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Hyperbolic chaos of standing wave patterns generated parametrically by a modulated pump source
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We outline a possibility of hyperbolic chaotic dynamics associated with the expanding circle map for spatial
phases of parametrically excited standing wave patterns. The model system is governed by a one-dimensional
wave equation with nonlinear dissipation. The phenomenon arises due to the pump modulation providing the
alternating excitation of modes with the ratio of characteristic scales 1 : 3.
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The uniformly hyperbolic chaotic attractors such as Smale-
Williams solenoid or Plykin attractor were introduced in
mathematical theory of dynamical systems several decades
ago, and it was expected that over time they may describe
chaos and turbulence in many cases [1–3]. Later it turned
out that chaotic attractors found in applications usually
do not get caught in this class. Physically implementable
systems with hyperbolic chaos have been discovered (or, rather
constructed) only recently [4–7]. The search for new examples
of uniformly hyperbolic chaos relating to mechanics, fluid
dynamics, electronics, and neurodynamics is an interesting
and promising area of research [8–11]. In this framework, it
is important to mention the structural stability intrinsic to the
uniformly chaotic attractors. Practically, it means insensitivity
of generated chaos in respect to variation of parameters, noises,
and interferences. It may be of principal significance for
applications [8].

A particular mechanism for appearance of an attractor of
Smale-Williams type suggested in Ref. [11] is based on time
evolution of Turing patterns in an extended system. There
due to external periodic parameter modulation the long-wave
and short-wave patterns emerge alternately, and the spatial
phases of the wave forms are governed by an expanding circle
map. This type of dynamical behavior was demonstrated in
computations for a nonautonomous model equation of Swift-
Hohenberg type. It was argued that the generated chaos is
robust with respect to variations of parameters and boundary
conditions, and satisfies a formal criterion of hyperbolicity.

In this Rapid Communication we propose a way to organize
an analogous kind of chaotic dynamics in parametric excitation
of standing wave patterns by modulated pumping in a spatially
extended system with nonlinear dissipation. Particularly, the
model we consider may be associated with mechanical
vibrations of a string and regarded as a modification of the
classic Melde experiment [12–14].

A commonly known partial differential wave equation in
the one-dimensional case reads

ρytt − Gyxx = 0. (1)

It is applicable for different physical situations, one of
which relates to mechanical vibrations of a string. Then, the
variable y(x,t) is interpreted as the transversal displacement
of the string at the point x at the time instant t , ρ is the

linear density (mass quantity per unit length), and G is the
strength of longitudinal tension of the string. Under periodic
variation of the coefficient G in time, with appropriately
chosen frequency 2ω0, for given fixed boundary conditions,
parametric oscillations of a certain mode of the standing wave
with frequency ω0 are excited, and this setup is known as the
Melde experiment [12–14].

Let us now consider the coefficient G oscillating according
to the formula

G(t) = G0 [1 + a2(t) sin 2ω0t + a6(t) sin 6ω0t] , (2)

where the coefficients a2,a6 vary in time with some period
T � 2π/ω0 being alternately large or small:

a2(t) = a0
2 sin2 πt

T
, a6(t) = a0

6 cos2 πt
T

. (3)

(Here the non-negative constants a0
2 ,a0

6 are supposed to satisfy
a0

2 + a0
6 < 1.) The coefficient ρ is assumed to depend slightly

on the spatial coordinate x, namely,

ρ(x) = ρ0[1 + ε sin 4k0x], (4)

where k0 = ω0/c0, c0 = √
G0/ρ0, and ε < 1. Additionally,

we add in the equation a term −(α + βy2)yt , where the
parameter α is responsible for the linear, and β for the nonlinear
dissipation. Cubic nonlinearity of dissipative type provides
saturation of the parametric instability at some level of
amplitude, and additionally, generation of the third harmonic
component. (The last will be essential for the operation of the
system as explained below.)

To start, we assume the periodic boundary conditions that
correspond to a ring geometry of the system:

y(x,t) = y(x + L,t), y(0,t) = y(L,t), yx(0,t) = yx(L,t).

(5)

The length L is selected to be equal to an integer number
of wavelengths with the wave number k0: L = 2πN/k0. To
provide decay of uniform perturbations in the system with
the periodic boundary conditions we add artificially in the
equations a linear term −γy.

Normalizing variables and parameters in such a way that
c0 = 1, k0 = ω0, and β = 1, we come to the following partial
differential equation:

(1+ε sin 4k0x)ytt =−(α + y2)yt − γy + [1 + a2(t) sin 2ω0t

+a6(t) sin 6ω0t]yxx. (6)
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Let us discuss a mechanism due to which the chaotic
dynamics occurs in the system.

In a stage of pumping at frequency 2ω0, a standing wave
with frequency ω0 and wave number k0 is parametrically
generated. Disposition of nodes and antinodes is characterized
by some spatial phase θ , i.e., roughly y ∼ cos ω0t sin(k0x +
θ ). The wave amplitude stabilizes at some finite level due
to the nonlinear dissipation. Moreover, because of this cubic
nonlinearity the oscillatory-wave motion will contain the third
harmonic component: y3 ∼ cos 3ω0t sin(3k0x + 3θ ).

When the pumping at frequency 2ω0 finishes, the oscilla-
tions at ω0 decay, but now the pump at frequency 6ω0 starts.
It provides development of the parametric instability with
formation of the standing wave of frequency 3ω0 and wave
number 3k0. Formation of this wave is initiated by a leftover
wave form given by the above expression for y3, so it inherits
the spatial phase 3θ .

In the next resumption of the pumping at 2ω0, the excitation
of the standing wave with frequency ω0 and wave number
k0 restarts. It develops in the presence of the seed pertur-
bation determined by a combination of the wave form y ∼
cos 3ω0t sin(3k0x + 3θ ) remaining from the previous stage,
and of the component εa2 sin 2ω0t sin 4k0x present due to
the spatially nonuniform mass distribution. This combination
is expressed as sin 2ω0t sin 3ω0t sin 4k0x sin(3k0x + 3θ ) =
− 1

4 sin ω0t cos(k0x − 3θ )+ irrelevant terms.
As follows, the new phase value θ ′ is related to the previous

one through the expanding circle map θ ′ = −3θ + const. This
is a map with chaotic dynamics, with positive Lyapunov
exponent 
 = ln 3 ≈ 1.0986.

In accurate formal description of the stroboscopic dynamics
we must deal with some infinite-dimensional map defined in
the state space of the system, which transforms initial wave
forms for y and yt to the wave forms one modulation period
later. Accounting the threefold expansion in respect to the
cyclic variable θ and compression in other directions in the
state space, the attractor of the map in this situation will be
a kind of Smale-Williams solenoid. (More specifically, it is
a type of solenoid with the number of turns tripled at each
next step of its construction, in contrast to that commonly
discussed in textbooks, where the number of turns doubles at
each step [3].)

For the numerical solution of Eq. (6) it is convenient
to use an explicit finite-difference scheme [15] called the
central leapfrog, or “cross” scheme; that is of the second-order
approximation in respect to the space and time steps h and τ .
The ratio of the steps τ/h is taken sufficiently small to ensure
computational stability of the integration algorithm.

It is easy to select values of the parameters in computations
to observe the discussed type of dynamics, say

T = 40, L = 1, ε = 0.2, α = 0.4, γ = 0.03,
(7)

ω0 = 2π, k0 = 2π, a0
2 = 0.4, a0

6 = 0.2.

Figure 1 shows sample diagrams illustrating the space-time
dynamics of the system. Panel (a) shows the evolution of the
envelope of the standing wave patterns on one period of pump
modulation. (After a sufficiently long time interval skipped, the
transients are excluded.) Observe the long-wave pattern devel-
oping from the short-wave one, and the short-wave pattern

FIG. 1. (Color online) Space-time diagrams for the system (6)
with boundary conditions (5) and parameters (7). The origin for
variable t is taken arbitrarily, at time large enough to be sure in
arrival of the system at the attractor.

developing from the long-wave one. Panels (b) and (c) suggest
another representation of the spatiotemporal diagrams. Here
the variable y and the envelope variable Y are indicated by gray
scale depending on the space and time variables x and t . Panel
(b) relates to one period of the pump modulation; there the
high-frequency oscillations constituting the standing wave pat-
tern are visible. Panel (c) represents the spatiotemporal evolu-
tion of the envelope. It gives a possibility to see nonperiodic (in
fact, chaotic) evolution of the standing wave patterns. Observe
that long-wave and short-wave structures appear alternately.
Their spatial phases vary from one period of pump modulation
to another, whereas the phase of oscillations in time is locked
with the phase of the pump. Figure 2 depicts the variable y

and its spatial derivative yx versus time at a fixed spatial point.
Figure 3 shows the attractor in the stroboscopic section in

the projection on the plane of variables y(L/2,t), yx(L/2,t),
and a diagram that gives evidence of the expanding circle
map for the spatial phases. In computations, the spatial
derivative yx is obtained by numerical differentiation using
the spatial grid nodes closest to the middle point x = L/2.
To draw this diagram, the solution of the dynamical equa-
tion (6) is computed on a large number of the modulation
periods, and at each time instant t = tn = nT the spatial
phase is calculated as θn = arg [y(L/2,t) + iyx(L/2,t)/3k0],
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FIG. 2. (Color online) The time dependence for the variable y (a)
and for the coordinate derivative yx (b) at a fixed space point in the
system (6) with boundary conditions (5) and parameters (7).

with subsequent presentation of the data in the coordinates
(θn,θn+1). The plot obviously corresponds to the expanding
circle map consistent with the above mechanism. The branches
are depicted approximately by inclined straight lines, and a
single bypass around the circle for the preimage (variation
of the argument by 2π ) corresponds to the threefold bypass
for the image, in the opposite direction (the phase change
by −6π ).

To calculate the Lyapunov exponents we apply the Benettin
method [16] adapted to the spatially extended system. Equa-
tion (6) is solved numerically together with a set of variational
equations; their number is equal to a number of Lyapunov
exponents we wish to evaluate. After each next period of
pump modulation the procedures of normalization and Gram-
Schmidt orthogonalization for the perturbation vectors are
applied. Lyapunov exponents are obtained as the average rates
of growth or decrease for cumulative sums of logarithms of
norms for the perturbation vectors before the normalization.
According to the calculations, for the stroboscopic map that
describes the state transformation on a pump modulation
period, the first five Lyapunov exponents are


1 = 1.109, 
2 = −1.608, 
3 = −8.053,
(8)


4 = −10.767, 
5 = −18.09.

As expected, the largest Lyapunov exponent is close to ln 3.
Other exponents are negative and responsible for the approach
of phase trajectories to the attractor, which is a kind of Smale-
Williams solenoid. Note that transverse Cantor structure

FIG. 3. Stroboscopic portrait of the attractor, where the points are
plotted at x = L/2, tn = nT (a) and a diagram for spatial phase (b).
Results are shown for the system (6) with boundary conditions (5)
and parameters (7).

FIG. 4. Stroboscopic portrait of the attractor (a) and the diagram
for the spatial phases (b) determined in the middle of the system (9)
with boundary conditions (10) and parameters (11).

characteristic for the solenoid is distinguishable in Fig. 3(a).
An estimate of the attractor dimension according to the
Kaplan-Yorke formula [7] yields D = 1 + 
1/|
2| ≈ 1.69.

If we wish to talk about a possible experimental observation
of the phenomenon, say, in a realistic experiment with paramet-
ric mechanical oscillations of a string, it would be much easier
and more natural to deal with the fixed boundary conditions
(like in the Melde experiment). That corresponds to fixed
values of y at the ends. In contrast to the periodic boundary
conditions, in this case the geometry of the system promotes a
definite spatial phase of the standing waves. At small lengths
L it may impede the above mechanism for generation of the
hyperbolic chaos. At sufficiently large lengths, the tripling
for the spatial phase still can occur in the middle part of the
system, but at the edges some measures should be undertaken
to exclude the effect of wave propagating from there to the
cental region. On the other hand, the length should be taken
not too large, otherwise the description within the concept of
low-dimensional chaos can become inappropriate. Taking into
account this reasoning, one can introduce a smooth spatial
profile for the linear dissipation coefficient to have its value
minimal in the middle of the system and increasing towards
the edges. In this setup, there is no need to supply additional
decay at zero wave number (incompatible with the boundary
conditions), so we set γ = 0.

Now, we turn to the following modification of the
model:

(1 + ε sin 4k0x)ytt = −
(

α0 + α1 cos2 πx

L
+ y2

)
yt

+ [1 + a2(t) sin 2ω0t

+ a6(t) sin 6ω0t]yxx, (9)

with the boundary conditions

y(0,t) = 0, y(L,t) = 0, (10)

and the coefficients a2(t) and a6(t) are assumed to be deter-
mined by (3). Appropriate values of parameters selected in
computations to observe the chaotic dynamics of the desirable
kind are

T = 50, L = 6.5, ε = 0.2, α0 = 0, α1 = 3,
(11)

ω0 = 2π, k0 = 2π, a0
2 = 0.55, a0

6 = 0.3.

Figure 4 shows a portrait of the attractor in the stroboscopic
representation on the plane of variables y(L/2,t), yx(L/2,t)
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and the diagram for the spatial phases (θn,θn+1), which are
determined in the middle of the system at time instants t =
tn = nT .

The first three Lyapunov exponents for the stroboscopic
map at parameters (11) are


1 = 1.042, 
2 = −12.533, 
3 = −16.266. (12)

The largest exponent is close to the value of ln 3, and others are
negative. An estimate of the dimension of the attractor from
the Kaplan-Yorke formula for the stroboscopic map yields
D = 1 + 
1/|
2| ≈ 1.08.

The numerical data are consistent with the assumption that
the same type of the Smale-Williams attractor occurs, like that
in the case of ring geometry discussed in the first part of this
Rapid Communication.

To conclude, we have considered a spatially extended
system manifesting hyperbolic chaotic dynamics. It occurs
due to alternating parametric excitation of standing wave
patterns of different wavelengths interacting in such a way

that their spatial phases undergo expanding transformations
on each next characteristic time period. The present example
is physically more realistic than that reported in Ref. [11] for
Turing patterns in the modified Swift-Hohenberg equation; it
seems easily implementable in an experiment. The ingredients
needed for the mechanism to operate (the alternating patterns
due to the parameter modulation, nonlinearity, and spatial
inhomogeneity) can be found or created in many extended
systems. This opens a way to search for and construct
parametric generation of structurally stable hyperbolic chaos,
e.g., in fluid dynamics (Faraday ripples, convection rolls),
acoustic oscillations, reaction-diffusion systems, etc.
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