tori arise at small coupling. And the two-frequency tori
arise as the coupling parameter increases. The “amplitude death”
region is observed with a further increase of the coupling para-
meter.

Increasing the number of oscillators to four leads to a num-
ber of new effects. They are the subject of the present paper.
We discuss a cascade of bifurcations of periodic and quasi-periodic
regimes. We show that the region of “amplitude death” is observed
at essentially larger values of coupling parameter compared to the
case of two and three coupled oscillators. Also, we show that the
region of complete broadband synchronization arises in the case of
four identical oscillators. This region separates the region of “am-
plitude death” and the region of two-frequency tori.

2. Structure of the parameter plane and quasi-periodic
bifurcations

Let us consider a chain of four dissipatively coupled van der Pol
oscillators.

ẍ − (
λ − x2)ẋ + x + μ1(ẋ − ẏ) = 0,

ÿ − (
λ − y2) ẏ + (1 + �1)y + μ1( ẏ − ẋ) + μ2( ẏ − ż) = 0,

z̈ − (
λ − z2)ż + (1 + �2)z + μ2(ż − ẏ) + μ3(ż − ẇ) = 0,

ẅ − (
λ − w2)ẇ + (1 + �3)w + μ3(ẇ − ż) = 0. (1)

Here λ is the control parameter responsible for excitation of the
partial oscillators; �1, �2, and �3 are frequency detuning between
the second and the first oscillators, the third and the first oscil-
lators, the forth and the first oscillators respectively; μi are the
parameters of the dissipative coupling. Then we set all the cou-
pling parameters equal to μ, i.e. μ1 = μ2 = μ3 = μ. This allows
us to more fully understand the mechanisms of suppression of the
oscillations of different oscillators in the chain.

In order to get a general conception about the structure of the
parameter plane, we use the method of the charts of Lyapunov expo-
nents [13,14]. According to this method, we calculate the Lyapunov
exponents Li at each grid point on the parameter plane. Then we
define the type of the regime in the system in accordance with the
values of the Lyapunov exponents1:

1. P is the region of the limit cycle. The Lyapunov exponents are
L1 = 0, L2 < 0, L3 < 0, L4 < 0, L5 < 0;

2. T2 is the region of the two-frequency torus. The Lyapunov ex-
ponents are L1 = L2 = 0, L3 < 0, L4 < 0, L5 < 0;

3. T3 is the region of the three-frequency torus. The Lyapunov
exponents are L1 = L2 = L3 = 0, L4 < 0, L5 < 0;

4. T4 is the region of the four-frequency torus. The Lyapunov ex-
ponents are L1 = L2 = L3 = L4 = 0, L5 < 0;

5. C is the region of the chaotic attractor. The Lyapunov expo-
nents are L1 > 0, L2 < 0, L3 < 0, L4 < 0, L5 < 0.

Then we color the points on the parameter plane in accordance
with the type of the regime.

The chart of the Lyapunov exponents for the system (1) on
the parameter plane (�1, μ) is shown in Fig. 1a. It is plotted
for λ = 0.1. Other parameters are �2 = 0.03, �3 = 0.1. That is,
the frequencies of the first, the third and the fourth oscillators are

1 Here we consider the five largest Lyapunov exponents. The rest ones are always
negative. They do not affect the type of the dynamical regimes. The fifth Lyapunov
exponent is also always negative. But it is required to determine the type of the
quasi-periodic bifurcation, see Fig. 2 and further discussion.
Fig. 1. (Color online.) Charts of the Lyapunov exponents for the system of four dis-
sipatively coupled van der Pol oscillators (1), where λ = 0.1, �2 = 0.03, �3 = 0.1.
The color palette is given and described at the right of the charts. Resonance con-
ditions (2) are indicated by vertical arrows in panel a. Horizontal arrows in panel b
correspond to different bifurcations (see the caption for Fig. 2.) CBS is the region of
the complete broadband synchronization; PBS is the region of the partial broadband
synchronization (see Section 4); AD is the region of the “amplitude death”.

sufficiently close to each other. When the coupling parameter is
small and frequency detuning �1 is near zero, we can observe the
regions of resonant tori of different dimensions, Fig. 1a. In par-
ticular, there are two tongues of the three-frequency tori which
are embedded in the region of the four-frequency tori. The tops of
these tongues lie on the axis �1 and satisfy two resonance condi-
tions:

�1 = 0 or �1 = �2. (2)

These relations correspond to the resonances when the fre-
quency of the second oscillator coincides with the frequency of
the first or the third oscillator. The values of the frequency de-
tuning �1 that correspond to the conditions (2) are marked in
Fig. 1a with arrows. The regions of two-frequency tori also look
like the synchronization tongues. But they all have threshold val-
ues for the coupling parameter. The tops of some of these tongues
are destroyed with the appearance of the chaos.

Let us consider the chart of the Lyapunov exponents plotted for
a wider parameter range, Fig. 1b. On this chart one can see the
region of the “amplitude death”. It is indicated as AD. As we note
in the introduction, it is useful to investigate the bifurcations at
large values of the frequency detuning �1. In this case, one can
observe the bifurcations for tori of higher and higher dimension as
coupling parameter μ decreases.

Let us discuss the bifurcations in more detail. To do this,
we turn to the graphs of the five largest Lyapunov exponents Li
of the system (1). It is presented in Fig. 2. The exponents are plot-
ted versus the coupling parameter μ along the line �1 = 2.

One can see, that for large value of the coupling parameter μ
all exponents in Fig. 2 are negative. This corresponds to the “ampli-
tude death” regime. At the point H (μ ≈ 0.27) the first exponent
L1 becomes equal to zero. It is the point of the Hopf bifurcation.
The stable (multidimensional) limit cycle arises at this point.

As the coupling parameter μ decreases the second exponent
L2 becomes equal to zero at point NS. This corresponds to the
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Fig. 2. (Color online.) Graphs of five largest Lyapunov exponents of the system of four dissipatively coupled van der Pol oscillators (1) at the next values of the parameters:
λ = 0.1, �1 = 2, �2 = 0.03, �3 = 0.1. H is the point of the Hopf bifurcation; NS is the point of the Neimark–Sacker bifurcation; QH is the point of the quasi-periodic Hopf
bifurcation of two-frequency torus; SNT is the point of the saddle-node bifurcation of three-frequency torus.
Neimark–Sacker bifurcation. The stable two-frequency torus arises
at this point.

Then, at the point QH the third exponent L3 becomes equal
to zero too. Thus, before the bifurcation the exponents L3 and L4

are equal. This means, that corresponding multipliers are the con-
jugate complex. At the bifurcation point the exponents L3 and L4

are equal to zero. After bifurcation the exponent L3 is zero, and ex-
ponent L4 is negative again. This is a typical feature of the soft
quasi-periodic bifurcation. The three-frequency torus is the result
of this bifurcation. This type of bifurcation is called quasi-periodic
Hopf bifurcation in [6].

At the point SNT dimension of the torus increases once more.
However, it is another type of bifurcation. Now the exponent L4

becomes zero, while exponent L5 always remains negative. This
means, that the saddle-node bifurcation of tori takes place [6,7].
The stable and saddle three-frequency tori merge and disappear
and the stable four-frequency torus arises. Note, that the last bifur-
cation has an analog in the phase model, while other bifurcations
are not possible in the phase model [13].

3. Increasing of the threshold value of the “amplitude death”
region

Let us return to Fig. 1b. Note, that in the case of two or three
coupled oscillators the boundary of the “amplitude death” region
is given by the condition μ = λ [12,13]. However, in the case of
the four coupled oscillators it does not tend to this value as the
frequency detuning �1 increases. Actually it is much greater. Thus,
the threshold increase for the “amplitude death” effect is observed for
the four coupled oscillators. From Fig. 1b one can see that the
boundary of the “amplitude death” region (point H) corresponds
approximately to μ ≈ 0.26.

Let us discuss this effect in more detail. In the case of three
coupled oscillators synchronization between the first and the sec-
ond oscillators and between the second and the third oscillators
is destroyed as frequency of the second oscillator is increased.
As a result, the boundary of the “amplitude death” region is given
by μ = λ as �1 → ∞. It is a condition of the compensation of
negative friction by dissipation. In the case of four coupled os-
cillators the situation is more complicated. Indeed, the third and
the fourth oscillators with fixed eigenfrequencies can effectively
interact in near-synchronous regimes. As a result, a pair of these
oscillators forms much more excited self-oscillating subsystem.
So, the threshold value of coupling parameter corresponding to the
effect of “amplitude death” can increase.
Let us give some estimates. The truncated equations (Landau–
Stuart equations) for the system (1) are2:

2ȧ = λa − |a|2a − μ(a − b),

2ḃ = λb − |b|2b + i�1b − μ(2b − a − c),

2ċ = λc − |c|2c + i�2c − μ(2c − b − d),

2ḋ = λd − |d|2d + i�3b − μ(d − c). (3)

Here a(t), b(t), c(t), and d(t) are slow complex amplitudes of the
oscillators (varying slowly in comparison with the basic oscillations
with the unit frequency). They are related to the dynamical vari-
ables of the system (1) via relations:

x = a(t)eit + a∗(t)e−it, y = b(t)eit + b∗(t)e−it,

z = c(t)eit + c∗(t)e−it, w = d(t)eit + d∗(t)e−it . (4)

It is known that linear approximation is enough to determine
the “amplitude death” region. We assume that �1 → ∞, and the
eigenfrequencies of the first, the third and the fourth oscillators
are small in comparison with �1. Otherwise we assume that
�2 = �3 = 0. Then we rewrite the system (3) as

2ȧ = λa − μ(a − b),

2ḃ = λb + i�1b − μ(2b − a − c),

2ċ = λc − μ(2c − b − d),

2ḋ = λd − μ(d − c). (5)

We look for the solution of this linear system by the exponen-
tial substitution exp(βt/2). Then, we obtain the following equa-
tions:

(a − β + μ)a = μb,

(a − β + 2μ − i�1)b = μ(a + c),

(a − β + 2μ)c = μ(b + d),

(a − β + μ)d = μc. (6)

From the second equation in (6) we obtain a/b → ∞ or c/b → ∞
if �1 → ∞. Physically, this corresponds to the fact that either the
first or the third oscillator dominates over the second oscillator.

Let us estimate the first ratio. From the first equation in (6)
we have

2 Derivation of these equations is standard for the method of slowly varying am-
plitudes [1,2]. Therefore we do not reproduce it here.
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Fig. 3. Phase portraits of the oscillators and phase differences between the oscillators for the system of four dissipatively coupled van der Pol oscillators (1). Values of the
parameters are λ = 0.1, �1 = 2, �2 = 0.03, and �3 = 0.1. a. μ = 0.08. It is the regime of partial broadband synchronization. b. μ = 0.2. It is the regime of complete
broadband synchronization. Numbers inside phase portraits correspond to the numbers of the oscillator.
a/b = μ

β − λ + μ
. (7)

Hence we see that a/b → ∞ if β = λ − μ. The “amplitude death”
occurs when β < 0. So we get μ > λ. It is the same condition as
in the case of two or three coupled oscillators.

Let us estimate the second ratio. It is associated with the dom-
inance of the third oscillator. From the second and the third equa-
tions in (6) we have

c/b = μ

β − λ + 2μ − μ2

β−λ+μ

. (8)

The condition c/b → ∞ is satisfied when the denominator is zero.
This leads to a quadratic equation for β . Then we obtain:

β = λ − 3 ± √
5

2
μ. (9)

The “amplitude death” regime occurs when β < 0. Then we have

μ >
2√ λ ≈ 2.618 · λ. (10)
3 − 5
Thus, the threshold value of coupling parameter for the “ampli-
tude death” region increases significantly (more than twice) in the
case when the third oscillator is dominant and effectively interact
with the fourth oscillator. The estimate (10) is quite effective for
the case shown in Fig. 1b. Indeed, it gives μ ≈ 0.26 for λ = 0.1.
It is very close to the asymptotic boundary of the “amplitude
death” region. This is not surprising because the corresponding fre-
quency parameters are small: �2 = 0.03 and �3 = 0.1.

We can still obtain the boundary of the “amplitude death” re-
gion for the system (6) in the case when the asymptotic condition
�1 → ∞ is not imposed. Then from Eqs. (6) after some transfor-
mations, we obtain

z4 + (2μ − i�1)z3 − μ(2μ + i�1)z2

− μ2(2μ − i�1)z + μ4 = 0, (11)

where z = α − λ + μ. The condition of the “amplitude death” of
all oscillators is Reα < 0. Therefore, the boundary of this region is
given by Eq. (11) under the condition

Re z = μ − λ. (12)
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4. Broadband synchronization in a system of four coupled
oscillators

Discussed above bifurcations and effects lead to the possibil-
ity of broadband synchronization. This regime is observed in the
region of large values of frequency detuning �1. There are two
types of the regime of the broadband synchronization. First type is
a complete broadband synchronization when all oscillators are phase
locked. In this case the high-dimensional limit cycle occurs. Cor-
responding synchronization region is located between the lines H
and NS. It is marked as CBS in Fig. 1b. Note that for the system of
two or three coupled identical oscillators such regime is not ob-
served3 [13]. For the case of four coupled oscillators it becomes
possible due to the increasing of the threshold value of the “am-
plitude death” region.

Second type is a partial broadband synchronization. Correspond-
ing region is marked as PBS in Fig. 1b. In this case only three
oscillators are phase locked. The fourth oscillator slightly perturbs
their oscillations. So, they are quasi-periodic and correspond to
the two-frequency torus. The similar regime is observed in the
region between the lines QH and SNT. It corresponds to the three-
frequency torus.

Fig. 3 shows the phase portraits of all oscillators and graphs
of the phase differences between the oscillators. They are plot-
ted for �1 = 2. Fig. 3a is plotted for the case μ = 0.08. It cor-
responds to the regime of the partial broadband synchronization
PBS (Fig. 1b). One can see that the second oscillator is strongly
suppressed (note the different scales on the axes in the phase por-
traits in Fig. 3). Moreover, its orbit is strongly quasi-periodically
perturbed. All other oscillators are excited in almost equal de-
gree. In this case, phase differences of oscillators behave as follows.
The phase difference of the third and fourth oscillators ϕ3 − ϕ4 is
constant. The phase difference of the second and the third oscil-
lators ϕ2 − ϕ3 fluctuates around a constant value. And the phase
difference of the first and the second oscillators ϕ1 − ϕ2 ranges
from zero to 2π . Thus, we can say that the second, the third and
the fourth oscillators are phase locked.

Fig. 3b is plotted for μ = 0.2. One can see that the quasi-
periodic regime is replaced by the periodic regime. In this case
both the second and the first oscillators are strongly suppressed.
However, despite the high dissipation μ > λ, the third and the
fourth oscillators are quite strongly excited. Meanwhile, all phase
differences ϕ1 −ϕ2, ϕ2 −ϕ3 and ϕ3 −ϕ3 of oscillators are constant.

3 This regime is possible in the system of two or three dissipatively coupled non-
identical oscillators [10,12].
5. Conclusion

Dynamics of the chain of four dissipatively coupled van der
Pol oscillators is characterized by a set of specific features. A se-
quence of bifurcations (Hopf bifurcation, Neimark–Sacker bifurca-
tion, soft quasi-periodic Hopf bifurcation and saddle-node bifurca-
tion) occurs at the large values of the frequency detuning. At the
same time, the corresponding bifurcation curves in the parameter
plane are the boundaries of the regions of the broadband syn-
chronization of quasi-periodical regimes of different dimensions.
The threshold value of the “amplitude death” regime is signifi-
cantly increased. It can be explained by the interaction between
the third and the forth oscillators. Due to the universality of the
discussed model the similar behavior can be observed for the var-
ious system.
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