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BENCHMARKS OF CUDA-BASED GMRES SOLVER FOR TOEPLITZ AND HANKEL
MATRICES AND APPLICATIONS TO TOPOLOGY OPTIMIZATION OF
PHOTONIC COMPONENTS

Iu. B. Minin,1,2 S. A. Matveev,1,3,4 M. V. Fedorov,1,5

I. E. Zacharov,1 and S. G. Rykovanov1

Generalized Minimal Residual Method (GMRES) was benchmarked on many types of GPUs for solving
linear systems based on dense and sparse matrices. However, there are still no GMRES implementation
benchmarks on Tesla V100 compared to GTX 1080 Ti ones or even for Toeplitz-like matrices. The in-
troduced software consists of a Python module and a C++ library which enable to manage streams for
concurrent computations of separated linear systems on a GPU (and GPUs). The GMRES solver is
parallelized for running on a NVIDIA GPGPU accelerator. The parallelization efficiency is explored
when GMRES is applied to solve (Helmholtz equation) linear systems based on the use of Green’s Func-
tion Integral Equation Method (GFIEM) for computing electric field distribution in the design domain.
The proposed implementation shew the maximal speedup of 55 (t = 0.017 s) and of 125 ( t = 0.77 s)
for 1024⇥1024 (on GTX 1080 Ti) and 8192⇥8192 (on Tesla V100) dense Toeplitz matrices generated
from GFIEM. 1024⇥ 1024 resolution provides accuracy 6.1% that can be acceptable according to test-
ing and demonstrating on gradient computations and topology optimization. We open up possibilities for
robust topology optimization of passive photonic integrated components. That has the advantage, e. g.,
of faster and more accurate designing photonic components on a PC without a supercomputer.

Keywords: GPU, performance, CUDA C++, parallelization, GMRES, Toeplitz-like matrix, Python mod-
ule, Helmholtz equation, topology optimization.

1. Introduction

The paper presents an implementation of novel GMRES benchmarks for Toeplitz-like matrices generated
when resolving the discretized Helmholtz equation running on the Tesla V100 Graphics Processing Unit (GPU).
The well-known discretization techniques of the Helmholtz equation [1] usually generate linear system based on
Toeplitz matrix. E.g., that can be in utilizing uniform grid for electric field distribution. If one exploits FFT
convolution for fast multiplications of Toeplitz-like matrix by vector (matvecs) [2, 3] a solution to linear system
can have computational cost order O(nm log n), where n is a matrix dimension size and nG is the number of
GMRES iterations.6

Popular iterative method for solving linear systems GMRES was introduced by Marchuk and Kuznetsov
in 1968 in a geometric version [10]. The algebraic version of this method was proposed by Saad and Schultz
1 Skoltech Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow,
Russia.
2 Fryazino Branch of Kotel’nikov Institute of Radio-Engineering and Electronics of Russian Academy of Sciences, Fryazino, Moscow,
Russia.
3 Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia.
4 Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia.
5 Sirius University of Science and Technology, Sochi, Krasnodar Krai, Russia.
6 In general, we assume n � nG (large matrix), otherwise the computational cost of the GMRES orthogonalization has to be included into
the complexity order estimation.
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Table 1
Parallel GMRES on Different GPUs: Number of Non-Zero Elements nz̃, Computational Time t,

Maximal Speedup s over Sequential Run on the CPU

GMRES performance on different GPU systems

GPU Data type Data size t
[seconds] s CPU

1⇥GTX 1080 BEM elements 7568 elements 50 90 Core i7-6800K [3]

1⇥Tesla C2070 sparse matrix n ⇡ 2 · 105; nz̃ ⇡ 3 · 106 0.14 21 Xeon E5620 [5]

1⇥Tesla C2070 sparse matrix n ⇡ 2 · 106; nz̃ ⇡ 3 · 107 6 11 Xeon X5570 [6]

1⇥Tesla M2070 sparse matrix n ⇡ 9 · 105; nz̃ ⇡ 2 · 106 0.98 20 Xeon E5 [7]

3⇥Tesla M2090 sparse matrix n ⇡ 6 · 105; nz̃ ⇡ 4 · 106 0.5 31 Xeon E5 [8]

12⇥Tesla C1060 sparse matrix n ⇡ 3.4 · 106; nz̃ ⇡ 4.4 · 108 0.7 201 Xeon E5530 [9]

in 1986. The method is based on solving the least squares problem for Krylov subspace at each step of the itera-
tion. The method is usually provided with the Arnoldi iteration [11, 12].

Execution of GMRES can be accelerated with the use of restarts. That reduces computer memory consumption
and enhances the convergence properties, which in practice often benefits in terms of computational time. GMRES
with restarts is similar to the well-known Anderson acceleration [11, 13].

The main computational cost of GMRES is contained in the matvec problem when linear system is solved for
large matrices because all (small) subsidiary (for GMRES) matrices are of sizes within (m+ 1)⇥ (m+ 1) due to
much less computational times for small matrix arithmetic. Computational cost for dense matrix matvec is O(n2

).

However, matvec problem for Toeplitz-like matrices and mixed matrices can be solved by using the convolution
based on the Fast Fourier Transforms (FFTs). Thus, computational cost of an FFT-based matvec can be O(n logn)

instead of O(n2
) [2, 3].

Computational stability of GMRES depends on its implementation taking into account the round-off errors.
The round-off errors arise in GMRES when creating the orthogonal basis and, in particular, computing the residual
vector (the operation to subtract) or normalizing the orthogonal basis vectors (the operation to divide) [14–16].

GMRES was parallelized on GPUs [3, 5, 6] and CPUs [17–19]. GMRES parallelization studies show imple-
mentation efficiency increase with the characteristic size of matrix (and sometimes with the computational time).
The computational time is determined not only by the computational cost of the method, but by the parallelization
opportunities as well.

Single-GPU and multi-GPU parallel implementations of GMRES are compared in Table 1. While in general
there is a substantial increase in performance for GPU-based tests we propose the implementation can be improved.
In addition, we propose to demonstrate GMRES performance quantities for Tesla V100.

Main problem in these GMRES implementations is time consumption spent on data transfers between RAM
and GPUs. E.g., the data transfer bandwidth is limited on the PCIe 3.0 x16 bus to 12.5 GB/s (as could be measured
by the NVIDIA “bandwidthTest” tool), which is usually significantly lower than computational processing of data.
E.g., computation bandwidth of a (single) Tesla M2050 GPU is ⇡ 18.8 ÷ 105.2 GB/s when computing a matrix
transpose by using its different implementations [20]. Therefore, the time expended on the GPU data transfers can
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be higher than the computational time on the GPU. That means total time spent on data transfer from RAM to GPU
and back is 1.5÷ 8.6 times bigger than time spent on computing on the GPU. With number of processes utilizing
PCIe bus, partial bandwidth decreases that usually leads to decrease in total performance [21, 22].

Data transfer in GMRES is implemented with the memory copy operations [3, 5, 8, 9]. They constitute the
communication latency limiting the speedup. That fact was noticed for the Krylov methods (such as GMRES) [23].
Thus, performance can be improved by ⇡ 50% [24, 25]. Our work proposes copy-free GMRES implementation.

To speed up GMRES, the algebraic operations of the algorithm were studied to evaluate and optimize the most
time-consuming parts of GMRES implementation [6, 8, 26].

GMRES is often used to solve the Helmholtz equation [3, 27]. These solutions can be used, e.g., for the
topology optimization of wave devices [28] and can therefore benefit greatly from parallelization of GMRES (see
CUDA C++ implementations [29, 30]). Thus, we exploited this approach for benchmarks in this paper.

In the previous work, we demonstrated results on topology optimization based on Python GFIEM imple-
mentation [28]. This work is improvement of the previous one via CUDA C++ parallelization of GMRES solver
for GFIEM. The presented examples can be considered as a good benchmark of the implementation of GMRES.
The speedup, run-time and convergence of GMRES are the main metrics to judge the GMRES implementation.

This paper possesses four purposes:

(i) to first represent benchmarks (computational times, speedups) of Tesla V100 GPU (compared to ones of
GTX 1080 Ti ones and of Xeon Gold 6140 CPU) on a GMRES implementation (Section 5);

(ii) to describe distinctive features of first GMRES implementation (Section 3) for solving linear systems
based on Toeplitz-like matrices (Toeplitz, Hankel, circulant or mixed ones) (Section 2);

(iii) to investigate the graph of accuracy of GFIEM (w. r. t. analytical Mie solution to scattering of electromag-
netic waves by a homogeneous cylinder) versus number of nodes (resolution) when solving by means of
proposed GMRES implementation (Sections 4, 5);

and

(iv) to test topology optimization (TO) based on the proposed GFIEM implementation and to find out accept-
able values of accuracy, of number of nodes (resolution) and of wavelength per domain for TO feasibility
(Sections 4, 5).

This research reports the efficiency of the parallelization method applying GMRES to the Helmholtz linear
system based on the use of GFIEM [1] (as a test of the proposed GMRES implementation work) for computing
electric field distribution and for designing new photonic components (Section 6).

Program packages such as Trilinos, PETSc, Ginkgo have GMRES implementations. However, they do not take
into account Toeplitz-like matvec FFT-acceleration opportunities [31–33]. This research does not investigate any
new numerical aspects for GMRES, The research explores GMRES implementation issues. The novel GMRES
implementation is based on known numerical techniques. However, there is still no paper proposed FFT-based
approach to accelerate GMRES computations and tested real program package for solving linear systems based on
Toeplitz-like matrices.

2. Numerical Formulation

A linear system is given by:

Ax = b, (1)

where we assume the square linear system matrix A is nonsingular, otherwise GS-GMRES may break down before
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the method converges [11, 34]. A solution to singular linear system can be obtained by using the breakdown-free
GMRES (BF-GMRES) [34] and range restricted GMRES (RR-GMRES) [35]. Therefore, in the next sections we
have included the information on the proposed Toeplitz-like matvecs.

Toeplitz-LikeMatrix. In this paper, A is Toeplitz-like matrix if that can be obtained from square finite Toeplitz
matrix by changing order of rows [36, 37]. Thus, computational complexity of this matvec coincides with Toeplitz
matvec complexity O(n log n), in contrast to computational complexity of dense matrix matvec equal to O(n2

),

because the most efficient way to multiply Toeplitz matrix by a vector is to use FFTs to matvec [2, 3]. In addition,
computational complexity of operation to reorder matrix can be equal to O�p

n logn
�
[38] that is negligible

compared to O(n log n). Examples of Toeplitz-like matrices are Hankel, Circulant [39].

Mixed Matrix. In this paper, A is mixed matrix if

A = ↵D + βR, (2)

where

D — diagonal matrix,

R — Toeplitz-like matrix,

↵ and β — real nonzero numerals.

3. Program Descriptions

The implementation codes are available on github [40, 41]. They contain sequential and parallel versions of
GMRES implemented in CUDA C++ and Python.

Efficiency Implementation Improvement (Miscellaneous Distinctive Features). Consider two consecutive
iterations of GMRES (listing 1). The subsidiary matrices of the next iteration have one more columns and one more
rows. The previous subsidiary matrices are similar in structure. Furthermore, first Jtotal matrix 3 and Givens rota-
tion matrix 4 are almost identity matrices (four elements of each one are set with two values). Thus, the subsidiary
matrices are filled recursively in structure with GMRES iteration. This is the basis for optimizing the storage and
use of subsidiary matrices. That provides, e.g., less GPU memory utilization. Thus, we take this fact into ac-
count. These opportunities were covered for the first time ever. That is one of the distinctive features of GMRES
implementation in this paper compared to others.

Proposed GMRES Implementation Description. The GMRES implementation (listing 1) starts with allo-
cating memory (the malloc (V, I, r) function) for all support matrices V, I, H, ˜H, J, ˜J, ↵, β, P and residuals
of the algorithm r in a single function call. The function pointer shift (V, I, r) sets pointers of the support ma-
trices by cutting the allocated memory into support matrices. Memory allocation is conducted by three variables:
V (complex array), I (integer array), and r ( float array). In this way the number of memory allocation procedures
was minimized. Same pointer shift (V, I, r) sets the pointers of the elements ˜J0, ˜J1, ˜J2, ˜J3 of the Givens
rotation matrix ˜J. Complex coefficients ↵ ⌘ 1 and β ⌘ 0 are used in cuBLAS matrix multiplications, i.e.,

C = ↵AB + βC ⌘ AB.

Some supporting functions of implementation (listing 1) are listed (listing 2). The function set first Jtotal (H)



442 IU. B. MININ, S. A. MATVEEV, M. V. FEDOROV, I. E. ZACHAROV, AND S. G. RYKOVANOV

Algorithm 1. Gram–Schmidt GMRES (GS-GMRES).

1: procedure GMRES(A, x0, output)
2: malloc(V, I, r)

3: H, ˜H, J, ˜J, ↵, β, ˜J0, ˜J1, ˜J2, ˜J3, P  
4:  pointer shift(V, I)

5: ∆b  di↵ matvec (A, x0, b)

6: r0  k∆bk
7: condition  (tol < r0)

8: V0  ∆b/r0
9: ↵  1 + 0 i

10: β  0 + 0 i

11: if condition = true then
12: memset(H, 0)

13: w  matvec (A, V0)

14: H00  V0w
H : matrix operator H means to conjugate and transpose matrix

15: w  w −H00 V0

16: H10  norm(w)

17: γ  1/H10

18: w  γ w

19: J  I : Initialize Given’s rotation matrix J as identity matrix I

20: J  set first Jtotal(H)

21: condition  check(J, |, r, tol)

22: |  1

23: while | < m & condition = true do
24: w  matvec (A, V|)

25: for ı = 0, | do
26: Hı| = Vıw

H

27: w  w −Hı| Vı

28: H|+1,|  norm(w)

29: γ  1/H|+1, |

30: w  γ w

31: ˜H = ↵J H + β ˜H

32: ˜J  set 4 GRM elements(

˜H)

33: J = ↵ ˜J J + βJ

34: condition  check(J, |, r, tol)

35: |  |+ 1

36: H  ↵J H + βH

37: c`  J`0 8` = 0, ı− 1

38: if | = 1 then
39: c  c/H

40: x0  x0 + V0 c

41: else
42: c  solve small LS(H, c)

43: for ı = 0, |− 1 do
44: x0  x0 + Vı cı

45: free(V, I)
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Algorithm 1 (continued).

46: function check(J, |, r, tol )
47: r|+1  r0 |J|+1, 0|
48: condition  (tol < r|+1)

49: return condition

50: procedure solve small LS(H, c): solving small linear system
51: cgetrf (H, P ) : LU factorization
52: cgetrs (H, P, c) : computing the solution

53: function diag (D )
54: dı  Dıı 8ı = 0, N − 1

55: return d

Algorithm 2. Matrix by vector multiplications (matvecs).

1: function matvec A(A, x)
2: y  Ax

3: return y

4: function di↵ matvec A(A, x, b)
5: y  matvec A(A, x)

6: ∆b  y − b : for all elements of y
7: return ∆b

8: function matvec T(T, x)
9: T e  extend T(T )

10: xe  extend vec(x)

11: ye  IFFT (FFT (T e
) ⇤ FFT (xe)) : operator “⇤” means Kronecker product.

12: return ye

13: function di↵ matvec T(T, x)
14: ye  matvec T(T, x)

15: ∆b  ye − b : for not all elements of ye, i.e., for ı = 0, N − 1, | = 0, N − 1

16: return ∆b

17: function matvec DpT(D, T, x)
18: ye1  matvec T(T, x)

19: y2  diag(D) ⇤ x
20: y  ye1 + y2 : for ı = 0, N − 1, | = 0, N − 1

21: return y

22: function di↵ matvec DpT(D, T, x, b)
23: ye1  matvec T(T, x)

24: y2  diag(D) ⇤ x
25: ∆b  ye1 + y2 − b : for ı = 0, N − 1, | = 0, N − 1

26: return ∆b
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gives (m+ 1)⇥ (m+ 1) sparse matrix (3), where ⇣ = H00/✓, # = H10 /✓, ✓⌘
p

H2
00 +H2

10 :

2

666666666664

⇣ #

−# ⇣ 0
1

1

1

0 . . .
1

3

777777777775

. (3)

Note that the function set 4 GRM elements (

˜H) sets only 4 elements of m ⇥ m Givens rotation matrix ˜J (4):
˜⇣ =

˜H||/˜✓, ˜# =

˜H|+1,|/˜✓, ˜✓ ⌘
q

˜H|| +
˜H|+1,| [39], where ˜J0 = ˜J3 = ˜⇣, ˜J2 = − ˜J1 = ˜# in

2

666666666664

1

. . . 0
1

1

1

0 ˜⇣ ˜#

−˜# ˜⇣

3

777777777775

. (4)

The function free (V, I) releases all memory allocated for the support matrices. Therefore, the number (computa-
tional time) of memory operations was minimized.

Subresults. We measured computational time efficiency for subsidiary matrix computations: matrix-by-
matrix multiplications, AxPY operations, allocating and deallocating blocks of memory on different by using
implementations. E.g., operation BTAT

= CT (computational time can equal 20µs) when applying the trans-
pose flags is (20%) faster than the same implementation by executing AB = C (13µs) with the use of C —
transposing (11µs). Furthermore, residual computation (operation of multiplying residual vector nor by norm of
Givens rotation matrix element. The operation is described in function check in listing 1) by using GPU (25µs) is
(150%) more time-consuming than by using CPU with the migration of data from GPU to CPU and back (10µs).

Subconclusion. We reused the memory by using new implementation by avoiding copying GPU data as
well as matrix transfers between GPU and CPU. In addition, we researched new opportunities to increase total
speedup of the program by (minimizing the computational time of each operation) equating parallel operations of
speedup less than one with sequential operations. We investigated the computational times and speedups of each
operation. Thus, the proposed implementation has additional distinct feature in less time and memory consump-
tions. The total efficiency is proposed to be improved by 15%.

Toeplitz-like Matvec Compared to Dense Matrix Matvec. If Toeplitz-like matrix A is, e.g., of sizes n2⇥n2

(where n may be equal to 2

⌫ , ⌫ 2 N). Number of elements of such a matrix equals N = n2
= 2

4⌫ . Thus,
its surrogate G 2 C(2n−1)⇥(2n−1)

(C(2⌫+1−1)⇥(2⌫+1−1)
) has ˜N = (2n − 1)

2 elements that is ⇡ n2
(⇡ 2

2⌫
)

(for log2(n) � 1) less than for matrix A. That provides advantage of ⇡ n2
(⇡ 2

2⌫
) less memory utilization and
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computational time. Furthermore, the Toeplitz-like matrix surrogate allows to accelerate computations. Moreover,
that can be stored in GPU memory when that is reused many times like in proposed examples 4.

Furthermore, if n can be represented as a⌘, where a is prime number and ⌘ 2N, then FFT can be substituted
by prime-factor (Good–Thomas) algorithm (PFA).

In addition, we reused variables in order to to achieve GMRESmemory utilization reduction of ⇡ − 100

nG + 7

%

(if n � nG ), where number of GMRES iterations nG that is usually much less than characteristic size n of
surrogate matrix. E.g., in this paper, we used n = 1024 and nG = 30; 50. Thus, GPU memory was reduced
by 2.7% and 1.8% (as examples). That is additional distinctive feature of this GMRES implementation.

Sequential Version. Sequential version of GS-GMRES is implemented in a single-threaded MKL C++, i.e.,
all operations of GMRES implementation are sequential and executed one after another [41].

Parallel Version. Parallel version of GS-GMRES is implemented in CUDA C++. This implementation ben-
efits from data parallelism by conducting the matrix operations provided by kernels from CUDA C++ libraries:
cuBLAS, cuFFT and cuSOLVER. The implementation synchronizes itself, it checks the GPU computations for
accuracy after essential operations to provide information about the validity of the results [41].

Python Module. CUDA C++ GMRES implementation is wrapped into Python module by (automatically)
creating CUDA C++ shared object file. Moreover, the implementation provides capability to manage different
streams on a GPU (and GPUs) for parallel computations of separated linear systems based on Toeplitz-like matri-
ces [40].

4. Application Examples

The Helmholtz Equation. We solve the two-dimensional Helmholtz equation for component material distri-
bution (permittivity ") in the medium ("̃) that connects total, incident fields u(r), w(r) ⇢ C :

8
>>>>><

>>>>>:

4u(r) + k20 u(r) = 0, r 2 R2\⌦;

u(r) = 0, r 2 @⌦: Dirichlet boundary c;

lim

|r|!1
(ik0(u− w)(r)− @|r|(u− w)(r))|r| = 0 : Sommerfeld radiation c;

(5)

where 4 is Laplace operator, r is space vector and k0 is a wave number [1]. The Helmholtz equation solution
can be represented for uniform grid of square two-dimensional space ⌦ through two-level Toeplitz matrix H(2) 2
Cn2⇥n2

[1, 28, 42] in linear system matrix A :

Ax = Ix− k20 ("− "̃)H(2)m ⇤ x, (6)

where x 2 Cn2
is electric field distribution for uniform grid r̃ 2 Rn⇥n of ⌦, I is the identity matrix, operator

“⇤” is Kronecker product and m 2 {0; 1}n2

is a binary mask of photonic component material distribution in the
design domains. This is detailed in the previous work [28], where we utilized FFT for multiplication of Toeplitz
matrix H(2) by vector. In addition, number of computations was reduced by using two-level Toeplitz matrix
surrogate G 2 C(2n−1)⇥(2n−1) [2, 28]. Number of ⌦ nodes is equal to n2.
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Fig. 1. GFIEM conversions (on the left) and TO domains of three-focal glass superlens (on the right).

E.g., consider a simple problem when glass ("=2.25) nanotube of infinite length is under only one monochro-
matic polarized plane wave in air ("̃ = 1) in domain ⌦ of sizes 6λ ⇥ 6λ when resolution equals n/6 nodes per
wavelength λ. The nanotube is specified by circular binary mask m (Fig. 1). The challenge is to find the intensity
distribution for this device. We start with using the initial (zero) mask which represents lack of photonic compo-
nent material substance (glass) in its medium (air). The field distribution is well-known for zero mask. By using
this well-known initial field, the field distribution for any binary (non-zero) mask m can be computed using the
Green’s Function Integral Equation Method (GFIEM) [1, 28]. This is shown in Fig. 1; the initial field can be, for
example, sinusoidal [43].

Topology Optimization (TO). Topology optimization (TO) is a mathematical optimization problem that in-
volves designing the shape and changing the structure of the device so that the superposition of the target functions
has a downward trend [44]. TO started being used for photonic components in the last century, for example, for
wavelength-division multiplexers [45]. In addition, it has been proposed for other devices such as the photonic
rings [46]. Attempts were made to accelerate TO for inverse design of photonic crystals (accuracy is high, compu-
tational time is 1–10 hours) [47] as well as for photonic structures using machine learning (computational time is
milliseconds, but accuracy is sufficiently lower) [48]. However, there is no commercially available or widely used
approach that combines the advantages of both methods. We propose a novel approach which has a time of one
TO iteration of the order of 1 minute for measurement accuracy of the order of 1%. Moreover, it will be intended
for optimizing photonic components.

The novelty of this approach consists in applying Green’s Function Integral Equation Method (GFIEM)
(Helmholtz equation solver) for electric field distribution computation. GFIEM is represented by linear system
with core matrix that is Toeplitz-like [1]. That linear system can be solved numerically by using the implemen-
tation of the Generalized Minimal Residuals algorithm (GMRES) [28], which was GPGPU-accelerated in the
C programming language [41] and wrapped in the Python software package [40]. Other accelerated versions of
GMRES were also introduced earlier [9]. However, they do not take into account the opportunity of Toeplitz-like
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Fig. 2. Topology optimization of one-focal glass lens.

matvec FFT-acceleration [2]. Thus, this additional distinctive feature is implemented in the proposed approach and
its software package.

Analysis of world experience shows reducing the cost and increasing the competitiveness of devices and
equipment are primarily associated with the transition from electronic integrated circuits (ICs) to photonic circuits
(such as PICs) as well as with TO application.

The difficulty is caused by investigating an acceptable ratio of the computational time to the achieved accu-
racy. Computations of objective functions and predicting their changes are the most time-expensive. Moreover,
the proposed implementation is based on solving the Helmholtz equation as a linear system based on a Toeplitz-
like matrix. The solution of linear systems can be achieved in a minimal amount of computational time using
GMRES [11]. Furthermore, the most computationally expensive part of it is matrix-vector products, which can be
accelerated using FFT, because the core matrix of the GFIEM method is Toeplitz-like [2].

There is a problem to optimize structures of, e.g., antennas, splitters, Bragg reflectors, and fiber Bragg gratings
under superposition of polarized monochromatic waves in order to increase resolution in subwavelength image
formation [28].

There are: homogeneous device domain (represented by black-to-white binary mask), point sources of resul-
tant wave (that are infinitely far from the device), and target image formation (represented by intensity distributions
in target domains) (e.g., proposed TO domains for three-focal glass superlens is shown in Fig. 1).

The proposed software introduces groundwork for TO approach. This approach promotes a faster development
of photonic component and enables to accelerate a photonic component fabrication, reduce its size as well as the
cost. In general, one of main objectives of the photonic component topology optimization is to find such optimal
shape for device that would give intensity distributions (to be closest to the required ones) in target domains.
For example, target function for superlenses is maximization of intensities in their target domains.

Consider an instrument to compute target functions. Target functions of these nanophotonic systems can be
described, e.g., by Helmholtz equation in the matrix form (6). In structural optimization method, it is essential to
utilize as fast solver as possible in order to compute the target functions. That is why we use fast converging stable
GFIEM to compute intensity distribution. That is the VIE method [1, 28].

Superlens topology optimization results in the considered design domain ⌦ are represented in two quadro-
figures (after 7000 and 32653 topology optimization iterations) (Fig. 2). Each quadro-figure shows target function
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Fig. 3. CUDA GMRES residuals (left) and relative errors (right).

versus optimization iteration number graph, binary mask distribution, intensity distribution and intensity gradi-
ent (w.r.t. mask m) distribution. The current optimization iteration on target function curve is marked in blue.
The white and black pixels of the gradient distribution represent positive and negative mask gradients of intensity
distribution while red pixels indicate approximate zero values of the gradient. The black and white pixels of mask
graphs show absence and presence of photonic component material substance (glass) in its medium (air).

The values of topology optimization target functions are computed as solutions to Helmholtz equation linear
system (for 1024 ⇥ 1024 uniform grid). The target function values increase monotonically (with TO iteration)
as expected. Topology optimization is based on the discrete gradient matrix computation processed as the linear
system (derived in the previous work [28]) computed on the GMRES implementation.

The presented topology optimization method is based on the steepest descent numerical method which adds
substance (e.g., glass) in the neighborhood to the edge of the device where the gradient is maximal and positive,
while it is removing the substance from device pixels where the gradient is minimal and negative.

5. Results

Residuals and Convergence. Figure 3 (left) shows GMRES residuals of the solution to the linear sys-
tem given by FFT-GFIEM implemented in CUDA C++. The numerical experiments were conducted by using
100 program runs. The different curves are drawn for characteristic matrix sizes n = 256 ; 512 ; 1024 ; 2048 ;
4096 ; 8192. The accuracy of the residuals is better than 10%, according to the variation between the 100 program
runs. The absolute value of the residual taken at GMRES iteration 31 varies between 10

−5 and 10

−2. It increases
with the matrix size n while in general the accuracy of the solution is connected to the accuracy of the discretization

scheme O
✓
1

n

◆
.

Relative Errors and Convergence. The figure 3 (right) shows the CUDA C++ FFT-GFIEM solution errors
relative to the analytical solution versus number of GMRES iterations nG for the chosen set of n and number
of program runs. Their standard deviations δe are  10

−5 that is negligible compared to their mean values e.

All curves are flattened after 23 GMRES iterations. In addition, the values of flat parts approximately double with
doubled n and equal to 0.238; 0.117; 0.061; 0.034; 0.021; 0.016 respectively. With characteristic matrix size n,

measurement precisions increases. That fact is connected to the decrease in error values on device boundaries on
the uniform grid.
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Fig. 4. MKL (top) and CUDA (bottom) GMRES computational times.

Computational Times. The figures 4 show computational time of C++ GMRES versus the number of GM-
RES iterations. The variation of the run-time on the CPU between the 100 program runs gives accuracy 1% on
these measurements. The GPU program runs are at least 10 times less time-consuming than the CPU ones (using
the single-threaded MKL) under the same resolution. The GPU curves are marked with the GPU type: “(G)” for
GTX 1080 Ti and “(V)” for Tesla V100 measurements.

Speedups. Figure 5 represents mean values of speedup s versus number of GMRES iterations for GTX 1080
Ti and V100 GPUs. The speedup is decreasing with iteration number due to the relative increase of computations
multiplication computations of matrices of sizes within (m + 1) ⇥ (m + 1), where m ⌧ n. The measurement

error
δs

s
is observed to vary between 6% and 24%.

Speedup for the V100 GPU is approximately by a factor of 2 larger as compared to the GTX 1080Ti for each
matrix size n. This comparison is shown in Fig. 6. A local minimum for both curves is 2048. That is caused by
relatively small computational time growth in MKL version and relatively big computational time growth in CUDA
version with increase n from 1024 point.
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Fig. 5. CUDA GMRES speedup means: “(G)” mark means GTX 1080 Ti results and “(V)” mark means Tesla V100 results.

Fig. 6. CUDA GMRES speedup vs characteristic matrix size.

6. Conclusion

Our CUDA C++ implementation shew the maximal speedup of 55 (t = 0.017 s) and 125 (t = 0.77 s) for
1024⇥1024 (GTX 1080 Ti) and 8192⇥8192 (V100) dense Toeplitz matrices generated from GFIEM (Helmholtz
equation solver) We compared CUDA C++ GMRES implementation to the sequential version of this program rep-
resented by single-threaded MKL C++ GMRES implementation launched on Xeon Gold 6140 CPU. The obtained
speedups are bigger than 32 (number of cores of Xeon Gold 6140 CPU). Therefore, the presented GMRES GPU
implementation is faster than what can be theoretically possible on the CPU alone. Furthermore, the software can
run simultaneous computations of different linear systems by managing separated streams on a GPU (and GPUs).

Linear system matrix size for, e.g., 213 ⇥ 2

13 (i.e., n = 2

26 ) uniform grid was reduced from 2

26 ⇥ 2

26 to
(2

14 − 1) ⇥ (2

14 − 1) in the Toeplitz matrix GMRES implementation that does not store the whole Toeplitz-like
(e.g., Hankel, Circulant) matrix.
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Topology optimization target function values are monotonically increasing (as expected) for 1024 ⇥ 1024

uniform grid. That provides the achieved resolution (170.7 nodes per wavelength) and computed accuracy (6.1%)
of Toeplitz matrix GMRES implementation. We tested this accuracy is acceptable for gradient and target function
computations for topology optimization of photonic components.

The average accuracy in the presented application of GMRES implementation to Helmholtz equation linear
system can be increased by using mesh refinement on the boundaries because the lowest accuracy is noticed to be
on the boundary as is usually expected for a uniform grid. However, the non-uniform grid does not usually provide
GMRES implementation with Toeplitz matrix that increases computational time as there is no capability to use
matvec FFT-acceleration.

For future studies, the proposed software have opportunities for photonic component fabrication and can be
tested by taking into account real usage conditions (noises, elastic vibrations). In addition, that is groundwork for
conducting comparison with other software in terms of computational benchmarks, accuracy, topology optimiza-
tion opportunity (freedom) widths.
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