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Abstract. Considering a family of three-dimensional oscillators origi-
nating in the field of radio-engineering, the paper describes three dif-
ferent mechanisms of torus formation. Particular emphasis is paid to a
process in which a saddle-node bifurcation eliminates a stable cycle and
leaves the system to find a stationary state between a saddle cycle and
a pair of equilibrium points of unstable focus/stable node and unstable
node/stable focus type.

1 Introduction

Quasiperiodicity is a form of behavior that can be observed in nonlinear dynamic
systems from almost all areas of science and technology [1]. It is also known that this
form of behavior plays a significant role in connection with a broad range of impor-
tant phenomena, including synchronization [2], torus breakdown [3], the transition to
turbulence [4], and the role of KAM-tori in conservative systems [5].
In general terms, quasiperiodicity may be thought of as a form of dynamics that

consists of two (or more) oscillatory components with incommensurate frequencies.
Classical conceptions of the onset of turbulence (Landau theory, 1944), for instance,
involved an infinite cascade of Hopf bifurcations, producing quasiperiodic states of
continuously increasing dimension. During the 1970’s, a series of experiments on the
onset of turbulence in simple geometries failed to support this picture [6]. The exper-
iments showed power spectra characteristic of a first and a second Hopf bifurcation.
However, rather than the peaks associated with a third Hopf bifurcation, a strong
noisy background appeared. At the same time, a remarkable theorem by Newhouse
et al. [7,8] showed that a state of three-dimensional quasiperiodicity is unstable to
small perturbations, suggesting that quasiperiodicity of dimension three or more is
unlikely to be observed in nature.
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Fig. 1. (Color online) Generator circuit.

In spite of these findings, examples of persistent three-dimensional quasiperiodicity
in computer simulations are easy to find in the literature [9–12] and this line of
research continues to be actively pursued, for instance, through the study of so-called
phase synchronized quasiperiodicity [13,14].
The complementary situation of quasiperiodicity in systems with very low di-

mensional phase spaces has attracted considerable less attention. Anishchenko et al.
[15,16] have proposed a new autonomous system of dimension four and have demon-
strated both the appearance of two-frequency dynamics and a sequence of period-
doubling bifurcations of the two-dimensional torus. In particular, these authors have
observed that resonance phenomena do not occur near the points of torus doubling.
Quasiperiodicity is also known to occur in autonomous systems with a phase space

dimension of only three. Particularly interesting in this connection is the demonstra-
tion by Genesio and Ghilardi [17] that several of the well-known chaos-generating
oscillators, e.g., both the Rössler and the Chua systems, generate stable quasiperiod-
icity in certain parameter regions. Quasiperiodicity is also known to arise in systems
of two coupled nearly identical period-doubling oscillators [1], [18]. Here one observes
that the first period-doubling bifurcation in the case of dissipative coupling is replaced
by a torus bifurcation.
The purpose of the present paper is to extend recent work on torus formation

mechanisms in low-dimensional systems initiated by Kuznetsov et al. [19]. We con-
sider a family of three-dimensional systems derived from the field of radio-engineering.
Particular emphasis is given to the formation of a torus through a saddle-node bifur-
cation that eliminates the only stable cycle in the system and leaves the dynamics to
settle down in the presence of a limit cycle (S1) of saddle type and of a pair of equilib-
rium points (E1 and E2) of unstable focus/stable node and of stable focus/unstable
node type.

2 Three-dimensional generator of quasiperiodic oscillations:
Principle of operation

The starting point for the present analysis is the three-dimensional oscillator system

ẍ− (λ+ z + x2 − βx4)ẋ+ ω20x = 0, ż = µ− x2 (1)

recently proposed by Kuznetsov et al. [19]. These equations represent an example
of a minimal system that can exhibit quasiperiodic dynamics. At the same time the
equations are related to formulations that have been used to produce structurally
stable chaos [20,21].
As illustrated in Fig. 1, the two equations of motion can be thought of as describ-

ing a storage element coupled to a threshold element in the form of a generator of
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Fig. 2. (Color online) (a) Chart of dynamical modes in the (ω0, µ) parameter plane. λ = 0
and β = 0.5. (b) Three-dimensional phase portrait of the quasiperiodic attractor that exists
in our coupled oscillator system for λ = 0, β = 0.5, µ = 0.9, and ω0 = 2π. The variable y
represents ẋ. Main regimes on the charts of dynamical modes were denoted by corresponding
palette and letters: E - stable equilibrium point (white); P - periodic regimes [red (dark
grey)]; Q - quasiperiodic regimes [yellow (light grey)]; C- chaotic regimes (black);D - regime
of divergency [blue (grey)].

hard oscillations. The first equation in Eq. (1) describes the threshold element. The
subcritical nature of the Hopf bifurcation produced by this element sets the thres-
holds for different forms of behavior and also introduces hysteresis (memory) into the
system. The degree of subcriticality is controlled by the parameter β. The second
equation in Eq. (1) describes the storage element as a capacitor that is continuously
charged at a rate µ and discharged at a rate proportional to the intensity x2 of the
oscillations generated by the threshold element. At the same time, the term z in the
equation for the threshold element introduces a modulation of the rate of growth
of the oscillations in this element that depends of the charging state of the storage
element. For λ = 0, the temporal behavior of the coupled oscillator system may be
described in terms of the following sequence of four phases that continuously repeats
itself: (A) Starting in a situation where the storage variable z is negative and close to
its minimum, the self-oscillator operates in a regime of stable equilibrium dynamics.
Existing oscillations in x gradually decrease, and recharging of the storage element
occurs at increasing speed. (B) When z becomes positive, the self-oscillator undergoes
a subcritical Hopf bifurcation and, seeded by the remaining small amplitude oscilla-
tions, the amplitude of the oscillations in the threshold element increases quickly.
(C) As the amplitude of the self-oscillations become larger, discharging of the stor-
age element starts to occur more rapidly, and z begins to decrease. (D) Due to the
subcritical nature of the Hopf bifurcation, the amplitude of the x-oscillations remains
large, until z becomes negative. The x-oscillations then again start to decrease in am-
plitude, leading to a slower discharging rate for the storage element. The parameters
ω0 and µ control the frequencies of oscillation and modulation, respectively, and with
appropriate parameter values the system will display quasiperiodicity.
Figure 2(a) presents a chart of dynamical modes for the parameter plane scanned

by the basic operational frequency ω0 for the self-oscillator and the basic charging
rate µ for the storage system. Here, P [red (dark grey)] denotes regimes of periodic
solutions, Q [yellow (light grey)] regimes of quasiperiodic solutions, C (black) regimes
of chaotic solutions, andD [blue (grey)] a regime of divergence. Following Poliashenko
et al. [22], construction of the chart in Fig. 2(a) was based on a calculation of the
three Lyapunov exponents for the coupled oscillator system. The chaotic regime to
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Fig. 3. (Color online) Chart of dynamical modes in the system described by Eq. 2. (a)
Transitions from the stable equilibrium point E to periodic dynamics P and quasiperiodicity
Q in the (ε, λ) parameter plane. k = 0.02, β = 0.056, and ω0 = 2π. (b) Synchronization
tongues and transitions to chaos in the (λ, β) parameter plane. ε = 4, k = 0.02, b = 1, and
ω0 = 2π.

the upper left in the main region of periodic dynamics is reached from both sides
through a cascade of period-doubling bifurcations. The straight line between periodic
and quasiperiodic dynamics for µ = 1 represents a secondary Hopf (or torus-birth)
bifurcation. It should also be noted that parts of the diagram involve coexisting
solutions. Figure 2(b) shows a phase portrait of the quasiperiodic oscillator that
exists for λ = 0, β = 0.5, µ = 0.9, and ω0 = 2π. In this figure, the variable y
denotes ẋ.

3 Low-dimensional quasiperiodicity from a single equilibrium point

It is interesting to note that the coupled oscillator system considered in Sect. 2 did
not exhibit any form of equilibrium. The simplest form of dynamics it can display is a
periodic cycle. Hence, we cannot follow the emergence of the quasiperiodic attractor
from an initially stable equilibrium point. This limitation may be ascribed to the
formulation of the charging relation in Eq. (1). Actually, with a fixed external charging
rate of µ, this equation represents a constant current source rather than the constant
voltage source shown in Fig. 1. To take hand of this problem one can reformulate the
charging equation to read

ẍ− (λ+ z + x2 − βx4)ẋ+ ω20x = 0, ż = b(ε− z)− kẋ2, (2)

where the parameters ε and b can be interpreted as the voltage of the charging battery
and the conductance of the series resistor, respectively. The form of the discharging
rate is maintained with the exception that a scaling factor k has been introduced.
This parameter will typically take values of k = 0.02.
With this reformulation, our coupled oscillator system now has a single equilibrium

point in (x,ẋ,z) = (0, 0, ε). When the system is linearized around this point, the x-
and z-dynamics separate, and we immediately find the eigenvalues L1 = −b for the
z-direction and L2,3 =

1
2 [λ + ε ±

√
(λ+ ε)2 − 4ω20 ] for the (x, ẋ) plane. As long as

b is positive the equilibrium point will be stable in the z-direction. However, the
equilibrium point will display a Hopf bifurcation in the xy-plane for λ+ ε = 0.
Figure 3(a) illustrates the observed bifurcation structure. The region where a sta-

ble equilibrium point exists is denoted E and shown in white. As before, periodic
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Fig. 4. (Color online) Structure of the phase space for the system with limited net charging
rate. The upper equilibrium point is a stable node in the z-direction and an unstable focus
point in the transverse plane. The lower equilibrium point is repelling in the z-direction
and a stable focus in the transverse directions. Note the two-dimensional torus that exists
between the two planes. λ = 0, β = 0.5, c = 1, µ = 0.9, and ω0 = 2π.

regimes are colored red (dark grey) and denoted by a P while the regime of quasi-
periodicity is denoted Q and colored yellow (light grey). The mode distribution was
again determined by calculation of the three Lyapunov exponents. Figure 3(b) shows
the distribution of dynamic modes in the (λ, β) parameter plane. This figure illus-
trates the transition to quasiperiodicity, the appearance of resonance tongues, and the
final development of chaotic dynamics through torus breakdown as the parameter β
that controls the subcriticallity of the Hopf bifurcation in the x-dynamics becomes
sufficiently small.

4 Torus birth process involving two distinct equilibrium points

Aside from the fact that the torus formation process took place in a low-dimensional
phase space and involved a subcritical Hopf bifurcation in the threshold element, the
transition described in Sect. 3 represents a classical torus birth process as it proceeds
through first a Hopf bifurcation and thereafter a secondary Hopf bifurcation.
An alternative modification of the original charging equation could take the form

ẍ− (λ+ z + x2 − βx4)ẋ+ ω20x = 0, ż = (µ− x2)(c2 − z2). (3)

This formulation still allows us to consider the charging process to take place from a
constant current source. However, the net charging rate is now regulated by a limiting
mechanism that protects the system from reaching rates outside of the interval [−c,c].
The coupled oscillator system now displays two different equilibrium points

(x,ẋ,z) = (0,0,±c). Calculation of the eigenvalues for these equilibrium points gives
L1 = ∓2µc, L2,3 = 1

2 [(λ±c)±
√
(λ± c)2 − 4ω20 ], and the conditions for Hopf bifurca-

tions of the two equilibrium points are λ± c = 0, respectively. For positive values of
c, the equilibrium point at z = c is attracting in the z-direction and an unstable focus
point in the transverse directions. With the same condition, the equilibrium point at
z = −c is repelling in the z-direction and an attracting focus point in the transverse
directions.
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Fig. 5. (Color online) Torus destruction as the distance between the two planes in Fig. 4 is
reduced. (a) Fully developed torus with its cross section (b). c = 1 (c) The torus is squeezed
between the two planes and finally collides simultaneously with the two equilibrium points
E1 and E2 and with the saddle cycle S1. (d) Torus cross section immediately before the
destruction. c = 0.249 (e) The torus destruction process is accompanied by the appearance
of the pair of saddle and stable node cycles S2 and N2. c = 0.251. β = 0.5.

An interesting aspect of the modified structure is that it allows a two-
dimensional torus to exist between the planes z = ±c. This is illustrated in
Fig. 4 for λ = 0, β = 0.5, c = 1, µ = 0.9, and ω0 = 2π. Inspection of the figure
shows how the stationary trajectory on the torus spirals upwards with a relatively
small amplitude in its horizontal dynamics and how this amplitude gradually increases
as the trajectory approaches the upper plane with its expanding focus dynamics.
However, while the equilibrium point in the upper plane is attracting in the

z-direction, the associated limit cycle is unstable in this direction. As a result, the tra-
jectory turns around and starts to spiral downwards. In the beginning, the oscillator
amplitude still increases. However, as the trajectory approaches the lower plane with
its stable focus point, the amplitude in the horizontal oscillations again decreases.
Finally, as the trajectory comes close to the focus point in the lower plane, which is
repelling in the z-direction, the trajectory starts to spiral upwards anew.
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Fig. 6. (Color online) Bifurcation diagram for the torus destruction/torus birth process
illustrated in Fig. 5. The horizontal line represents the two equilibrium points at x = 0,
z = ±c, and S1 are the saddle cycle that coexists with the fully developed torus. N2 and S2
is a node and a saddle cycle that exist in the lower plane (z = −c) for small values of c.

5 Scenario of torus birth/destruction for oscillator system with two
equilibrium points

The main dynamics associated with the fully developed torus discussed in Sect. 4 is
repeated in Fig. 5(a) Here, we see the torus itself, the stable limit cycle in the upper
plane z = c, and the spiralling approach to the stable focus point in the lower plane
z = −c. Figure 5(b) shows a crossection of the torus and the associated structures. In
this figure, S1 represents the limit cycle in the upper plane, while E1 and E2 represent
the equilibrium points in the lower and upper planes.
As the distance between the two planes is reduced, the space available for the

two-dimensional torus becomes more and more restricted, and the torus is forced to
approach both the limit cycle in the upper plane and the two equilibrium points. This
is illustrated in Figs. 5 (c) and (d).
Finally, as the lower plane with decreasing values of c is shifted into the regime of

subcritical dynamics for the threshold oscillator, a pair of stable and unstable limit
cycles are formed in this plane around the unstable focus point. The presence of these
limit cycles distorts the flow and, as illustrated in Fig. 5(e), the torus disappears. In
Fig. 5(f), the two new limit cycles are represented by a light blue and a green dot
for the stable and the saddle cycle, N2 and S2 respectively. If the same process is
followed in the opposite direction (i.e., for increasing values of c), one can observe the
birth of the torus as the lower plane (z = −c) moves out of the regime of co-existing
stable and unstable limit cycles for the threshold oscillator. This is illustrated in
Fig. 6.

6 Conclusion

The aim of the present study has been to investigate torus formation in systems
with three dimensional phase spaces. Using concepts from radio-engineering we have
examined three different versions of a coupled oscillator system in which the charg-
ing and discharging dynamics of a relaxation oscillator enter into a feedback with a
self-oscillator that displays a subcritical Hopf bifurcation. With this structure, the
dynamics of the examined systems exhibit two characteristic time scales, a slow time
scale associated with the charging dynamics and a faster time scale associated with
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the self-oscillations. Other examples of the same general structure may be found in
the interaction between the slow calcium dynamics and the faster potassium dynam-
ics of bursting biological cells [23]. From a nonlinear dynamics point of view, the
study has led us to consider torus formation in systems without equilibrium points
as well as with one or two equilibrium points. A particular interesting phenomenon
is the development of quasiperiodicity in systems where the steady state dynamics is
contained by the invariant manifolds of two equilibrium points and a saddle cycle.
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