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a b s t r a c t

The problem of growing complexity of the dynamics of the coupled phase oscillators as the number of
oscillators in the chain increases is considered. The organization of the parameter space (parameter of the
frequency detuning between the second and the first oscillators versus parameter of dissipative coupling)
is discussed. The regions of complete synchronization, quasi-periodic regimes of different dimensions and
chaos are identified. We discuss transformation of the domains of different dynamics as the number of
oscillators grows. We use themethod of charts of Lyapunov exponents andmodification of the method of
the chart of dynamical regimes to visualize two-frequency regimes of different type. Limits of applicability
of the quasi-harmonic approximation and the features of the dynamics of the original system which are
not described by the approximate phase equations are discussed for the case of three coupled oscillators.

© 2012 Elsevier B.V. All rights reserved.

0. Introduction

In the theory of oscillations and nonlinear dynamics there
is a fundamental problem concerning dynamics of coupled self-
oscillators [1–9]. Coupled oscillators are common in radio-physics,
electronics, biophysics, chemistry and etc. [1–18]. The system of
coupled van der Pol oscillators is probably the simplest one [1–5].
Such models as the Brusselator [10,11] and electronic oscillators
[3,15–18] are also widely investigated.

Note, that two coupled self-oscillators demonstrate a very com-
plex picture of the possible effects and this complexity still con-
tinues to evolve as our understanding becomes deeper. There are
classical effects such as mode-locking of the oscillators with dif-
ferent ratios of the frequencies and two-frequency quasi-periodic
regimes. In the case of dissipative coupling the ‘‘oscillator death’’
is also possible [1,19]. This effect is observed experimentally in the
systemof coupled electronic [20], optical [21], chemical [22,23], bi-
ological [24], etc., oscillators. Quasi-harmonic approximation and
phase equations approach was used in [25] to study the effects of
the combined dissipative and reactive types of coupling, the case of
coupled oscillators with nonidentical control parameters was con-
sidered in [26], while non-isochronism of the oscillators was taken
into account in [27]. Some effects of the synchronization picture
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such as multistability, chaos and non-isochronism were discussed
in [28–33]. In a series of the works such factors as nonlinear cou-
pling [34,35], ‘‘delay coupling’’ [36,37], coupling ‘‘via a bath’’ [38],
etc. were considered too. Bifurcations of different regimes of the
coupled oscillators were investigated in detail in [3,39].

Such a wide field of research is due to a variety of physical
effects and mechanisms, as well as the fact that the dynamics of
a system of coupled oscillators can be discussed at different levels.
For example, we can study directly the dynamics of the original
system, the quasi-harmonic approximation for the slow complex
amplitude and finally the phase approximation equations.

The problem of studying the three-frequency quasi-periodic
dynamics (for example, two driven coupled oscillators or three
coupled oscillators) is more complex and many-sided. In one
of the most fundamental works [40] a system of two coupled
rotation maps is discussed as a model of coupled oscillators. The
frequency detuning parameters plane is analyzed and a variety of
bifurcations observing in coupled maps is discussed. Experimental
studies of three-frequency quasi-periodicity in coupled electronic
oscillators were carried out in [41]. In [42] the authors investigated
a model of two van der Pol oscillators with reactive coupling
excited by an external periodic force. For weak coupling and small
amplitude of external force the dominant three-frequency quasi-
periodicity was observed, and in the case of large coupling chaotic
behavior becomes possible and typical. Three coupled oscillators
were studied theoretically in [43–45], and an experimental study
of electronic devices was described. The authors showed that
saddle–node bifurcation of stable and unstable two-frequency
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tori lead to the three-frequency quasi-periodicity. In [46,47]
the authors investigated three-frequency quasi-periodicity and
transition to chaos in the system of three coupled Lorentz system.
Three coupled van der Pol oscillatorswith reactive type of coupling
were investigated as a model describing biological circadian
rhythms [48]. In [12] the model of three coupled van der Pol
oscillators is applied to the analysis of the problem of synchronous
generation of thee coupled vircators (microwave electronics). The
dynamics of ring of three phase oscillatorswas discussed in [49,50],
and networks of four or more coupled oscillators were discussed
in [51,52]. It should be noted, however, that the works, which
report the observation of four-frequency quasi-periodicity, are
rare. For example, in [53] the authors have presented results of
experimental observation of four-frequency oscillations in driven
semiconductor system with pn-junctions.

Recently new interesting aspects of the problem of synchro-
nization of two oscillators by an external force were revealed
in [53–59]. In a series of papers [53–55] mechanisms of synchro-
nization of resonant limit cycles on a torus were established and
discussed and they appeared to be different from those of synchro-
nization of the ‘‘general case’’ limit cycle. The corresponding ex-
periment is described in [57]. In [56] phase equations describing
the excitation of two coupled self-oscillators by an external force
were obtained and analyzed. The authors have shown that saddle–
node bifurcation of stable and unstable invariant curves solutions
of phase equations accounts for the appearance of three-frequency
oscillations and this corresponds to a similar bifurcation of 2D tori
in the original system. In [58] the authors analyze the same param-
eter plane using the method of the charts of Lyapunov exponents.
This method revealed a large number of resonant two-frequency
quasi-periodic regimes. The authors have also shown that the
synchronization picture is characterized by two qualitatively dif-
ferent situations. These situations correspond to a regime ofmode-
locking of two autonomous coupled oscillators and to a regime of
their beats. Synchronization of three coupled oscillators by an ex-
ternal force was discussed in a similar way in [59].

In the present work we develop the methods used in Refs.
[56–59] for studying forced coupled oscillators and apply them
to the problem of the synchronization phenomena in the chain
of coupled phase oscillators. The number of the oscillators
in the chain will be increased gradually, so we will observe
quasi-periodic regimes of growing dimension. We will vary the
frequency detuning between the second and the first oscillators
and coupling parameter to study relative position of the regions
of complete synchronization, quasi-periodic regimes and chaos
in the parameter plane. Note, that in most works devoted to
chains of oscillators, the authors have usually considered the case
of a large number of the elements in the chain and a specific
(for example linear or random) law of variation of the eigen-
frequencies of the oscillators in the chain [1,60–62]. In this case, the
important aspects of the synchronization picture which occur in
the intermediate case (3–5 elements in the chain) are not revealed.

Another issuewhichwewill discuss by the example of a system
of three coupled oscillators is what features of synchronization
picture will remain valid, when we pass from the system of
phase equations to the original system of coupled van der Pol
oscillators. It turns out, that there are some nontrivial situations,
when the phase approximation is not ‘‘working’’ even for small
values of the control parameters. The interesting regime called
‘‘broad-band two-frequency synchronization’’ can be observed in
the original system. This regime is due to the special position of
the central oscillator since it is the subject of a greater friction from
neighbors. This regime causes a dramatic increase in the range
of frequency detuning over which two-frequency synchronization
occurs. In other words, two-frequency synchronization can in
principle occur for arbitrarily large frequency differences at finite

Fig. 1. Schematic representation of a system of three coupled self-oscillators.

coupling strengths. Moreover, we will show that characteristic
sequences of bifurcations, which are typical for phase models and
are associated with the possibility of two- and three-frequency
quasi-periodicity, may be destroyed. We will also present and
discuss the results for the case of the large values of the control
parameters as well as for the case of non-identical oscillators.

1. Phase dynamics of the three coupled self-oscillators

1.1. Phase equations

Let us consider a system of three dissipatively coupled van der
Pol oscillators (Fig. 1):

ẍ − (λ− x2)ẋ + x + µ(ẋ − ẏ) = 0,

ÿ − (λ− y2)ẏ + (1 +∆1)y + µ(ẏ − ẋ)+ µ(ẏ − ż) = 0,

z̈ − (λ− z2)ż + (1 +∆2)z + µ(ż − ẏ) = 0.

(1)

Here λ is an excitation parameter in each independent oscillator;
∆1 and ∆2 are frequencies detuning between the second and the
first oscillators and the third and the first oscillators, respectively;
µ is the coupling coefficient. The frequency of the first oscillator is
assumed to be normalized by one.

In the case when all parameters in system (1) are small,
it may be analyzed in terms of complex amplitudes (quasi-
harmonic approximation) [1–3,8,9] andwe have obtained the next
‘‘truncated equation’’

2ȧ = a − |a|2a − µ(a − b),

2ḃ = b − |b|2b + i∆1b − µ1(b − a)− µ(b − c).

2ċ = c − |c|2c + i∆2 − µ(c − b).

(2)

Here a(t), b(t) and c(t) are the complex amplitudes of the
oscillators which are varying slowly in comparison with the basic
oscillations with the unit frequency. The parameter λ is eliminated
in these equations via a change of the variables and parameters.

Following the Refs. [1–3], we introduce real amplitudes R, r , v
and phases ψ1,2,3 as a = Reiψ1 , b = reiψ2 , c = veiψ3 and assume
that themotion takes place close to the unperturbed limit cycles of
the oscillators, i.e. R = r = v = 1. Then we obtain the following
phase equations:

ψ̇1 =
µ

2
sin(ψ2 − ψ1),

ψ̇2 =
∆1

2
+
µ

2
sin(ψ1 − ψ2)+

µ

2
sin(ψ3 − ψ2),

ψ̇3 =
∆2

2
+
µ

2
sin(ψ2 − ψ3).

(3)

Let us introduce the relative phases of the oscillators

θ = ψ1 − ψ2, ϕ = ψ2 − ψ3. (4)
Then we rewrite the system (3) in the next form

θ̇ = −
∆1

2
− µ sin θ +

µ

2
sinϕ,

ϕ̇ =
∆1 −∆2

2
− µ sinϕ +

µ

2
sin θ.

(5)

The Eqs. (5) are the phase equations (phase approximation) of
the system (1), that we wanted to obtain.
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Fig. 2. (Color online). Phase portraits of the system (5) for ∆2 = 1.0. (a) ∆1 = 0.5, µ = 0.75, (b) ∆1 = −0.25, µ = 0.75, (c) ∆1 = −0.25, µ = 0.25,
(d)∆1 = −1.25, µ = 0.75, (e)∆1 = 0.75, µ = 0.25, (f)∆1 = −1.0, µ = 0.25.

Fig. 3. (Color online). Regions of the complete synchronization of three phase
oscillators P (red color) and quasi-periodic regimes (white) on the parameter plane
(∆1, µ). The lines correspond to the conditions (7) and (8). SNP1,2 are the lines of
the saddle–node bifurcation. SNF (saddle node fan) is a codimension-2 bifurcation.

1.2. Complete synchronization of the three oscillators and its
destruction

Complete synchronization is the simple regime in the system
(5). It is the regime when the exact phase locking of all oscillators
takes place. A phase portrait plotted on the (θ, ϕ) plane for this
case is presented in Fig. 2(a). One can see that the system (5)
has four equilibrium points. They are stable and unstable nodes
and two saddles. The stable node corresponds to the complete
synchronization.

Let us find bifurcations of the equilibrium points of the system
(5). For this aim we use the next method. (It is easily generalized
to a larger number of oscillators.)

The condition of the exact phase locking of all oscillators is
ψ̇1 = ψ̇2 = ψ̇3. Then θ̇ = 0 and ϕ̇ = 0. In this case the
Eqs. (5) may be solved for the sine of phases:

µ sin θ = −
∆1 +∆2

3
, µ sinϕ =

∆1 − 2∆2

3
. (6)

If sin θ = sinϕ = ±1 then we obtain

µ = ±
∆1 +∆2

3
, (7)

µ = ±
∆1 − 2∆2

3
. (8)

We fix one of the frequency detuning, for example ∆2,
and consider organization of the parameter plane (∆1, µ). The
bifurcation lines given by the conditions (7) and (8) are represented
in Fig. 3. They define two classical synchronization tongues with
the top at the points

∆1 = −∆2 and ∆1 = 2∆2. (9)

These points are denoted by arrows in Fig. 3. The intersection
of these tongues gives the region of complete synchronization
P (red color). There are four equilibrium points (one stable and
three unstable points) of the system (5) in the region P (Fig. 2(a)).
The stable equilibrium corresponded to the regime when all three
oscillators are phase locked.

When we go outside the region P and intersect the left border
indicated as SNP1, four equilibrium points merge in pairs. The
phase portrait for this case is shown in Fig. 2(b). After this
equilibrium points disappear and one can see stable and unstable
invariant curves on the (θ, ϕ) plane (Fig. 2(c)). So, the regime of the
complete synchronization is destroyed with an appearance of the
two-frequency quasi-periodic oscillations. One can see in Fig. 2(c)
that the stable invariant curve corresponds to the oscillations of
the phase θ near the equilibrium state. Because θ is the relative
phase of the first and the second oscillators, it means that the
first and the second oscillators are partially phase locked. If we
intersect the right border of the region P , equilibrium points
merge in pairs but in accordance with another rule (Fig. 2(d)). As
a result, the complete synchronization is also destroyed. In this
case the system (5) demonstrates a two-frequency quasi-periodic
regime when the relative phase ϕ oscillates (Fig. 2(e)). It is a
regime of the partially phase locking of the second and the third
oscillators.

It is easy to see that the destruction of the complete
synchronization corresponds to a special type of the bifurcation,
when there are two saddle–node bifurcations of the equilibrium
points at the same time. Let us explain the mechanism of the
observed behavior. One can see from Eqs. (6), that its solutions
appear in pairs. The phases θ1 and θ2 are the solutions of the first
equation in (6). And the phases ϕ1 and ϕ2 are the solutions for
the second equation in (6). So there are four equilibrium points:
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Fig. 4. (Color online). Chart of the Lyapunov’s exponents for the system of three
coupled phase oscillators (5) for ∆2 = 1. The color palette is given and decrypted
under the picture. The numbers indicate the tongues of the main resonant two-
frequency regimes. These regimes are explained in the description of Fig. 5.

(ϕ1, θ1), (ϕ1, θ2), (ϕ2, θ1), (ϕ2, θ2). These points are placed on the
vertices of the rectangle on the phase plane. And their stable and
unstablemanifolds organize closed heteroclinic contour (Fig. 2(a)).
Let us vary one of the combinations of the parameters in (6), for
example ∆1−2∆2

3 . Then,weobtain, thatwhile θ1 and θ2 are constant,
ϕ1 and ϕ2 move close to each other. (This is shown by arrows in
Fig. 2(b)). If the condition (6) is satisfied, the phases ϕ1 and ϕ2 are
merged. After this bifurcation there are twomanifolds, fromwhich
stable and unstable invariant curves arise.

If we vary another combination in (6), the solutions θ1 and
θ2 will merge. As a result, another pair of the manifolds occurs
(Fig. 2(d)). This situation takes place when we are moving through
the right border (SNP2) of the region P .

The lines SNP1 and SNP2 of the saddle–node bifurcations are
finished in the common point

µc =
∆2

2
, ∆c =

∆2

2
. (10)

We can find this point if we combine the conditions (7) and (8).
In thework [13] the same point is called a saddle node fan. Sowe

indicated this point as SNF in Fig. 3. The SNF point corresponds to
the codimension-2 bifurcation. All four equilibrium points move
towards the one point and disappear there. It means that the
region of the complete synchronization has a threshold value of the
coupling parameter. It was not observed in the case of two coupled
oscillators.

One can see also the saddle–node bifurcation of the invariant
curves if we vary the frequency detuning ∆1. In such a case the
stable and unstable invariant curves move towards each other,
merge and disappear. The two-frequency quasi-periodic regime is
destroyed and the three-frequency quasi-periodic regime arises.
Fig. 2(f) shows the flow of phase trajectories that correspond to
such a three-frequency quasi-periodic regime.

1.3. Different regimes of the three coupled oscillators

In the previous section we have described the simplest regimes
that are observed in the system of three coupled oscillators. Now,

let us analyze the parameter plane of the system (5) in more detail
using numericalmethods. Following Ref. [33]weuse themethod of
the construction of charts of the Lyapunov exponents.We calculate
all Lyapunov exponentsΛ1,Λ2 of the system (5) at each grid point
of the parameter plane (∆1, µ). Then we color the points on the
plane in accordance with values of the Lyapunov exponents to
visualize the domains of the corresponding regimes:

(a) P is the region of the stable equilibrium point (complete phase
locking). The Lyapunov exponents areΛ1 < 0,Λ2 < 0,

(b) T2 is the region of the two-frequency quasi-periodic regime.
The Lyapunov exponents areΛ1 = 0,Λ2 < 0,

(c) T3 is the region of the three-frequency quasi-periodic regime.
The Lyapunov exponents areΛ1 = 0,Λ2 = 0.

Note that the two-frequency quasi-periodic regime T2 corre-
sponds to an attractor in the form of the two-frequency torus in
terms of the original system (1). Accordingly, the three-frequency
torus corresponds to the three-frequency quasi-periodic regime T3.

The chart of the Lyapunov exponents plotted using the method
which was mentioned above is presented in Fig. 4. Firstly, note
that the region P of the complete phase locking of all oscillators
corresponds to the results of the analytical investigation. The
region of the three-frequency quasi-periodic regimes occupies the
lower part of the chart. The domains of the two-frequency quasi-
periodic regimes look like synchronization tongues. The tops of
these tongues lie on the axis∆1.

Different types of the resonant two-frequency regimes corre-
spond to the different tongues. They admit a simple classification.
The invariant curves on the ‘‘phase square’’ (0 < θ < 2π, 0 <
ϕ < 2π) are attractors of the system (5) (Fig. 2). These curves
can be classified using the factor w = p : q. Here p and q are
the numbers of crossings of the invariant curve with the sides of
the ‘‘phase square’’ [34]. At the same time we must take into ac-
count only essential intersections. If the trajectory goes through
the upper boundary outside the ‘‘phase square’’ and enters inside
it through the lower boundary, then p is increased by one. Other-
wise, p is decreased by one. The number q is calculated in a similar
way.

Because the phase space is 2π-periodic with respect to the
variables θ and ϕ, the phase dynamic may be observed on the
torus [34] (see Fig. 5). In this case the two-frequency quasi-
periodic regimes correspond to the closed attracting orbits on the
surface of the torus (Fig. 5(a)). The three-frequency quasi-periodic
regimes correspond to a trajectory which covers the torus densely
(Fig. 5(b)). Factor w = p : q is a winding number in this case. It is
a rational number for the two-frequency regimes and an irrational
number for the three-frequency regimes.

For a more detailed description and classification of the
observed regimes we add the winding number chart of the two-
frequency regimes to the chart of the Lyapunov exponents [35].
For this we compute values of the numbers p and q in each point
on the parameter plane. Then we calculate the winding number
w = p : q. Thereafter, we color points on the parameter plane in
different colors in accordance with the value of numberw = p : q.

Fig. 5. Trajectories on the phase torus. (a) resonant two-frequency regime with winding numberw = 1 : 2, (b) three-frequency regime.



40 Yu.P. Emelianova, et al. / Physica D 244 (2013) 36–49

Fig. 6. (Color online). (a) The winding number chart of the system (5) in the region near of the point SNF. (b) The fragment of the chart from Fig. (a). Winding numbers are
indicated in figure by numbers. P is a regime of the complete synchronization.

Fig. 6 shows the winding number chart plotted for the more
interesting fragment of the parameter plane in the neighborhood
of the point SNF. Thewinding numbers for themain two-frequency
regimes are indicated in Fig. 6. The light gray tone designates
the three-frequency regimes, which are diagnosed as non-periodic
regimes.

The largest tongues of the resonant two-frequency regimes
have winding numbers w = 0 : 1 and w = 1 : 0 (Figs. 5 and
6). These tongues correspond to the regimes of the phase locking
between the first and the second oscillators (Fig. 2(c)) and between
the second and the third oscillators (Fig. 2(e)). One can also see less
wide tongues with the winding numbersw = 1 : 2 andw = 2 : 1.
In this case phases are infinitely increasing.

As one can conclude from Fig. 6(a) the SNF point is an important
example of the codimension-2 bifurcation in the system with the
three-frequency quasi-periodicity. The regimes of the complete
synchronization, partial locking between the pairs of oscillators
(first–second and second–third) and the three-frequency quasi-
periodicity are observed near this point. In turn, there is a set
of regions of the two-frequency regimes inside the region of the
three-frequency quasi-periodicity. The widest regions correspond
to the winding numbers 1:2 and 2:1, 1:3 and 3:1 etc. (Fig. 6(b)).
All these regions have tops at the SNF point. And the borders of
all regions are the lines of the saddle–node bifurcation for the
corresponding invariant curves.

And the existence of these SNF points is an important feature of
the problem of three-frequency quasi-periodicity. Similar points
are discussed in the work [13] for the case of coupled rotation
maps (see Fig. 4.21 in [13]). Similar points are observed also in the
works [31–33] for the problem of the forced synchronization of the
two coupled phase oscillators.

2. Dynamic of the three coupled van der Pol oscillators

2.1. The case of the small value of the control parameters

In Section 1 we have discussed the dynamics of the system (1)
using the phase approximation. Now, let us consider the initial
system (1). In this case, the dynamics of the system depends on the
value of the parameter λ. Let us consider the case of small values
of the parameter λ. Then wemay compare results obtained for the
phasemodel (5) with results obtained for the system (1). The chart
of the Lyapunov exponents for the system (1) for λ = 0.1 and
∆2 = 0.05 is presented in Fig. 7(a). The method of plotting this
chart and the color palette are the same as for the phase model.

One can see that the domain of the complete synchronization
has the threshold on the coupling parameter. The enlarged

fragment of the chart is shown in Fig. 7(a). It is similar to the case of
the phase model (5). At the same time, there are some differences.
Let us discuss these differences in more detail.

At first, there is a region of ‘‘oscillator death’’ (OD). This is a
regionwhere the system (1) has no oscillations because of the large
dissipative coupling [1,19]. This regime is observed when µ > λ
(Fig. 7(a)). Note, that the lineµ = λ is indicated by an arrow in the
Fig. 7.

Thewide bandof the two-frequency quasi-periodicity indicated
as PBS in the parameter range λ/2 < µ < λ is another
new feature (Fig. 7(a)). This regime is possible for arbitrarily
large frequency detuning ∆1. The possibility of an existence
of wide band of synchronization regime is known for two
dissipatively coupled oscillators [61,63,64] and is called broadband
synchronization. However, it was observed in the case of unequal
control parameters (λ1 ≠ λ2). In this case in the region of λ1 <
µ < λ2 only the first oscillator is significantly suppressed due
to the dissipative coupling. As a result, the second oscillator is
dominant. So the system of two coupled oscillators demonstrates
a regime of the broadband synchronization.

An appearance of the similar features in our case seems to
be paradoxical, because all oscillators are identical in control
parameters. The reason is that the coupling perturbs differently
oscillators in the chain (Fig. 1) even if the control parameters
are identical. A qualitative explanation for this effect is presented
below.

Let us ‘‘turn off’’ successively in each equation of the system
(1) the action from the two other oscillators. Physically, it may
be realized if we introduce very large detuning of the frequencies
of the oscillators. In this case, we obtain equations for single
oscillators with smaller (due to the coupling) effective values of
the control parameter λ∗. So we have:

• for the first and the third oscillators control parameter is λ∗
=

(λ− µ),
• for the second oscillator control parameter is λ∗

= (λ− 2µ).

Thus, the condition that the first and the third oscillators are
not damped by the coupling is λ > µ. For the second oscillator,
this condition is λ > 2µ. The specific role of the second oscillator
can be easily understood physically. Indeed, the first and the
third oscillators are affected by only the one neighbor. The second
oscillator is affected by the two neighbors (Fig. 1). That is why
the second oscillator is more damped than the first and the third
oscillators. This fact is connected with the geometry of the chain.
For example, this feature is not observed for the oscillators coupled
in the ring.
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Fig. 7. (Color online). Charts of the Lyapunov’s exponents for the system of three coupled van der Pol oscillators (1). (a) λ = 0.1,∆2 = 0.05, (b) λ = 0.2,∆2 = 0.15. OD is
a region of ‘‘oscillator death’’. PBS is a region of partial broadband synchronization.

Thus, in the band λ/2 < µ < λ the second oscillator is sup-
pressed and easily locked by one of its neighbors. As result, we
observe a regime that can be called a partial broadband synchro-
nization (PBS).

The presence of ‘‘non-identity’’ associated with the unequal
position of the oscillators in the chain may result in that the
condition of applicability of the phase approximation is not
satisfied even if the control parameter is small. For example,
in Fig. 7(b) we present the chart of the Lyapunov exponents
for λ = 0.2 and ∆2 = 0.15. For this value of detuning
∆2 the threshold value of the coupling corresponding to the
complete synchronization is approximately equal to µ = λ/2.
It is a value when the first oscillator is fully suppressed by the
coupling. Accordingly, the phase approximation (which is based
on the approximation of the unperturbed orbit) is no longer
applicable. As a consequence, the characteristic shape of the ‘‘sharp
bend’’ corresponding to the point SNF is not observed. The lower
boundary of the synchronization region looks like a smooth line.

In Fig. 8(a), (b) we present the bifurcation lines corresponding
to Fig. 7. Enlarged fragments of a region near the threshold of
the complete synchronization are shown in the bottom row of
the Fig. 8 The enlarged fragment in Fig. 8(a) demonstrates that
this region has a more complicated structure than the same
region in the phase model. The SNF point is destroyed. Now the
saddle–node bifurcations of the stable and unstable regimes do
not occur simultaneously. They have their own bifurcation lines.
Threshold of the complete synchronization has the form of a
smooth line, not a tip. The cusp point of the unstable regimes
lies in the vicinity of destroyed SNF point. Three unstable limit
cycles merge together in this cusp point. In Fig. 8(b) one can
see that saddle–node bifurcation curve with an increasing of the
amplitude of the force is replaced by Neimark–Sacker bifurcation
curve. The Neimark–Sacker bifurcation curve ends at the point
of the resonance 1:1. This is similar to the case of the classical
synchronization [4]. The boundary of the region of the complete
synchronization becomes smoother in Fig. 8(b). In addition, the
cusp point of unstable cycles is located already so far away that
we cannot longer talk about the picture, which is characteristic for
the SNF point.

2.2. The case of the large values of the control parameters

The case when the control parameter value is small was dis-
cussed above. Now let us consider the case when it is comparable
with the unity. So the phase approximation is obviously inefficient.
In addition, we consider for generality the situation when the con-
trol parameters of the oscillators are not equal:

ẍ −

λ1 − x2


ẋ + x + µ (ẋ − ẏ) = 0,

ÿ −

λ2 − y2


ẏ + (1 +∆1) y + µ (ẏ − ẋ)+ µ (ẏ − ż) = 0,

z̈ −

λ3 − z2


ż + (1 +∆2) z + µ (ż − ẏ) = 0.

(11)

The chart of the Lyapunov exponents and typical phase por-
traits of the system (11) are given in Fig. 9. They are plotted for
λ1 = 1.3, λ2 = 1.9, λ3 = 1.8,∆2 = 1.5. In this case, there is
no leading oscillator inside the main tongue of the complete syn-
chronization. Oscillators have orbitswith approximately equal size
(Fig. 9(a)). However, the phase portraits are different from circles.
It may be associated with the deviation from the quasi-harmonic
approximation.

With the increasing of the coupling parameter µ all oscillators
are suppressed one by one. It is seen also in the organization of the
parameter plane. In our case parameters obeyλ2/2 < λ1 < λ3. The
central, i.e. the second, oscillator is damped firstly. Then the first
oscillator is damped. And only then the third oscillator is damped.
Consequently there are two types of broadband synchronization in
Fig. 9:

• complete broadband synchronization BS at λ1 < µ < λ3,
• partial broadband synchronization PBS at λ2/2 < µ < λ1.

The corresponding boundary values of coupling parameter are
indicated by arrows in Fig. 9.

In the first case, all three oscillators are phase locked. A typical
regime of broadband synchronization occurs due to the dominance
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Fig. 8. (Color online). Bifurcation lines of the system (1). Values of the parameter correspond to the Fig. 7(a) and (b). F is a line of the saddle–node bifurcation. H is a line of
the Hopf bifurcation. C is the cusp point. NS is a line of the Neimark–Sacker bifurcation. R1 is a point of the 1:1 resonance. Line of the saddle–node bifurcation of the unstable
cycle is shown by the dotted line.

of the least excited third oscillator. Other oscillators are suppressed
by the coupling. Accordingly, the sizes of the limit cycles of the first
and the second oscillators are approximately equal, but much less
than the size of the limit cycle of the third oscillator (Fig. 9(b)). (See
the scales on the axes in the phase portraits.)

In turn, in the band λ2/2 < µ < λ1 only the second oscillator is
suppressed by the coupling. In this case, it is easily phase locked by
the first oscillator, which is more excited. As a result, the regime of
the partial broadband synchronization occurs. It corresponds to the
two-frequency quasi-periodicity.

The most significant changes occur in the region of the three-
frequency quasi-periodicity. New tongues of the two-frequency
regimes appear inside it. Phase portraits of the oscillators for the
twomost typical tongues are presented in Fig. 9(c), (d). In this case,
the damping effect is negligible for all three oscillators. Now the
central oscillator is dominant, because it has the largest value of
the control parameter λ2 > λ3 > λ1. At the same time, inside
each of these two tongues there is an oscillator, which is mostly
quasi-periodically perturbed—it is the third oscillator in Fig. 9(c)
and the first oscillator in Fig. 9(d). It corresponds to the fact that the

first and the second oscillators are phase locked in the first case,
and the second and the third oscillators are phase locked in the
second case.

This factmay be explained by introducing the rotation numbers
of the oscillators relative to each other. For this we choose the
Poincare section for each oscillator. The conditions for the Poincare
sections are ẋ = 0, ẏ = 0 and ż = 0 for the first, the second and
the third oscillators, correspondingly. We calculate the number of
returnings of the phase trajectory in each section Nx,Ny,Nz for a
long period of time. Then we define the rotation number of the
first oscillator in relation to the second one as ν1–2 =

Nx
Ny

and the
rotation number of the second oscillator in relation to the third one
as ν2–3 =

Ny
Nz

. (These rotation numbers are not the same as the
factorw introduced in the Section 1.3. The quantityw characterizes
the relative positions of the three main spectral components in
a small neighborhood of the central frequency of the oscillators,
i.e.∆ ≈ 0 in our case in Fig. 9.)

Fig. 10 shows the rotation numbers ν1–2 and ν2–3 as the function
of the frequency detuning∆1 for a fixed level of the coupling. This
level of the coupling is indicated by the white dotted line in Fig. 9.
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Fig. 9. (Color online). Chart of Lyapunov’s exponents for the system of three coupled van der Pol oscillators (11) for λ1 = 1.3, λ2 = 1.9, λ3 = 1.8, ∆2 = 1.5. (a)–(d) are
phase portraits plotted at the corresponding points. CBS is a region of complete broadband synchronization.

One can see the typical plateaus at ν1–2 = 1 : 3 and ν2–3 = 3 :

1. Thus, in this case, we observe multiple synchronization of the
oscillators with a ratio of 1:3 of the main spectral components.
Although the two-frequency torus is a phase portrait of the system,

these regimes have no analogue in the phase approximation. It can
be assumed that the boundaries of the corresponded tongues of the
two-frequency regimes in Fig. 9 are the lines of the saddle–node
bifurcations. (At least in the case of small values of the coupling.)
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Fig. 10. Rotation numbers ν1–2 and ν2–3 versus the frequency detuning∆1 for the
system (11). Values of the parameters are λ1 = 1.3, λ2 = 1.9, λ3 = 1.8,∆2 = 1.5
and µ = 0.32.

3. Phase dynamics of the four phase oscillators

3.1. Phase equations and a condition of the complete synchronization

Let us increase the number of the oscillators and consider the
chain of the four dissipatively coupled van der Pol oscillators:

ẍ − (λ− x2)ẋ + x + µ(ẋ − ẏ) = 0,

ÿ − (λ− y2)ẏ + (1 +∆1)y + µ(ẏ − ẋ)+ µ(ẏ − ż) = 0,

z̈ − (λ− z2)ż + (1 +∆2)z + µ(ż − ẏ)+ µ(ż − ẇ) = 0,

ẅ − (λ− w2)ẇ + (1 +∆3)w + µ(ẇ − ż) = 0.

(12)

Following the Section 1.1, we obtain the equations for the
phases of oscillators:

θ̇ = −
∆1

2
− µ sin θ +

µ

2
sinϕ,

ϕ̇ =
∆1 −∆2

2
+
µ

2
sin θ − µ sinϕ +

µ

2
sinφ,

φ̇ =
∆2 −∆3

2
+
µ

2
sinϕ − µ sinφ.

(13)

Here we use the relative phases of the oscillators:

θ = ψ1 − ψ2, ϕ = ψ2 − ψ3, φ = ψ3 − ψ4. (14)

Let us find the conditions for the complete synchronization of
the system (13), for which we set θ̇ = ϕ̇ = φ̇ = 0. Then we obtain
the following equations from (13):

µ sin θ = −
∆1 +∆2 +∆3

4
,

µ sinϕ =
∆1 −∆2 −∆3

2
,

µ sinφ =
∆1 +∆2 − 3∆3

4
.

(15)

There are eight equilibrium points located at the corners of the
box in the phase space (θ, ϕ, φ), provided all equations in (15)
have solutions. Two of the box faces can move closer with the
variation of any combinations of the parameters in the right side
of (15). As a result, all eight equilibrium points merge in pairs
and simultaneously disappear as soon as one of the values of the
sine function of the phase variables is becomes equal to ±1. The
picture is similar to the phase system (5), but it is embedded in the
three-dimensional phase space. Assuming each sine of the phase
variables in (13) is equal to±1,we obtain the following conditions:

µ = ±
∆1 +∆2 +∆3

4
, (16)

µ = ±
∆1 −∆2 −∆3

2
, (17)

µ = ±
∆1 +∆2 − 3∆3

4
. (18)

The relations (16–18) determine the three tongues in the
parameter plane (∆1, µ). The tops of these tongues are at

∆1 = −∆2 −∆3,

∆1 = ∆2 +∆3,

∆1 = −∆2 + 3∆3.

(19)

Now we shall discuss the saddle–node bifurcations of equilib-
rium points, which are responsible for the destruction of the com-
plete synchronization. As in the case of three coupled oscillators,
we use the parameter plane (∆1, µ) and the relations (16–18). The
conditions (16) and (18) define the four lines in this plane (Fig. 11).
The center of two symmetrical tongues in Fig. 11(a) corresponds
to the point with coordinates∆1 = −∆2 +∆3 and µ = ∆3/2. As
in the case of three coupled oscillators, both tongues do not cor-
respond to the equilibrium regimes at small coupling. However,
now even the overlapping of these two tongues, which is shown in
Fig. 11(a) by light gray, may not correspond to the stable equilib-
rium regimes. It depends on the position of the third tongue (17).

In order to classify the regimes of the system (13) we follow the
relative position of the tongue (17) and the region shown in light
gray in Fig. 11. The ordinates of their tops are ∆1 = −∆2 + ∆3
and ∆1 = ∆2 + ∆3, respectively. Let us consider the change
of the relative position of these regions with the decreasing of
the frequency mismatch ∆2. Fig. 11(a) shows the configuration
occurringwhen the condition∆2 >

∆3
2 is valid. The corresponding

region of the complete synchronization of all four oscillators is
shown by dark gray (the color red online). The regime of complete
synchronization has in this case the threshold value in the coupling
parameter. We find it by combining the relations (16) and (18):

µc =
∆3 +∆2

3
, ∆c =

∆3 +∆2

3
. (20)

The tongues in Fig. 11(a) move closer one by one with a
decreasing of the frequency detuning∆2. The point of intersection
of tongues boundaries moves to another branch when ∆2 <

∆3
2 .

And the situation shown in Fig. 11(b) takes place. The form of
the region of the complete synchronization of the four coupled
oscillators changes in this case. And the threshold value of coupling
no longer depends on∆2. It corresponds to the value

µc =
∆3

2
, ∆c = ∆3 −∆2. (21)

Then the situation is repeated symmetrically. Thus, there are
two possible types of the region of the complete synchronization
of four coupled oscillators. They are shown in Fig. 11(a) and (b).

3.2. Different regimes of the system of four coupled oscillators

Now let us discuss the organization of the parameter space of
four coupled oscillators in detail. Fig. 12(a) shows a chart of the
Lyapunov exponents of the system (13) on the parameter plane
(∆1, µ). The system (13) is characterized already by the three
Lyapunov exponents. Hence, the regimes of the four-frequency
quasi-periodicity and chaos are now possible. Areas of different
regimes in Fig. 12(a) are marked as follows:

(a) P is the region of the stable equilibrium point (i.e. the complete
phase locking). The Lyapunov exponents are Λ1 < 0,Λ2 <
0,Λ3 < 0,

(b) T2 is the region of the two-frequency quasi-periodic regime.
The Lyapunov exponents areΛ1 = 0,Λ2 < 0,Λ3 < 0,

(c) T3 is the region of the three-frequency quasi-periodic regime.
The Lyapunov exponents areΛ1 = 0,Λ2 = 0,Λ3 < 0,

(d) T4 is the region of the four-frequency quasi-periodic regime.
The Lyapunov exponents areΛ1 = 0,Λ2 = 0,Λ3 = 0,
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Fig. 11. (Color online). Different configurations of lines of the saddle–node bifurcations and a region of the complete synchronization P (red color) for the system of four
coupled oscillators (13). µc is the threshold of the complete synchronization.

Fig. 12. (Color online). (a) Chart of the Lyapunov’s exponents of the system of four coupled oscillators (13). (b) The winding number chart for the same system. Values of
the parameters are∆2 = 0.3,∆3 = 1.

(e) C is the region of chaos. The Lyapunov exponents are Λ1 >
0,Λ2 < 0,Λ3 < 0.
The values of other parameters are chosen as ∆1 = 0.3 and

∆2 = 1. In this case we have the most complex configuration of a
region of the complete synchronization (Fig. 11(b)).

In Fig. 12(a) one can see the region of the complete synchro-
nization P . It corresponds to the results of an analytical review pre-
sented in Fig. 11(b). The region of the complete synchronization
adjoins the domains of the two-frequency regimes, except the
points 1, 2, and 3 indicated by arrows. In these points the region
of the complete synchronization has a ‘‘point’’ contacting with the
region of the three-frequency quasi-periodicity.

The tops of the tongues of two-frequency regimes on the axis of
frequency detuning parameter are destroyed. It is unlike the case of
three coupled oscillators (compare Figs. 12 and 4). The region of the
two-frequency quasi-periodicity is surrounded by the region of the
three-frequency regimes located mostly above the line µ ≈ 0.3.
The four-frequency quasi-periodicity is dominant at lower values
of coupling. However, there are two tongues of the three-frequency
regimes at very small values of coupling. The tops of these tongues
are located on the frequency axis. There are also the regions of
chaos for the system of four coupled oscillators. But these regions
are very small and are located on the border of the three- and four-
frequency regimes.

The chart of the winding numbers is added to the chart of
the Lyapunov exponents (Fig. 12(b)). The regions of different two-
frequency resonant regimes are shown on this chart by different

colors. The two-frequency regimes are indicated by the winding
numbersw = p : q : r . Here p, q and r correspond to the numbers
of significant intersections of the invariant curve with the sides of
the phase cube in the space of the relative phases of oscillators
(θ, ϕ, φ).

3.3. Codimension-2 and -3 situations

There are three points of codimension-2 marked by the
numbers 1, 2 and 3 on the Fig. 12(a). The pairs of different lines of
the saddle–node bifurcations of equilibrium points are converged
at these points. The enlarged fragments of Fig. 12(b) in the vicinity
of the points 1 and 2 are shown in Fig. 13.

Firstly, we consider a neighborhood of the point marked in
Fig. 12(a) by the number 1 (Fig. 13(a)). Its structure is similar to
the structure of a neighborhood of SNF point. Indeed, all winding
numbers have the form w = 0 : q : r . It means that the first and
the second oscillators are partially locking. (Their relative phase
oscillates with the limited amplitude and does not increase. Zero
index in the winding number corresponds to this fact.) The system
(13) is clustered as shown in Fig. 14(a). And the remaining two
indices q : r are similar to the winding number in the case of three
coupled oscillators (see Fig. 6). Thus, the dynamics of the system
(13) is similar to the case of three coupled oscillators. And the
sub-system consists from the first and the second partially locked
oscillators.
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Fig. 13. (Color online). Enlarged fragments of the winding numbers chart in regions near the SNF points. (a) Regions near the point indicated in Fig. 12(a) by the number 1.
(b) Regions near the point indicated in Fig. 12(a) by the number 2. Values of the parameters are∆1 = 0.3,∆2 = 1.

Fig. 14. Subdivision of the chain of four oscillators by clusters for the three types
of the phase locked pair of oscillators. Parameters are chosen in such a way that the
system of oscillators is near the point of the saddle–node bifurcation.

It is easy to see from Fig. 13(b) that a similar situation occurs
in the neighborhood of the second SNF point. The second and
the third oscillators are partially locked in this case. It is shown
schematically in Fig. 14(b). In this case the winding numbers are in
the form ofw = p : 0 : r .

A similar situation occurs also in the neighborhood of the third
point of intersection of the saddle–node bifurcations. One can see
from Fig. 12(b) that the winding numbers in this case are in the
form w = p : q : 0. It corresponds to the situation when the
third and the fourth oscillators are partially locked (Fig. 14(c)).
However, the form of the regions is not typical for the SNF point.
Indeed, the presence of the regions with the winding numbers
p : q = 1 : 0 and p : q = 0 : 1 is characteristic to this point
in its small neighborhood. However, these regions are separated
from the point 3 in Fig. 12(c). Correspondingly, the location of the
regions of the resonant regimes with the winding numbers 2:1:0,
3:2:0, 4:3:0, etc., look different.1

Let us return to Fig. 11. It is easy to see that via tuning the
frequencymismatch∆2 we can achieve a situationwhen two ‘‘cor-
ners’’ on Fig. 11(b) merge. Thus, a new situation of codimension-
3 takes place. In this case all three lines (16–18) intersect at one

1 Note that the presented discussion is based on visual estimates of the form
of the charts obtained numerically. The detailed bifurcation analysis of the two-
frequency quasi-periodic regimes is necessary for a more strict justification and
identifying picture details.

Fig. 15. (Color online). The winding number chart for the case of the codimension-
3 bifurcation (i.e. the bifurcation of two SNF points merging) takes place. Values of
the parameters are∆2 = 0.5,∆3 = 1.

point. We can easily obtain the condition of realization of this
codimension-3 bifurcation by the combining the relevant equa-
tions. It is∆2 =

∆3
2 .

The situation before the threshold of this bifurcation corre-
sponds to the two points of SNF type (Fig. 13(a)). Thus, this bifur-
cation can be interpreted as a merging of two such points.

Fig. 15 shows the chart of the winding numbers at the point
of such bifurcation. One can see that the SNF type points are
destroyed. Now the regions of different types converge at one
point. These regions correspond to a partial locking of the first and
the second oscillators (w = 0 : q : r) and also to a partial locking of
the second and the third oscillators (w = p : 0 : r). However, these
two groups are clearly separated by the tongue with the winding
number w = 0 : 0 : 1. This tongue corresponds to the partial
locking of the three oscillators. They are the first, the second and
the third oscillators.

Beyond the threshold of bifurcation when ∆2 > ∆3/2, the set
of tongues with the winding numbers w = p : q : 0 occurs
between the regions 0:1:0 and 1:0:0. These tongues correspond to
a partial locking of the third and the fourth oscillators. Thus, all
the three variants of clustering are presented in the vicinity of the
codimension-3 point, each type of clustering corresponds to the
phase locking of one of the pairs of oscillators.

4. On the road towards multidimensional tori

The discussed above method of the analysis of the phase
equations can be extended to the case of the larger number of
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oscillators. For example, for the five coupled oscillators we have
the following equations instead of equations (13):

θ̇ = −
∆1

2
− µ sin θ +

µ

2
sinϕ,

ϕ̇ =
∆1 −∆2

2
+
µ

2
sin θ − µ sinϕ +

µ

2
sinφ,

φ̇ =
∆2 −∆3

2
+
µ

2
sinϕ − µ sinφ +

µ

2
sinϑ,

ϑ̇ =
∆3 −∆4

2
+
µ

2
sinφ − µ sinϑ.

(22)

Let us set θ̇ = ϕ̇ = φ̇ = ϑ̇ = 0 for the equilibrium points
searching. We use the algorithm described above. We express
sinϕ through sin θ in the first equation and substitute it into
the second equation. Then we express sinφ through sin θ in the
second equation, and so on. As a result, we obtain the following
expressions for the sine of the four phase variables:

µ sin θ = −
∆1 +∆2 +∆3 +∆4

5
,

µ sinϕ =
3∆1 − 2∆2 − 2∆3 − 2∆4

2
,

µ sinφ =
2∆1 + 2∆2 − 3∆3 − 3∆4

5
,

µ sinϑ =
∆1 +∆2 +∆3 − 4∆4

5
.

(23)

This system has 16 equilibrium points at the vertices of a four-
dimensional parallelepiped in the four-dimensional phase space
(θ, ϕ, φ, ϑ) if all the Eq. (23) have solutions. Similarly to the case
of three or four coupled oscillators, the three-dimensional faces
of this parallelepiped may move close one to another with the
variation of the parameter combination in (23). As a result, the
saddle–node bifurcation takes place and all 16 points are merging
in pairs and simultaneously disappear.

The condition sin θ = sinϕ = sinφ = sinϑ = ±1 leads to the
following relations:

µ = ±
∆1 +∆2 +∆3 +∆4

5
,

µ = ±
3∆1 − 2∆2 − 2∆3 − 2∆4

2
,

µ = ±
2∆1 + 2∆2 − 3∆3 − 3∆4

5
,

µ = ±
∆1 +∆2 +∆3 − 4∆4

5
.

(24)

Now there are four tongues on the plane (∆1, µ). Two tongues
have the same smaller slope 1/5. And two tongues have greater
slopes (2/5 and 3/5). It is easy to show that the region of inter-
section of these tongues may have no more than four ‘‘corners’’.
These ‘‘corners’’ correspond to the codimension-2 points. Fig. 16
shows a qualitative picture that illustrates the corresponding
configuration.

The presence of this configuration can be explained as follows.
Organization of the parameter plane obtained by means of the
first and the fourth lines from (24) and supplemented by the third
line from (24) is similar to the case of three coupled oscillators. It
follows from (24) that this region has three ‘‘corners’’, when the
condition∆3 <

∆4
2 is satisfied. In this case the region of complete

synchronization has a threshold in the coupling parameter. It is
determined by the relations

µc =
∆4

2
, ∆c =

3
2
∆4 −∆3 −∆2. (25)

Fig. 16. (Color online). Qualitative picture of the lines of saddle–node bifurcations
and a region P of the complete synchronization (red) for the five coupled oscillators
(22). The numbers correspond to the number of the equation in (24).

This picture must be supplemented by two lines which define
the second tongue (24) (Fig. 16). And if this tongue includes the
point (25), this point determines the threshold of a region of the
complete synchronization.

As an illustration, in Fig. 17 we present a Lyapunov exponents
chart for the case of five oscillators. In this case, a region of five-
frequency quasi-periodicity T5 arises, which is shown in Fig. 17 in
green. For large values of the frequency parameter ∆1 (the right
edge of the Fig. 17(a)) the cascade of saddle–node bifurcations
of quasi-periodic regimes with successively increasing dimension
can be observed. Enlarged fragment of the chart in Fig. 17(b)
illustrates the emergence of chaos at intermediate values of the
coupling parameter. You can also see a system of fan-shaped two-
frequency resonant tongues.

It is easy to see that in addition to the codimension-2 and -3
situations, described in the previous paragraph, we can achieve a
situation of higher codimension-4 by varying the required number
of parameters. In this case three points of codimension-2 are
merging. It takes place under the following condition

∆2 =
∆4

5
, ∆3 =

∆4

2
. (26)

And the coordinates of corresponding point on the plane (∆1,
µ) are

µ =
∆4

2
, ∆1 =

4∆4

5
. (27)

The discussed results may be generalized to any number of
the coupled oscillators. If we have (N + 1) coupled oscillators,
then there are N tongues on the parameter plane of frequency
detuning and coupling. The region of the complete synchronization
is obtained as the overlap of all these tongues. One can see
here an analogy with the well-known interpretation of the
synchronization of chaos. It follows from this interpretation
that synchronization of chaos is due to an intersection of the
synchronization tongues of the unstable periodic orbits built into
the chaotic attractor [1]. The difference is that in the case of multi-
frequency synchronization the number of tongues is finite and
less than the number of coupled oscillators by one. And there
are certain rules of calculating the tops of the tongues and their
boundaries.

The boundary of the region of the complete synchronization is
formed by lines of the saddle–node bifurcations. All 2N equilibrium
points merge in pairs at these lines. This boundary has ‘‘corners’’.
They are codimension-2 points. The curves of the saddle–node
bifurcations of equilibrium states of different types meet in these
points. At the same time the regime when all oscillators are not
phase locked is observed in the regions of small coupling.
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Fig. 17. (Color online). Chart of Lyapunov’s exponents for the system of five coupled phase oscillators and its enlarged fragment,∆2 = 0.2,∆3 = 0.9,∆4 = 2.

Conclusion

The ensembles of a small number (three to five) of oscillators
demonstrate complex behavior, characterized by the coexistence
of domains of full synchronization, quasi-periodicity of different
dimensions, and chaos. We present here a two-parameter picture
corresponding to the plane of the frequency detuning parameter
and the coupling parameter. To do this, Lyapunov’s exponents
charts were constructed, visualizing the domains of quasi-
periodicity of different dimensions, illustrating their relative
positions. This method is effective for the analysis of such systems
and accessible for modern computers, because the bifurcation
analysis of quasi-periodic regime is too complex.

In the system of three coupled phase oscillators the region of
the complete synchronization has a threshold value of coupling
parameter. This threshold is associated with a codimension-2
point. The regions of complete synchronization, of pairwise partial
synchronization and of the three-frequency quasi-periodicity are
merging at this point. The region of the three-frequency quasi-
periodicity involves the system of the tongues of the two-
frequency resonant regimes. These regimes can be classified using
the rational winding numbers. In the phase space there is a
heteroclinic contour in the vicinity of this point. Its destruction is
responsible for the occurring of two-frequency quasi-periodicity.
The contour shrinks to a point directly at the codimension-2 point
(SNF ). These points are typical and important for the phase systems
demonstrating three-frequency quasi-periodicity.

Additional features are revealed when we return from phase
equations to the original system of differential equations. In the
range of values λ/2 < µ < λ the second oscillator in the chain is
suppressed by the coupling. As result, we observe a regime that
can be called two-frequency broadband synchronization. In this
case, the second oscillator is partially locked by its neighbors. And
the phase locking is possible for an arbitrarily large frequency
detuning. The possibility of this effect, which was established
earlier for non-identical systems, is associated with the selected
position of the central oscillator. It is subjected to twofold friction
from its two neighbors.

Mutual arrangement of bifurcation curves responsible for the
destruction of complete synchronization changes significantly
compared to the phase equation case. SNP lines typical for the
phase equations are split into two lines now. The first line
corresponds to the saddle–node bifurcation of the stable cycle. The
second line corresponds to the saddle–node bifurcation of unstable
saddle cycles. The codimension-2 bifurcation point typical for
phase equations is destroyed too. Two different SNP lines converge
to this point. The cusp point arises at the borderline of existence of
unstable cycles in the corresponding region.

In the initial system of three coupled van der Pol oscillators
new tongues of the two-frequency tori arise in the region of the
three-frequency quasi-periodicity for the large values of control
parameters. They correspond to the phase locking of the pairs
of the oscillators with the following ratios of eigen-frequencies:
1:3, 1:5, etc. In a system with non-identical parameters complete
broadband synchronization is possible in the region, where
coupling suppresses two oscillators.

In a system of four coupled phase oscillators the region of
the complete synchronization also borders the region of the
two-frequency regimes except for selected points at which it
has a ‘‘point’’ contact with the region of the three-frequency
quasi-periodicity. These points correspond to the intersection of
two lines of saddle–node bifurcation of equilibrium states of
different types. Their neighborhoodsmay demonstrate three types
of clustering in the system, with one pair of oscillators partially
locked. The last system is, to some extent, similar to a chain of three
oscillators. However, there are some differences in the regions of
the two-frequency regimes in the case of strong coupling.

These differences are most significant near the codimension-
3 point, which correspond to the intersection of three lines of
the saddle–node bifurcation of equilibrium states. This region is
the most representative concerning the variety of types of the
observed regimes. In its neighborhood, at the same time, there are
three types of clustering, corresponding to the phase locking of
the one of the pairs of oscillators. In addition, there are tongues
of two-frequency tori that do not correspond to clustered states.
These tongues are immersed in the region of chaos. The chaos
transforms into the four-frequency quasi-periodic regimes with
the decreasing of the coupling parameter.

In the case of four coupled phase oscillators the four-frequency
quasi-periodic regimes are dominating. However, there are two
narrow tongues of the three-frequency quasi-periodic regimes in
the region of very small coupling.

The above described algorithm of searching for the domain of
complete synchronization in the chain of phase equations can eas-
ily be extended to the case of a larger number of phase oscilla-
tors. The specific type of the saddle–node bifurcation accounts for
the destroying of the regime of complete synchronization. At the
points of this bifurcation curve all the equilibrium points existing
in the system aremerging pairwise and annihilate simultaneously.
N conditions define N tongues in the parameter plane (frequency
detuning—coupling parameter). Region of the complete synchro-
nization corresponds to the domain of overlap of all tongues.
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