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The conditions are discussed for which an ensemble of interacting oscillators may demonstrate the
Landau–Hopf scenario of successive birth of multi-frequency quasi-periodic motions. A model is proposed
that is a network of five globally coupled oscillators characterized by controlled degree of activation of
individual oscillators. Illustrations are given for successive birth of tori of increasing dimension via quasi-
periodic Hopf bifurcations.
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1. Introduction

In this Letter we discuss a problem that attracts attention for
many years, but has not received yet a satisfactory solution and
understanding. It consists in a question of possibility of observa-
tion of the scenario of transition to complex dynamical behav-
ior suggested by Landau and Hopf, e.g. in the context of hydro-
dynamic turbulence. This scenario includes successive secondary
quasi-periodic Hopf bifurcation, which follow the primary one, be-
ing accompanied with a sequential birth of incommensurable fre-
quency components of the motion. We suggest here some novel
approach to this long-standing problem based on artificial con-
structing and examination of model systems with the required
type of behavior, which allow physical implementation (say, in
mechanics or electronics). A concrete example we propose is com-
posed as a network of coupled van der Pol oscillators. It may be
thought as a setup universal in some physical sense, due to the fact
that the van der Pol oscillator is associated with a normal form for
the Andronov–Hopf bifurcation.

Back in the forties of the last century, Landau [1], and latter
Hopf [2], suggested that in the course of variation of the control
parameter (Reynolds number) the hydrodynamic turbulence may
appear via the following sequence of events. First, after the sta-
bility loss of a steady flow, a self-oscillatory regime appears that
corresponds to a limit cycle in the phase space of the system. (This
transition is called now the Andronov–Hopf bifurcation.) Then, in
turn, the periodic motion becomes unstable and undergoes the
secondary bifurcation. (In modern terminology it is referred to as
the Neimark–Sacker bifurcation.) Now, the dynamics takes place
on a two-dimensional torus in the phase space of the system, born
as a result of the soft bifurcation transition. Next, this motion un-
dergoes a similar bifurcation, resulting in emergence of one more
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oscillatory component, with its own independent frequency, giving
rise to a three-frequency torus, and so on. As a result of success-
fully growing number of the incommensurable frequencies in the
spectrum of oscillations, the regime is complicating, and finally the
turbulence develops.

An attractive feature of the Landau argumentation is its gener-
ality; in fact it does not appeal to a specific physical nature or to
concrete mathematical equations of the system, and, hence, must
have equal relation to a variety of multi-dimensional and spatially
extended dissipative nonlinear systems.

Later the approach of Landau–Hopf was criticized in a frame of
the concept of Ruelle and Takens [3], who indicated a possibility of
destruction of low-dimensional tori due to arbitrarily small varia-
tions in the system evolution operator accompanied with the onset
of a strange attractor corresponding to chaotic dynamics.

To verify the Ruelle–Takens concept, several researchers per-
formed numerical experiments for model systems and observed
that the low-dimensional tori usually survive under small pertur-
bations, although these tori may be destroyed giving birth to chaos
at sufficiently large magnitude of them [4,5]. Hence, a widespread
conclusion of the universality of the Ruelle–Takens scenario should
be regarded as hasty and ill-founded.

On the other hand, one can criticize the Landau–Hopf picture
in a frame of the concept of synchronization, which is a univer-
sal nonlinear phenomenon [6]. Indeed, in situations of close basic
frequencies for the involved oscillatory components (or of some
combinations of their frequencies), the system may demonstrate
either attractive periodic orbits, or lower dimension attractive res-
onant tori placed on higher-dimensional tori [7–11]. So, resonances
and the possible occurrence of chaos are expected to modify essen-
tially the picture of dynamical regimes and bifurcations; it makes
the Landau–Hopf scenario problematic. In this context it would be
interesting nevertheless to search for specific systems, in which
such a scenario actually could occur, at least, one could observe
a sufficiently large number of initial quasi-periodic bifurcations.
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Constructing an appropriate model based on a set of coupled non-
linear oscillators is the purpose of the present Letter.

When choosing a model to analyze, we take into account sev-
eral important physical aspects. First, the oscillatory modes respon-
sible for the dynamics must be characterized by different degrees
of activation. If we consider, say, an ensemble of coupled van der
Pol oscillators, we must introduce a set of parameters λi control-
ling the negative friction and select them appropriately to ensure
conditions for gradual involving of the modes in the motion in the
course of decrease of dissipation level. (In the context of the hy-
drodynamic problems it just corresponds to increasing Reynolds
number.) Second, all the oscillatory modes have to be separated in
frequency in sufficient degree. Otherwise, essential interaction of
the modes would occur, which can destroy the Landau–Hopf pic-
ture. Third and finally, it is desirable to have a situation, where
the coupled oscillators are arranged in such way that they all are
involved essentially in the interaction; it means that no prefer-
able interaction of each concrete partial oscillator should occur,
say, with spatially close neighbors, or with different number of
the neighbors. In such situation the control parameter of each sin-
gle oscillator λi will regulate a certain quasi-periodic bifurcation.
Otherwise, it might happen that due to the different number of
interacting neighbors the elements with close level of activation
would have essentially different influence on the picture of the
multi-frequency dynamics [11].

Selecting the model, it is crucial to guarantee the occurrence
of the definite type of the bifurcations. For the Landau–Hopf sce-
nario these must be bifurcations of soft (non-catastrophic) birth
of tori of increasing dimension. (In modern literature such bifur-
cations are usually referred to as the quasi-periodic Hopf bifurca-
tions [12,13].) In contrast, resonance mode locking phenomena are
associated with saddle-node bifurcations of tori. Unfortunately, no
simple numerical algorithms for identifying the quasi-periodic bi-
furcations are elaborated. Qualitatively, the types of bifurcations of
quasi-periodic regimes can be identified in computations by means
of analysis of the behavior of the Lyapunov exponents, and this
method will be used henceforth.

2. Network of five coupled self-oscillators

Let us construct a model satisfying the above requirements.
It will be a kind of network of five oscillators with global cou-
pling (that implies coupling of each element with each other). We
suppose the oscillators to have equidistant spectrum of natural fre-
quencies and leave a single frequency parameter Δ in the model,
which controls the mutual mismatch between the oscillators. For
large values of this parameter the oscillators will be desynchro-
nized. We assume that all oscillators are characterized by different
values of the parameters responsible for exceeding the excitation
threshold; it will allow gradual activation of the corresponding
modes in the course of the transition under consideration.

The set of equations for the model system we propose reads
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4

Fig. 1. Chart of Lyapunov exponents for the network of five globally coupled identi-
cal van der Pol oscillators (1), where λ1 = 0.1, λ2 = 0.2, λ3 = 0.3, λ4 = 0.4, λ5 = 0.5.

Here λi are control parameters responsible for excitation of the
partial oscillators, Δ determines the frequency detuning of the os-
cillators, and the frequency of the first oscillator is unit. We set
hereafter λ1 = 0.1, λ2 = 0.2, λ3 = 0.3, λ4 = 0.4, λ5 = 0.5.

Our main illustration will be a Lyapunov chart on the param-
eter plane for frequency detuning Δ and dissipative coupling μ.
To draw this chart we proceed as follows [10,11]. First, select a
point on the parameter plane and compute the spectrum of Lya-
punov exponents Λi of the system (1) there. Then, analyzing the
largest four exponents, take into account their sings and evaluate
a number of zero exponents among them to determine a type of
the dynamical regime (the attractor type) in the system. Namely,
it is determined as (note that one trivial zero exponent is dropped
here)

1. A limit cycle P, if Λ1 < 0, Λ2 < 0, Λ3 < 0, Λ4 < 0,
2. A two-frequency torus T2, if Λ1 = 0, Λ2 < 0, Λ3 < 0, Λ4 < 0,
3. A three-frequency torus T3, if Λ1 = 0, Λ2 = 0, Λ3 < 0, Λ4 < 0,
4. A four-frequency torus T4, if Λ1 = 0, Λ2 = 0, Λ3 = 0, Λ4 < 0,
5. A five-frequency torus T5, if Λ1 = 0, Λ2 = 0, Λ3 = 0, Λ4 = 0,
6. Chaos C, if Λ1 > 0, Λ2 < 0, Λ3 < 0, Λ4 < 0.

Then, the respective pixel on the parameter plane is attributed
with a definite color, in accordance with the detected dynamical
regime. Scanning the entire parameter plane, we get the two-
parameter chart of the dynamical regimes.

Fig. 1 shows the Lyapunov chart obtained for the model (1) on
the parameter plane (Δ,μ). Because of the structure of the system,
the main resonance effects are actually excluded. In particular, no
tongues of resonant tori of different dimensions similar to those
mentioned e.g. in Refs. [10,11] are observed. The only pronounced
tongue corresponding to a resonant two-frequency torus may be
seen in the region Δ � 0.5, between the domains of the five-
frequency tori and of the complete synchronization. Interestingly, it
is immersed in the region of chaos that occurs at small coupling.1

Here the three-frequency, four-frequency, and partially the five-
frequency tori are destroyed, although the chaos is weak. (Typical
values of the positive Lyapunov exponent are of order 10−3–10−2

here.) To some extent, one can say that the Ruelle–Takens sce-
nario occurs in this region. Note additionally that a small island
of chaos takes place surrounded by the area of two-frequency tori,
at the coupling coefficient values about 0.3–0.4. Hence, to give rise
to chaos it is not needed to deal necessarily with destruction of

1 Occurrence of chaos for weak coupling in small networks was noted e.g. in
Ref. [14], and there this effect was named the “phase chaos”.
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three-frequency tori; it appears to be sufficient to have the smaller
dimension.

On the other hand, in the case of large detuning of the oscil-
lators, Δ � 1, with decreasing dissipation parameter μ one can
observe the appearance of all the tori of higher dimension. Bound-
aries of the relevant areas in the asymptotic Δ → ∞ correspond to
the values of the control parameters μ=λi . (For convenience, these
values are indicated by arrows on the right edge of the chart.)
Thus, a decrease in the parameter of dissipative coupling quali-
tatively corresponds to the pattern expected for the Landau–Hopf
scenario.

3. The cascade of quasi-periodic bifurcations

To be confident that we deal here really with a cascade of
quasi-periodic Hopf bifurcations for tori of higher dimensions, we
turn to the graphs of the Lyapunov exponents of the system in
Fig. 2. The exponents are plotted versus the coupling parameter
μ, along the vertical line Δ = 3 in the parameter plane. One can
see that for large values of the coupling parameter, all the ex-
ponents are negative that corresponds to the so-called oscillator
death regime (OD). This mode is typical for coupled oscillators,
and occurs due to the dissipative nature of coupling: at sufficiently

Fig. 2. Graphs of six Lyapunov exponents of the model (1) at the value of the de-
tuning parameter Δ = 3.
strong couplings it dampens the oscillations [6]. The point H corre-
sponds to the Andronov–Hopf bifurcation, and here one exponent
Λ1 becomes equal zero. Then, at the Neimark–Sacker bifurcation
NS, one more exponent Λ2 vanishes. At the point Q H1 the next
exponent Λ3 becomes zero that corresponds to the birth of the
three-dimensional torus. To identify the nature of the bifurcation,
we note that before the bifurcation two exponents (Λ3 and Λ4)
are equal and the values of these two exponents became zero si-
multaneously exactly at the bifurcation point, but only one of them
still vanishes after the bifurcation. This is a characteristic feature
of the soft quasi-periodic Hopf bifurcation [12]. Alternatively, at
the quasi-periodic saddle-node bifurcation the Lyapunov exponents
behave differently – there is one additional vanishing exponent ex-
actly at the bifurcation point and after it [12,13].

Then, exactly in the same manner the remaining exponents be-
have: at the point QH2 a four-dimensional torus appears due to the
secondary quasi-periodic Hopf bifurcation, and at the point QH3 a
five-dimensional torus arises.

Figs. 3 and 4 illustrate the development of the Landau–Hopf
scenario.

Fig. 3 demonstrates evolution of the phase portraits of the os-
cillators with decrease of the dissipation parameter. Each diagram
shows portraits for all five oscillators on their phase planes (the
generalized coordinate versus the generalized velocity), and the
orbits relating to the different oscillators are drawn in different
colors. Fig. 3(a) corresponds to a large enough value of the dis-
sipation parameter μ = 0.45. In this case we have a limit cycle
embedded in the multi-dimensional state space of the system. It is
seen clearly that the oscillations of the fifth oscillator are the most
intense (it is so because the control parameter λ of this oscillator
is the largest). The intensity of the motion for the other oscilla-
tors decreases. In panel (b) corresponding to the three-frequency
torus at μ = 0.25, the trajectories of all oscillators are perturbed
quasi-periodically. However, in panel (c), at μ = 0.05, where the
five-frequency torus occurs, the magnitude of the perturbations
falls again: the small coupling weakly perturbs the orbits.

Fig. 4 shows evolution of the Fourier spectrum of the fifth os-
cillator in the course of development of the Landau–Hopf scenario
in the system (1). One can observe the gradual enrichment of
the spectrum with new spectral lines corresponding to the quasi-
periodic regimes of the increasing dimension. Note meanwhile that
in the panel (e) the degree of complexity of the spectrum visually
rather decreases, although, strictly speaking, the dimension of the
motion grows (the five-dimensional torus). The reason is the sig-
nificant reduction in the level of coupling: at very low coupling
Fig. 3. Evolution of the phase portraits of oscillators of the system (1) with decrease of the dissipation parameter: (a) μ = 0.45, the limit cycle, (b) μ = 0.25, the three-
frequency torus, (c) μ = 0.05, the five-frequency torus. The numbers numerate partial oscillators of the system; the frequency detuning parameter is Δ = 3.
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Fig. 4. The evolution of the Fourier spectrum fifth oscillator in (1) when the dissi-
pation in the system, Δ = 3, (a) μ = 0.45, (b) μ = 0.35, (c) μ = 0.25, (d) μ = 0.15,
(e) μ = 0.05.

Fig. 5. The observed frequencies ωi = 〈ϕ̇i〉 versus the coupling parameter μ for
Δ = 3.

the attractor is perturbed very weakly, and is close to the limit cy-
cle of the autonomous oscillators (panel (c)). Therefore, the height
of the corresponding spectral lines decreases, although in smaller
scales the spectrum remains complex.

Fig. 5 shows a plot for the observed frequencies versus the
coupling parameter for the case Δ = 3. The frequencies are de-
fined as the average rates of variation in time for the phases of
the partial oscillators: ωi = 〈ϕ̇i〉. They are evaluated numerically by
counting a number of crossings of a certain surface in the phase
space for a long time interval. The surfaces selected correspond
to zero values for coordinate variables for the respective oscilla-
tors. From Fig. 5 one can see that in the range 0.4 < μ < 0.5, for
the coupling level large enough, all the frequencies are the same,
approximately equal to the frequency of the most excited fifth os-
cillator. With the decrease of the coupling strength, at μ ≈ 0.4,
a Neimark–Sacker bifurcation occurs; in Fig. 5 one can observe the
appearance of one more frequency, which is close to the natural
frequency of the fourth oscillator. Next, at μ ≈ 0.3, one more new
frequency branches out, which quickly approaches a value corre-
sponding to the natural frequency of the third oscillator. A specific
interesting behavior occurs for the remaining two oscillators. Their
frequencies undergo a sharp change almost simultaneously with
the third oscillator, but in the range 0.2 < μ < 0.3 they follow ap-
proximately the higher frequency of the fourth oscillator. In other
words, the excited mode forces the weakly excited oscillators to
adjust their frequencies to the former one. Then, the fourth fre-
quency branches out, and, finally, at the parameter value μ ≈ 0.1,
the fifth frequency appears.2 As we see, the picture of the “tree
of synchronization” arises in the system manifesting the sequence
of quasi-periodic Hopf bifurcations. This tree is of a rather specific
sort, essentially distinct from that intrinsic to the phase oscillatory
systems of traditional kind (see, for example, Fig. 1.11a in [6], or
Fig. 1 in [15], etc.). In our case, one of the frequencies remains
almost constant in the course of each bifurcation, while a new
component branches out sharply. This is so because of the differ-
ence is the involved types of bifurcations: in Refs. [6,15] these are
the saddle-node bifurcations of invariant tori, while in our case
these are the quasi-periodic Hopf bifurcations.

2 To some extent, anomalous is behavior of the first oscillator frequency in the
parameter range 0.1 < μ < 0.2. The reason is that this oscillator is the least excited
one. For it, the orbit is located entirely nearby the origin (Fig. 3(a)), and in this
range of the coupling parameter the phase is poorly defined.
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3.1. Conclusion

Thus, under certain conditions, e.g. in the case of non-identical
parameters of the active modes and of detuning for the modes
in ensemble of self-oscillating elements, one can observe a se-
quential cascade of soft quasi-periodic bifurcations involving tori
of increasing dimension that can be regarded as occurrence of the
Landau–Hopf scenario. The model outlined in this Letter can be
implemented, say, as an electronic device, which will serve as an
example of a physical system that demonstrates this scenario un-
der variation of the control parameter.
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