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Abstract: The physical meaning of  new algorithms for calculating the intensity of  a plane 
homogeneous monochromatic wave of  electromagnetic radiation after passing through 
a multilayer quasi-anisotropic plane-parallel plate is discussed, taking into account the 
thermal radiation of  the layers. The formula connecting the brightness temperature 
obtained by a microwave radiometer and the effective temperature of  the observed 
surface is used in remote sensing of  the Earth's surface [16]. In this paper, we develop a 
mathematical apparatus that allows one to construct algorithms that generalize this formula 
to an arbitrary number of  homogeneous quasi-anisotropic layers of  a plane-parallel plate. 
The solution of  the problem is complicated by the need to take into account coherent and 
incoherent effects in a multilayer plate, as well as by the need to construct an adequate 
method for identifying the waves and energy fluxes under consideration, by the need to 
clarify the concept of  an ideal radiometer that records the observed microwave radiation. 
In order to test new algorithms and obtain the first results, the facts obtained earlier [19] by 
calculating the reflection and transmission coefficients for free ice sheets are reproduced 
using new algorithms for calculating intensities. For an isotropic ice plate 50 cm thick in the 
L-range, there is a "transparency window" in the area of  observation angles of  30 degrees 
for both polarizations simultaneously. The influence of  ice anisotropy on the effects of  
bleaching and anti-bleaching and related to the Brewster angle is considered. Additionally, 
the contribution of  the ice's own radiation to the observed brightness temperature was 
estimated by new methods. The case of  an anisotropic ice plate with the same parameters 
but floating in water is considered. It is shown that a change in the conditions of  reflection 
at the ice-substrate interface can be partially compensated by a change in the ice thickness. 
To control and evaluate the theoretically possible accumulation of  errors in calculations, 
physical quantities are discussed that are analogous to the components of  the Poyting 
vector and remain constant at the boundaries of  the layers. For the considered cases of  ice, 
these values are conserved with high accuracy.
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1. INTRODUCTION

The general theory of  the propagation of  
linear electromagnetic waves [1,2,3] guarantees 
solvability, makes it possible to verify and 
interpret solutions to many problems of  
interference and diffraction. In rather difficult 
cases, it is necessary to use specialized 
approaches. A widely known specialized 
approach to the description of  stationary 
electromagnetic waves in multilayer plane-
parallel plates is the calculation of  the Fresnel 
and Fresnel-Airy coefficients. The use of  these 
coefficients is an effective method for solving a 
number of  problems in optics [1,4,5], acoustics 
[6], ellipsometry [7], X-ray optics [8,9], remote 
sensing of  the environment [10].

While the Fresnel approach is effective, 
it comes with a number of  fairly stringent 
constraints. In the classical Fresnel formulas 
for electromagnetic waves [1,4-6], radiation 
is assumed to be stationary, monochromatic, 
the linear local Maxwell equations are valid. 
Layers of  plane-parallel plates are considered 

transparent, isotropic, with smooth boundaries. 
The incident, reflected and refracted waves are 
coherent and homogeneous. In this case, the 
s- and p-polarization waves do not interact and 
propagate independently. Generalization of  
Fresnel's formulas to media with absorption was 
of  great practical and methodological importance 
at the beginning of  the 20th century [1-10]. If  
in Snell's laws and Fresnel's formulas it is purely 
formal to admit the possibility of  complex 
refractive indices, then one can obtain results that 
are usually correct, but cause certain difficulties 
in interpreting the complex values of  the angles. 
This approach is insufficient for solving Fresnel 
problems in amplified environments [11]. The 
principle of  continuity of  the tangent component 
of  the complex wave vector makes it possible 
to correctly derive the Fresnel formulas for 
transparent and damped media [1]. This principle 
is used in this work. Currently, the development 
of  methods that remove restrictions and adapt 
the application of  Fresnel formulas to various 
ranges of  electromagnetic waves remains 
relevant and promising. The development of  
experimental and theoretical approaches to the 
study of  the propagation of  electromagnetic 
waves in the microwave range was summarized in 
monographs [10,12].

In this work, attempts continue to generalize 
the Fresnel formulas to a limited, but rather wide 
class of  anisotropic media, to quasi-anisotropic 
media. The concept of  p-polarization waves was 
used in [13] to describe some surface and bulk 
electromagnetic waves in ferromagnetic films. The 
films considered were magnetized to saturation, 
i.e. the medium was essentially anisotropic. 
Under what general restrictions on the tensors of  
the magnetic and dielectric permittivity, s- and/
or p-polarization waves propagate independently, 
but the media are anisotropic? The answer to this 
question is considered in [14-16], algorithms are 
obtained that generalize the Fresnel formulas for 
such “quasi-anisotropic media”. The algorithms 
were used for the theoretical study of  multilayer 
plates made of  ferromagnets and dielectrics [15]. 
Further, using the mathematical apparatus of  
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extremely sparse matrices [17,18], the algorithms 
were generalized to the case of  an arbitrary 
number of  layers of  multilayer quasi-anisotropic 
plane-parallel plates, the concept of  a quasi-
anisotropic medium was refined [16]. Anisotropy 
in three orthogonal directions is admissible: 
orthogonal to the surface of  the plate, along the 
projection of  the wave vector of  waves on the 
surface of  the plate and along the surface of  the 
plate, but orthogonal to the wave vector. For a 
multilayer plate, a system of  linear equations was 
automatically formed, its solutions were Fresnel-
Airy coefficients. The results of  [16] were used 
in [19] for a theoretical study of  the reflection 
and transmission coefficients of  electromagnetic 
waves in the L-band (1-2 GHz) in free plates of  
isotropic and anisotropic ice. For the L-band, 
there are commercially available domestic [23,24] 
and foreign [25] radiometers used to monitor the 
Earth's ice cover using aircraft. It is known that 
the Fresnel approach is adequate for describing 
the propagation of  L-band and lower frequency 
electromagnetic waves in ice. For higher 
frequencies, it is necessary to study and apply more 
complex theoretical models [26]. Therefore, the 
theoretical study of  the properties of  isotropic 
and anisotropic ice in the L-range and the testing 
of  new theoretical approaches and algorithms 
seem promising for the subsequent development 
of  the theory for higher frequencies.

Formula

ya efT Tκ=  (1)

is the theoretical basis for many works on remote 
sensing of  the Earth's surface using aircraft 
[10]. This formula connects Tef the effective 
surface temperature of  the observed object 
and Tya the brightness temperature observed 
with a microwave radiometer. The coefficient 
is calculated based on the Fresnel formulas, it 
depends on the polarization, viewing angle and 
frequency. It is possible to interpret the coefficient 
as the transmittance of  microwave radiation by the 
surface of  the body. In this case, the temperature 
in (1) can be interpreted as the radiation intensity 
in the microwave range, written in units of  the 
Kelvin temperature. Generalizations of  formula 

(1) to the cases of  isotropic plates of  several layers 
are known [10]. The possibility of  generalizing 
formula (1) to multilayer quasi-anisotropic plates 
seems promising from the point of  view of  
application in the field of  remote sensing of  both 
the earth's surface and other objects. In [19], 
the reflection and transmission coefficients of  
anisotropic free ice sheets at various thicknesses 
were discussed. The calculations were greatly 
simplified by the assumption that the plane-
parallel plate is free, i.e. is in the air (vacuum). 
The use of  the results for free wafers is limited 
to laboratory applications. It seemed promising 
to develop the ability to calculate the Fresnel and 
Fresnel-Airy coefficients for multilayer quasi-
anisotropic plates for the cases where the sources 
of  plane waves are located inside the layers of  the 
plate. In addition, the question arose about the 
influence of  the intrinsic thermal radio emission 
of  the ice plate on the observed brightness 
temperature. The problems of  calculating and 
observing the intrinsic thermal radiation of  a 
multilayer plate are relevant for use in remote 
sensing, for example, on an ice plate floating in 
water. In [12], the assessment of  the intensity of  
intrinsic thermal radiation of  semi-infinite space 
in the microwave range was made on the basis 
of  the Rayleigh-Jeans law and Kirchhoff's law 
for radiation. It was assumed that the radiation 
sources are completely incoherent. Based on 
the same laws, the formula for the intensity of  
intrinsic thermal radiation and the attenuation 
of  the radiation intensity by a plate of  finite 
thickness was discussed in [20].

In formula (1), one can see the following 
logical subtlety. In this formula, at the beginning,  
the total intensity of  incoherent waves of  thermal 
radiation of  the half-space is estimated. This sum 
is then replaced by an “equivalent wave” with the 
same intensity. “Equivalent wave” is considered 
as a plane wave source in Fresnel formulas. The 
amplitude of  the observed radiation is calculated 
using Fresnel's formulas, and at the end Tya the 
intensity is estimated, expressed in units of  
temperature. This approach is convenient, it 
would be desirable to apply it for multilayer 
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media, but it must be justified. Appendix contains 
mathematical calculations showing that, provided 
that thermal radiation sources are completely 
incoherent, then the “equivalent wave” approach 
is correct.

Microwave radiometers have certain 
limitations related to the properties of  their 
antennas. It was shown in [19, 21] that with 
an ice thickness of  4.2 m, the presence of  a 2 
MHz radiometer passband in the L-band leads 
to a complete smoothing of  the inhomogeneity 
in the polarization-angular dependences of  
the reflection and transmission coefficients. 
With an ice thickness of  50 cm, the presence 
of  the radiometer passband can be neglected 
at observation angles less than 70 degrees and 
the radiometer can be considered ideal. The 
question arises: what other constraints should 
an ideal radiometer satisfy and how to use the 
idea of  an ideal radiometer to take into account 
the bandwidth of  real radiometers? In this work, 
the radiometer is considered ideal, i.e. we neglect 
its bandwidth. In addition, it is assumed that an 
ideal radiometer detects separately the s- and 
p-polarization waves and these plane waves are 
homogeneous. An ideal radiometer does not 
register inhomogeneous plane waves. In the 
considered range of  parameters, these properties 
of  an ideal radiometer are close to the properties 
of  real radiometers used in [23-25]

The new algorithms being developed are very 
complex and it was supposed to check them 
by exact reproduction of  the rather interesting 
result obtained earlier in [19] before studying 
more complex cases. In accordance with the 
results of  [19], at an isotropic ice thickness of  50 
cm and a temperature near 0°C, there should be 
a transparency band at an angle of  incidence of  
30 degrees, for both polarizations simultaneously. 
The presence of  ice anisotropy modifies the 
effects of  bleaching and anti-bleaching near this 
transparency band. The question arose about 
assessing the influence of  the intrinsic thermal 
radiation of  the plate. In addition, the question 
also arises of  controlling the theoretically 
possible accumulation of  errors in calculations. 

In [12], the component of  the Poynting vector, 
averaged over the oscillation period, orthogonal 
to the plate surface, is considered. It allows you 
to control the balance of  energy flow between 
the layers. The energy fluxes along the surface of  
the layers are also not arbitrary; they must also 
obey certain balance relations. It is also useful to 
refine these relationships and use them to control 
calculations.

The purpose of  this article is to discuss the 
physical meaning of  new algorithms that take into 
account the intrinsic thermal microwave radiation 
of  the layers and make it possible to calculate the 
intensity of  a plane uniform monochromatic wave 
passing through a multilayer plane-parallel plate 
consisting of  quasi-anisotropic layers with smooth 
plane boundaries.

This article discusses the registration of  
radiation with an ideal radiometer, which has a 
number of  special properties that simplify the 
task. This radiometer is located in a homogeneous 
isotropic medium (in vacuum) outside the plate. 
The radiometer measures the intensities of  
monochromatic homogeneous waves and the 
directions of  their propagation, and separately for 
s- and p-polarization waves.

The problem is to generalize formula (1). 
It includes the calculation of  the Fresnel-Airy 
coefficients for plane-parallel plates made 
of  quasi-anisotropic media. The assumption 
is made that the heat sources are completely 
incoherent. It is also possible to consider 
external incoherent sources of  plane waves 
(incoherent with each other and with heat 
sources).

2. MATERIALS AND METHODS

2.1. Ideal radiometer and connected subsets 
of coherent waves

When deriving the Fresnel formulas, a plane 
monochromatic wave of  s- or p-polarization 
of  a given amplitude is considered, incident 
on a smooth plane interface between media. 
Wave vectors and complex amplitudes of  the 
reflected and refracted waves are calculated [1-7]. 
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It is assumed that s- and p-polarization waves 
propagate independently From the point of  view 
of  remote sensing problems, somewhat different 
problems are of  interest, when the wave vector 
and the amplitude of  the observed refracted wave 
are given, and the parameters of  the incident wave 
are calculated [10]. Such problems are solvable 
using Fresnel coefficients. In a multilayer plate, 
the Fresnel-Airy coefficients play the same role. 
Coherent reflected and refracted waves, generated 
by one incident wave, form a connected set with 
the same property. If  the complex amplitude 
and wave vector of  one of  the waves are known, 
then the parameters of  all other waves can be 
calculated

In this paper, only an ideal radiometer is 
considered, which has a number of  special 
properties that determine the properties of  
waves in the mathematical model. An ideal 
radiometer is located in a homogeneous 
isotropic medium (in a vacuum). The radiometer 
measures the intensities of  monochromatic 
homogeneous waves and the directions of  their 
propagation, separately for s- and p-polarization 
waves. It follows from these properties of  an 
ideal radiometer that in a mathematical model 
one can restrict oneself  to considering waves 
with the following properties. First, these are 
monochromatic waves of  a given frequency. 
Second, all considered waves must have the same 
real projection of  the complex wave vector onto 
the surface of  the plate. The second property 
follows from the principle of  continuity of  
the wave vector component, tangent to the 
surface of  a plane-parallel multilayer plate. The 
imaginary part of  this projection must be zero, 
i.e. the complex wave amplitude is constant 
parallel to the plate surface. This property 
is fulfilled provided that an ideal radiometer 
records homogeneous waves in an isotropic 
homogeneous medium.

Let's choose a coordinate system 
corresponding to the properties of  the waves. 
Let the direction of  the coordinate axis “y” 
coincide with the projection of  the wave vector 
onto the surface of  the plate. Let the direction 

of  the “x” axis be normal to the surface of  the 
multilayer plate under consideration. Then, in 
quasi-anisotropic media, the "s"-component of  
the wave vector should be equal to zero [14]. For 
possible projections of  the complex wave vector 
of  such waves on the x-axis, from Maxwell's 
equations for a given homogeneous layer, a 
quadratic equation is obtained. One solution to 
this equation corresponds to a refracted wave, 
the second – to a reflected wave in the same layer. 
Since there are only two solutions, the wave vector 
of  a coherent incident wave from a wave source 
in this layer must coincide with the direction of  
the wave vector of  the incident or reflected wave 
in this layer.

For each of  the boundaries of  the layers in a 
multilayer plate, it is possible to write down the 
conditions for the continuity of  the tangential 
surfaces of  the layers of  the plate of  the electric 
and magnetic field components. As a result, for a 
multilayer plate, separately for s- and p-polarization 
waves, it turns out to be possible to automatically 
form a nondegenerate, well-defined system 
of  linear equations connecting the complex 
amplitudes of  reflected and refracted waves with 
the complex amplitudes of  wave sources. The 
solutions of  this system of  equations are the 
Fresnel-Airy coefficients for a multilayer plate, 
this was done in [16].

The concept of  an ideal radiometer is 
implicitly used in measurements. All waves in 
a multilayer quasi-anisotropic plate are divided 
into disjoint connected subsets determined 
by the common value of  ky, frequency and 
polarization. From each measurement, the 
properties of  the associated waves in each layer 
can be calculated. Theoretically, by increasing 
the number of  measurements at different 
frequencies, ky and polarizations, it is possible, 
in the limit, to obtain a complete picture of  the 
properties of  all waves of  a given range. In this 
work, the radiometer is considered ideal. The 
properties of  the mathematical model and issues 
related to the imperfection of  the radiometer 
are discussed in more detail in the Discussion 
of  Results section.
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2.2. Squ- specification of waves in a multilayer 
quasi-anisotropic plate

In quasi-anisotropic media, s- and p-polarization 
waves do not interact [14-16]. In the formulas 
presented below, it is assumed that to take 
into account the change in polarization, it is 
sufficient to change the sign of  the parameter 
s. The possibility of  formally transforming 
formulas for s-polarization into formulas for 
p-polarization was described in [4] for isotropic 
plates. In [16], the realization of  this possibility 
for quasi-anisotropic media was substantiated by 
a substitution that preserves Maxwell's equations 
for a medium without external currents and 
charges. The wave polarization will be identified 
by the parameter s = 1 for s-polarization, s = −1 
for p-polarization.

The wave vector component orthogonal to 
the plane of  the plate (kx) is calculated for a given 
polarization based on Maxwell's equations and 
the values of  the components of  the magnetic 
and dielectric permittivity matrices for each layer. 
The corresponding equation has two complex 
solutions  kx: for refracted and reflected waves 
[14,15]. Let us introduce for them the parameter 
q, the sign of  the real part kx, which determines 
the direction of  the phase velocity of  the wave 
in the layer with respect to its boundaries, q = 
sign(Re(kx)). One solution has a positive real 
part (q = 1), the other has a negative one (q = 
−1). In the case of  isotropic media, kx should 
be the same for s- and p-polarized waves. In the 
general case for a quasi-anisotropic medium, 
all 4 values kx may differ [16]. For each layer, 
with the number u and a given polarization s, 
two complex solutions kx(s,q,u) are obtained, with 
the parameters q = −1 and q = + 1. The total 
of  such waves in a plate with the number of  
layers U, for a given polarization s, is equal to 
2U (counting also the layers of  the half-spaces 
surrounding the plate). The waves are coherent, 
agree with each other at the layer boundaries 
and, as a result of  multiple reflections, come to 
a stationary state with amplitudes E(s,q,u). E(s=+1,q,u) 
is the complex amplitude of  the s-wave electric 
field. E(s=-1,q,u) is the complex amplitude of  the 

p-wave magnetic field. E(s,q,u) – the amplitude of  
the wave with the direction of  propagation q, in 
the layer u “at the boundary (−q)”. The words 
“at the border (−q)” mean the following. The 
layer u, in the general case, has two boundaries. 
One − for a smaller, the second – for a larger, 
x-coordinate. Let us introduce the parameter g 
= –1 for the border with a smaller x, g = + 1 − 
for the border with a large x. If  the wave has a 
direction q, then it propagates in the medium 
u from the boundary g = −q to the boundary 
with g = + q. The complex wave amplitude 
at the boundary g = −q matters, E(s,q,u). The 
complex wave amplitude at the boundary g = 
+ q matters E(s,q,u) exp(ikx(s,q,u)qdu), where du is the 
layer thickness. The exceptions to this rule are 
the first and last layers, which are semi-infinite 
spaces. The amplitude of  the reflected wave and 
the amplitude of  the transmitted wave in an 
ordinary layer are set at the boundaries according 
to the general rule, but with the following 
exceptions. The border g = −1 for the first layer 
is moved to infinity, as well as the border g = + 1 
for the last layer. Therefore, as an exception, we 
assume that the amplitude E(s,q=1,u=1) is set at the 
boundary g = 1 of  the first layer (and not at the 
boundary g = −1, which is absent). Similarly, on 
the last layer U, the amplitude E(s,q=−1,u=U) is set at 
the boundary g = −1. The wave observed by the 
measuring device belongs to the set of  waves 
specified by integer parameters (s,q,u). The 
introduction of  the parameters u, s, q, g makes 
it possible to separate very complex variants of  
the conditions for considering wave processes in 
a given problem and is a means of  overcoming 
the logical problems that arise.

When deriving the Fresnel-Airy formulas in 
[1-7,16], it is assumed that an external radiation 
source creates an incident plane wave of  a 
known complex amplitude. At given values 
of  the frequency (1.41 Hz) and, as a result of  
multiple reflections, a stationary state of  the 
amplitudes of  the set of  waves is formed, given 
by the parameters (s, q, u). The generalization 
of  the problem to the case when the source 
of  plane waves can be located not only outside 
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the plate, but also in one of  its inner layers is 
described by a linear equation with the same 
matrix as in [16], but with a modified column 
of  free terms. The amplitudes of  the set of  
waves (s, q, u) are represented as a 2U vector. 
The law of  interaction of  waves is represented 
as a matrix (2U by 2U) The direct action of  
the incident wave on the system of  waves 
(s, q, u) gives a column of  free terms of  the 
linear system of  equations. The matrix and the 
column are sparse, it is convenient to generate 
them automatically using the usual Fresnel 
coefficients for layer boundaries and extremely 
sparse matrices [17, 18]. Calculation of  the 
Fresnel-Airy coefficients is reduced to solving 
an automatically generated linear system of  
equations [16].

When interpreting the solution in the 
case of  sources of  plane waves inside the 
plate, logical subtleties appear, which can be 
expressed by the following casuistic question. 
Is the wave created by the original plane wave 
source associated with the set of  reflected and 
refracted waves? The answer to this question is 
negative, but with a caveat. Coherent sources 
of  plane waves create waves with wave vectors 
that coincide with wave vectors from the 
set specified by the parameters (s, q, u). Let 
there be one such source, has a unit complex 
amplitude and is specified by parameters (s, q0, 
u0), i.e. has polarization s, is in the layer u0 at its 
boundary −q0 and shines in the direction q0. 
Then the complex amplitudes of  the waves (s, 
q, u) in the multilayer plate will be equal to the 
corresponding Fresnel-Airy coefficients, with 
one exception. This exception is a wave with 
parameters (s, q0, u0). The complex amplitude of  
the source wave should be added to the Fresnel-
Airy coefficient of  this wave, i.e. unit, the result 
is a complex wave amplitude with parameters (s, 
q0, u0). The Fresnel problem is linear, therefore, 
if  the source wave is not unitary, then all 
amplitudes should be multiplied by its complex 
amplitude. If  there are several coherent sources 
of  plane waves, then the effects of  their 
complex amplitudes are summed up.

2.3. Fresnel-Airy coefficient specification

The relationship between the directions of  
wave propagation in a layer (parameter q) and 
layer boundaries (parameter g) should be taken 
into account when identifying the Fresnel-
Airy coefficient. We will assume that the wave 
frequency and the y-component of  the wave 
vector are given. The specification of  the 
Fresnel-Airy coefficient can be represented as a 
function 

0 0( , , , , )s q u q uf , where s is the polarization, 
q0, u0 − the external incident wave is specified: 
in the layer u0, it propagates in the direction 
q0 near the boundary q0. If  the amplitude of  
the incident wave is unit, then the value of  the 
function determines the amplitude of  the wave in 
the layer u, near the boundary (−q) propagating 
in the direction (q). The amplitude of  the wave 
in the u layer, with the direction q near the 
boundary (−q), is obtained as the product of  
the Fresnel-Airy coefficient by the amplitude of  
the original wave 

0 0 0 0( , , , , ) ( , , )s q u q u s q uf E . To take into 
account the sources of  plane waves at different 
boundaries in different layers, the complex 
amplitudes are summed; therefore, the function

0 0( , , , , )s q u q uf   can be interpreted as an analogue of  
the Green's function. The representation of  
the Fresnel-Airy coefficients in the form of  a 
function

0 0( , , , , )s q u q uf   makes it possible to write 
down rather conveniently solutions to problems 
of  many coherent sources in a multilayer quasi-
anisotropic plate.

2.4. Averaging the Poyting vector over the 
oscillation period

The amplitude of  the s-polarized wave (s = 1) is 
conveniently considered the amplitude of  the 
electric field lying in the plane of  the plate. The 
amplitude of  p-polarization waves (s = -1) in [1] 
was considered the complex amplitude of  the 
magnetic field lying in the plane of  the plate. In 
[16,19] and in this article, the same approach is 
adopted.

Let S = s0EH, where S, E, H are the complex 
amplitudes of  the Poyting vector and the 
orthogonal electric and magnetic fields. Here s0 = 
c/4π is the coefficient  in the Gaussian system, s0 = 
1 in SI system [1].
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Appendix  shows that P, the value of S averaged 
over the oscillation period, can berepresented in 
terms of  the complex amplitudes E and H in the 
form

2 2

0 0
| | | |Re Re .

2 2
E H H EP s s

E H
   = =   
   

 (2)

In accordance with [14, 15], for a wave in 
a quasi-anisotropic medium, we obtain for the 
period-averaged components of  the Poyting 
vector at the boundary (–q) of  the layer u:

2
( , , ) 2,

0
3,

2
( , , ) 1,

0
3,

1, ,12 1 ,22 2

2, ,11 1 ,21 2

3, ,11 ,22 ,12 ,21 0

0

1,

1,

| |
Re ;

2

| |
Re ;

2

;
( );

( ) ;
/ ;

;
.

s q u s
x

s

s q u s
y

s

s s s

s s s

s s s s s

ij ij

ij ij

E D
P s

D

E D
P s

D

D k k
D k k
D k
k w c

µ µ

µ µ

µ µ µ µ

µ µ

µ ε−

 
= −  

 
 

= −  
 

= +

= − +

= −

=
=

=

 (3)

Let us introduce the parameters h, and 
the coefficients  that allow us to calculate the 
components of  the Poyting vector for a given 
wave , averaged over the oscillation period, and 
its absolute value at the boundary (-q), if  the wave 
amplitude is specified.
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For s = + 1, algorithms are obtained that make 
it possible to calculate the intensities for s-polarized 
waves.

For s = −1, algorithms for calculating the 
intensities for p-polarized waves are obtained.

The parameter h = 1 allows one to obtain 
the period-averaged component of  the Poynting 
vector directed orthogonal to the plate surface for 
a wave in the u layer propagating in the q direction.

The parameter h = 2 corresponds to the 
period-averaged component of  the Poynting 
vector directed tangentially to the plate surface.

The parameter h = 0 − corresponds to the 
period-averaged absolute value of  the Poynting 
vector.

2.5. Poynting vector of waves at the 
interfaces of layers

In the Fresnel problem, the incident, reflected and 
refracted waves are coherent. In superposition, 
their complex amplitudes are added, but the 
intensities (energy fluxes) must be calculated in a 
more complex way.

The energy flux (i.e., the Pointing vector) 
near the boundary q of  the u layer is determined 
by the vector product of  the total electric field 
and the total magnetic field. At the interfaces 
between the layers, the tangential components 
of  the magnetic and electric fields are preserved. 
Therefore, at the interfaces between layers must 
be constant Sx, Sy, in general, it is not preserved 
at the interface between layers. Nevertheless, to 
check the calculations, it would be desirable to 
have values similar to the energies that should 
be stored at the boundaries in the directions 
tangential to the interface. Such quantities 
can be constructed, since the field inductions, 
orthogonal to the surface, must be constant at 
the interfaces. For s-polarization, after averaging 
over the oscillation period, the vector products 
of  the electric field and the x-component of  
the magnetic induction and the vector product 
of  the x-component of  the magnetic induction 
and the y-component of  the magnetic field must 
be preserved. For p-polarization, respectively, 
is the vector product of  the magnetic field and 
the x-component of  the electric induction and 
the vector product of  the x-component of  the 
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electric induction and the y-component of  the 
electric field.

Let's note an interesting detail. For non-
magnetic media, the induction of  the magnetic 
field in the x-direction coincides with the magnetic 
field; therefore, for the s-polarization, not only 
the x-component, but also the y-component 
should be preserved, i.e. the entire Pointing 
vector. P-polarized waves do not possess this 
property.

For the problems of  estimating energy fluxes, 
the V(s,q,u,h) coefficients are convenient, but their 
application is limited, since the intensities of  
coherent waves do not add up, but their amplitudes 
add up. The amplitude of  the total electric field 
of  an s-polarized wave near the boundary (q) in 
the u layer is not the amplitude of  only one wave. 
To the complex amplitude of  a wave propagating 
in the (-q) direction, add the complex amplitude 
of  a wave traveling in the (+q) direction, taking 
into account its phase shift. If  the wave source is 
in the u layer and radiates in the q direction, then 
the source wave amplitude must also be added to 
the sum (but without the phase shift). The total 
сomplementary field (magnetic field in the case 
of  s-polarization) is also obtained as the sum of  
the сomplementary fields of  these three waves. 
The vector product of  the corresponding fields, 
averaged over the oscillation period, should be 
calculated by formula (2). It is proportional to 
half  the square of  the modulus of  the incident 
wave amplitude. The aspect ratio is calculated 
using the Fresnel-Airy coefficients. Let us write 
it as a function with the following specification 
for waves generated by an incident wave of  unit 
intensity from a source of  a given polarization 
located in a layer u0 that shines in the direction q0 
and gives a 

0 0( , , , , , )s q u g u hF  function in the u layer at 
the g boundary.

For s = 1

For h = 1, the function F is determined by the 
vector product E3 by H2 and gives the coefficient 
for calculating the x-component of  the Poyting 
vector averaged over the oscillation period.

For h = 2, the function F is determined by the 
vector product E3 by H1 and gives the coefficient 
for calculating the y-component of  the Poyting 
vector averaged over the oscillation period.

For h = 0, the function F gives the absolute 
value of  the Poyting vector averaged over the 
oscillation period

For h = −2, the function F is determined by 
the vector product E3 by B1 and gives the value 
that must be preserved at the interface between 
the media.

For h = −3, the function F is determined by 
the vector product H2 by B1 and gives the value 
that must be preserved at the interface between 
the media.

When s = −1, values for the p-polarization are 
obtained, the fields E and H and their inductions 
change their roles.

If  the amplitude of  the radiation 
source were known, then the product 

0 0

0 0

2
( , , )

0 ( , , , , , )
| |

.
2

s q u
s q u q u h

E
s F  would be an energy 
flux in the h direction in the u layer at the g 
boundary. For applications in remote sensing, a 
slightly different interpretation of  the observed 
radiation intensity seems promising. In the 
region of  radio waves and in the microwave 
region of  the spectrum, the radiation intensity 
can be interpreted as the brightness temperature 
and related to the effective temperature of  the 
observed object [10].

2.6. Summation of the energy of incoherent 
waves. Brightness temperature

In [20], based on the Kirchhoff  law of  radiation, 
a formula was obtained for the intensity I of  
radio waves emitted by a uniform layer Iv = 
B(v,T)(1 − exp(−τ)). A similar formula was 
used to estimate the brightness temperature 
of  a cloud formation in the atmosphere in 
the isothermal approximation in the spectral 
region where scattering can be neglected [12]. 
B(v,T) − Planck function, depending on the 
radiation frequency and layer temperature, τ −
optical layer thickness.
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For the radio and microwave ranges, the 
Planck formula degenerates into the Rayleigh-
Jeans formula, in which the radiation intensity is 
proportional to the temperature. In our case, Im 
(ky) = 0, kz =0, therefore, absorption and emission 
are associated only with kx. Therefore

( , , ) ( , , )

( , , ) ( , , )

( , ),

1 exp(2 Im( )).
s q g u s q g u u

s q g u x s q u u

I A B v T

A k qd
= =

=

=

= −
 (5)

2

2
2( , ) ,Bk vB v T T

c
=  c - peed of  light, kB is the 

Boltzmann constant, v is the frequency, T is the 
temperature in degrees Kelvin.

For an infinitely thick homogeneous layer, 
the integrating coefficient A degenerates into 
unity. The intensity at the layer boundary 
becomes proportional to the layer temperature. 

The coefficient 
2

2
2 Bk v

c
 allows you to convert the 

observed intensity into the brightness temperature. 
This coefficient is reduced in the ratio (1). Relation 
(1) is considered in [10] as a theoretical basis for 
many methods of  remote sensing of  the earth's 
surface using radiometers.

In the case of  multilayer media, the observed 
brightness temperature should be the sum of  the 
effect of  the intrinsic thermal radiation of  all 
layers. 0 0

0

.ya u u
u

T Tκ=∑  (In all formulas in the article  
- the number of  the layer where the radiation 
source is located). The 

0uκ  coefficients are not 
independent. Changing, for example, the thickness 
of  one layer affects the coefficients of  all layers. 
All 

0uκ  coefficients depend on the polarization 
s. The problem of  calculating these coefficients 
is not easy, but in a number of  isotropic cases its 
solutions are known from the literature [10]. The 
algorithms developed in this work make it possible 
for quasi-anisotropic media to take into account 
the anisotropy of  the media in calculations, to 
evaluate the effect of  each layer, and to ensure the 
comparability of  the results in the formation of  
complex dependences on the observation angle at 
different polarizations.

If  measured with a radiometer in the first layer, 
then
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In this formula, the coefficient A provides the 
summation of  the intensities of  heat sources 
over the thickness of  the layer with the number 
u0. Dividing by a factor 

0 00 ( , , , 0)s q u hs V =  converts the 
radiation intensity into the equivalent amplitude 
at the layer boundary. Multiplication by s0V(s,-

1,1,h=0) performs the inverse transformation in 

the radiometer layer. The coefficients 
2

2
2 Bk v

c
 

associated with the units of  measure of  intensity 
are abbreviated and are not present in the formula 
for the observed brightness temperature. For s = 
1, formulas for the s-polarization are obtained. 
When s = -1 - for p-polarization.

General formula for calculating energy fluxes 
averaged over the period taken at the boundaries 
of  the layers:
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For h = 1, the y-period-averaged energy flux is 
obtained orthogonal to the plate plane, for h = 2 - 
parallel to the plate plane, for h = 0 - the absolute 
value of  the Poiting vector averaged over the 
oscillation period.

The introduction of  parameters s, q0, u0, q, u, 
g made it possible to reveal and express logical 
subtleties in the description of  waves in multilayer 
media. There is a certain subtlety in the fact that 
the parameters of  the quantities V and f include 
the direction of  propagation of  the wave q, while 
the parameters of  the quantities F include the 
boundary number g.

The question of  the legitimacy of  introducing 
the concept of  equivalent amplitude at the 
interface between media instead of  the sum of  the 
intensities of  many incoherent waves is considered 
in more detail in Appendix 1.2.7.
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2.7. Electrical properties of ice and water

In the calculations presented in the next section, as 
in [19], the value of  the relative complex dielectric 
constant of  ice near 0°C at a frequency of  1.41 
GHz is used, which is equal to ε = 3.18 + 0.0007i 
[12,27–29]. The relative error in measuring the 
imaginary part is usually large and amounts to 
tens of  percent. In [30,31], ice models based on 
extrapolation and averaging of  various literature 
data are considered. The structure of  water and 
models for calculating its complex dielectric 
constant were considered in [27-29]. We use the 
value of  the relative complex dielectric constant 
of  water near 0°C at a frequency of  1.41 GHz 
equal ε = 85.79 + 12.72i .

3. CALCULATION RESULTS
As the first application of  the algorithms 
developed above, polarization-angular diagrams 
of  radiation of  a free ice plate 50 cm thick were 
obtained under illumination by radiation with a 
brightness temperature with a frequency of  1.41 
GHz s- and p-polarization taking into account 
the intrinsic thermal radiation of  the ice plate 
at this temperature (Fig. 1). The solid line is the 
curve of  the absolute value of  the Poyting vector 
(intensity) averaged over the oscillation period 
for s-polarization. The dotted line corresponds 
to p-polarization. The dashed lines show the 
results of  calculations when the intrinsic thermal 
radiation of  the ice plate is not taken into 
account. This version reproduces the results of  

[19] obtained by another method: the reflection 
and transmission coefficients of  free ice plates 
were considered under the given conditions. 
In the region of  observation angles of  30-40 
degrees, there is a transparency region, both for 
s-polarization waves and for p-polarization waves 
(the total maximum of  all curves). Around 60 
degrees, the second maximum of  the p-wave curve 
corresponds to the Brewster angle for ice under 
the conditions under consideration. The dotted 
curves were obtained without taking into account 
the intrinsic radiation of  ice and correspond to 
the results of  [19].

At viewing angles of  0-70 degrees, the 
contribution of  the intrinsic thermal radiation 
is no more than 2-5 Colvin degrees. As the 
observation angles approach 90 degrees (more 
than 70 degrees), the behavior of  the curves is 
significantly different and requires additional 
study. It is necessary to take into account the 
bandwidth of  the radiometer, the roughness 
of  the surface, separate observation and the 
calculation of  the Poynting vector components.

How will the polarization-angle diagrams 
change if  the same plate floats in water and is 
illuminated not by external radiation, but by its own 
radiation. Fig. 2 shows the case of  a 50 cm thick 
plate floating in water. Solid curve - s-polarization, 
dots represent the curve for p-polarization. Changes 
in the conditions of  reflection and transmission at 
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Fig. 1. Polarization-angular diagrams of  the brightness 
temperature for a free plate of  ice 50 cm thick, under illumination 

with radiation with a brightness temperature 273.15 K.

Fig. 2. Polarization-angle diagrams of  the brightness 
temperature in the direction orthogonal to the surface of  the ice 
plate floating in water at. Plate thickness 50 cm. Solid curve - 

s-polarization. The dotted curve is p-polarization.
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the ice-substrate interface when replacing air with 
ice qualitatively changes the course of  the curves 
in Figs. 1 and 2.

The wavelength for isotropic ice at the 
considered frequency is about 12 cm. Fig. 3, 
as well as in Fig. 2, shows the case of  a plate 
floating in water at. Plate thickness 47 cm, i.e. 
the thickness of  the plate in Fig. 3 differs by a 
quarter wave from Fig. 2. Comparing Fig. 1, Fig. 
2, and Fig. 3, it can be concluded that replacing 
the substrate layer from air to water with a 
simultaneous change in the wafer thickness by a 
quarter of  the wavelength leads to the restoration 
of  the bleaching region in the region of  30 
degrees for both polarizations. According to the 
p-polarization, one can note the restoration of  the 
bleaching conditions in the region of  60 degrees 
(Brewster's angle for ice). Such transformations 
of  the curves can be associated with the mutual 
substitution of  the conditions of  anti-reflection 
and anti-reflection of  plane-parallel plates, which 
is known in the theory of  optics of  multilayer 
coatings [5].

In [19], the influence of  ice anisotropy on 
polarization-angle diagrams for the selected 
frequency 1.41 GHz and thickness 50 cm was 
noted. Fig. 4 shows the polarization-angle 
diagrams of  p-polarization waves for the case when 
the anisotropy axis is directed orthogonally to the 
plate surface (solid curve). Anisotropy coefficient - 
15%. The dotted line represents isotropic ice.

If  the anisotropy axis is parallel to the plane 
of  the plate, then the effect of  anisotropy 
on the polarization-angle diagrams increases 
significantly. Fig. 5 shows the curves for the case 
of  an anisotropic surface, 50 cm thick, floating 
in water. 

Controlling the values stored at interfaces (see 
Section 2.5) gives relative error 10-13 in double 
precision calculations. There is practically no 
accumulation of  errors in calculations.
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Fig. 3. Curves for the case as in Fig. 2, but the plate thickness 
is reduced by a quarter of  the wavelength and became 47 cm. 

The conditions of  the plate antireflection were restored

Fig. 4. Polarization-angle diagram of  the brightness 
temperature of  an ice plate floating in water for p-polarization 
waves. The dotted curve is an isotropic plate. The solid curve 
is anisotropic ice with a coefficient of  15% in the direction 

orthogonal to the plane of  the plate.

Fig. 5. Angular diagram of  the brightness temperature for 
p-polarization waves of  anisotropic ice floating in water. The 
point curve is an isotropic plate. The dashed curve corresponds 
to the anisotropy coefficient of  3% in the direction ε22. The 
solid curve corresponds to an anisotropy coefficient of  15% in 

direction ε22.
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4. DISCUSSION OF THE RESULTS
The use of  the Fresnel and Fresnel-Airy coefficients 
is an effective approach to solving many physical 
problems [1-7], but an adequate application of  
the Fresnel approach is associated with a number 
of  limitations mentioned in the introduction. 
Generalization of  the Fresnel approach to 
media with absorption [1,5-7] had an important 
methodological and practical importance at 
the beginning of  the 20th century, but it is not 
universal, for example, it is not applicable to media 
with amplification [11]. Attempts to go beyond 
the Fresnel approach are being made in our time 
and remain relevant. For turbid media and media 
with high internal scattering (for example, for 
snow), methods based on the theory of  radiation 
transfer [30–32] are used; the methods described 
here are inapplicable to such media. In this work, 
only linear waves (waves of  small amplitude) 
are considered, described by local Maxwell 
equations for homogeneous media with smooth 
boundaries without external currents and charges. 
Quantum effects are not considered. The ability to 
consider s- and p-polarization waves propagating 
independently in homogeneous isotropic 
media simplifies the problem. If  a number of  
constraints are imposed on tensors in Maxwell's 
equations, then independent propagation of  
s- and p-polarization waves in some anisotropic 
media is obtained [14,15]. In [16], a definition of  
quasi-anisotropic media is given and algorithms 
generalizing Fresnel's formulas are discussed.

In this article, it is noted that the concept 
of  an ideal radiometer makes it possible to split 
the set of  plane electromagnetic waves in a 
quasi-anisotropic multilayer plane-parallel plate 
into non-intersecting coupled subsets. These 
subsets are identified by frequency, polarization, 
projection of  the wave vector onto the surface 
of  the plate. Waves from different subsets are 
(completely) incoherent, i.e. their intensities add 
up. This circumstance makes it possible to take 
into account the presence of  a finite bandwidth 
in real radiometers in the calculation of  intensities 
by means of  integration [16,19,21]. In this paper, 
we discuss algorithms for an ideal radiometer, 

assuming further generalization to radiometers 
with complex bandwidth. In [19], the effects of  
smoothing of  inhomogeneities in the ballization-
angle diagrams, related to the bandwidth of  a real 
radiometer, were discussed. For ice thicknesses of  
the order of  50 cm and viewing angles less than 
70 degrees discussed in this article, the L-band 
radiometer can be considered close to ideal. In 
[23-25] the parameters of L-range radiometers 
are given, which record separately the intensities 
of  orthogonal polarizations of  radiation. When 
studying thicker ice sheets and considering viewing 
angles greater than 70 degrees, it is necessary to 
take into account the bandwidth of  the radiometer.

In this article, the term "homogeneous" is 
applied to different objects and its meaning is 
somewhat different. The layers of  the plates are 
“homogeneous”; do not have any defects and 
special parameters depending on coordinates. An 
ideal radiometer should be located in an isotropic 
homogeneous medium without absorption and 
register only homogeneous waves, while it (ideally) 
should not register inhomogeneous ones. It is not 
entirely obvious fact that inhomogeneous plane 
waves can exist in an isotropic homogeneous 
medium without absorption. Inhomogeneous 
waves exist in such media, for example, spherical 
waves. The decomposition of  a spherical wave into 
plane waves includes inhomogeneous plane waves 
[34]. The requirement that an ideal radiometer 
fixes only homogeneous waves is essential; 
it is determined by the radiometer's antenna. 
Moreover, this radiometer must be located outside 
the multilayer plate in a homogeneous transparent 
medium. Homogeneous waves recorded by such 
a radiometer will have real components of  wave 
vectors tangent to the surface of  the plate. All 
waves included in the mathematical model will 
have the same property, i.e. the amplitude of  such 
waves will remain constant along the surface of  the 
plate. Such waves are necessary Im(ky) = 0. In the 
layers of  the plate in a direction orthogonal to its 
surface, the waves turn out to be inhomogeneous 
in layers with damping.

When reproducing the results for free plates, 
an external source of  electromagnetic waves 
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is considered at the effective temperature . It 
is assumed that this is a large black screen, at a 
sufficiently large distance from the ice plate. 
Heat sources inside the plates are assumed to be 
completely incoherent, and their effect on the 
intensity of  the observed radiation can be taken 
into account by summation [12]. According to 
the Rayleigh-Jeans law, the intensity of  thermal 
radiation in the microwave range is proportional to 
the Kelvin temperature; therefore, it is convenient 
to use the Kelvin temperature as a measure 
of  radiation intensity [10]. The temperature 
dependences of  the complex permittivities of  water 
and ice were considered in [27–31]. It is assumed 
that further research will consider multilayer 
systems at different temperatures of  the layers. The 
Fresnel-Airy coefficients are the proportionality 
coefficients between the amplitudes of  the linear 
waves. The intensity of  external radiation can be 
measured in brightness temperature. The intensity 
of  the thermal radiation of  a layer is determined 
by its effective (energy) temperature. Therefore, 
it is possible to estimate the contribution of  the 
intrinsic thermal radiation of  the plate layer to the 
observed brightness temperature as corrections 
to the results obtained in [19]. Fig. 1 shows 
the polarization-angular dependences of  the 
brightness temperature for a free plate of  ice, 
which is illuminated by an external radiation source 
with a brightness temperature of  273.15 K (°C). 
The solid curve corresponds to the s-polarization. 
The dotted curve corresponds to p-polarization. 
Dotted curves - dependences calculated without 
taking into account the contribution of  thermal 
sources of  ice. For the observation angles range 
of  0-70 degrees, the contribution to the brightness 
temperature of  the intrinsic radiation of  the 
considered ice plate is insignificant: 2-5 degrees. 
The dotted lines represent the transmittances 
of  a 50 cm thick ice sheet multiplied by 273.15 
K (°C). These curves correspond exactly to the 
results of  [19]. Inherent thermal electromagnetic 
radiation exists in all frequency ranges. For a black 
body, the intensity must obey the Planck formula, 
in the microwave region, the Rayleigh-Jeans law 
[12]. The intensity of  real bodies is always less 
than the intensity of  an absolutely black body. If  

we interpret the effective temperature in formulas 
(1,6-7) as thermodynamic temperature, then the 
calculations will give slightly overestimated values. 
“The radio-thermal radiation of  homogeneous 
solids and liquids in most cases does not have 
intense selective components and the brightness 
of  the emitters varies little over the spectrum” [12]. 
This means that a spectral emissivity correction 
can be entered for water and ice. For a vacuum, 
such a correction factor is 0, for an absolutely black 
body it is equal to 1. It would be very interesting 
to obtain corrections for “blackness” for water 
and ice and their dependences on ice anisotropy. 
According to data from [33], for water and ice, this 
coefficient is close to 0.9 and depends on the type 
of  ice (annual, long-term). Data on the anisotropy 
of  the permittivity for various types of  Arctic ice 
are discussed in [34].

In the optics of  thin-layer coatings [5], there is 
a theorem that the conditions for anti-bleaching 
bleaching are reversed if  the monotonic change 
in the refractive indices in the substrate, film, and 
environment changes to a non-monotonic change. 
Strictly speaking, the theorem is formulated for real 
refractive indices and for small angles of  incidence, 
but it can serve as an explanation for the transition 
from Fig. 1 to Fig. 2. For a free plate (Fig. 1), the 
refractive indices change non-monotonically, and 
for a plate floating in water (Fig. 2), these changes 
can be considered monotonic. The reason for the 
rearrangement of  the polarization-angle diagrams 
is the change in the phase of  the reflected wave 
by a value close to. Changing the thickness of  the 
plate changes the phase of  the reflected wave, 
therefore, changing the thickness of  the plate 
floating in water by ¼ of  the wavelength restores 
the conditions of  bleaching in the region of  30 
degrees for both polarizations (Fig. 3).

For quasi-anisotropic media, the amplitudes 
of  the s-polarized waves depend only on ε33. 
The amplitudes of  p-polarized waves depend on 
ε11, ε22 (and also on ε12,ε21) [16]. The curves for 
p-polarization depend on different fusion of  the 
anisotropy axis and are shown in Figs. 4, 5.

With the help of  the proposed mathematical 
apparatus, it is possible to calculate the energy 
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fluxes of  monochromatic waves in any layer 
of  a multilayer plate. In this work, it is assumed 
that thermal sources of  microwave radiation are 
incoherent. The difficulty in solving the problem 
of  the intrinsic radiation of  the layers lies in the 
need to separate and adequately take into account 
coherent and incoherent effects. Conventionally 
speaking, a “wave from one heat source” 
generates many reflected and transmitted waves in 
multilayer plates, they are coherent and obey the 
Airy equations based on the Fresnel coefficients. 
Their amplitudes can be added, and the energy 
is calculated in a more complex way, through the 
Poiting vectors. At the same time, the thermal 
sources of  electromagnetic waves themselves are 
incoherent and their energies can be added. Based 
on the Fresnel-Airy coefficients (functions f), 
functions F are constructed to calculate the Poyting 
vectors averaged over the oscillation period of  
coherent waves at a given boundary of  a multilayer 
plate. Appendix substantiates the possibility of  
using the concept of  the effective amplitude of  
radiation sources at the layer boundary. At the 
function specification level, there is a subtle but 
significant difference between f and F. Among the 
parameters of  the function f there is a parameter 
(q) that fixes the direction of  propagation of  the 
calculated wave. Instead of  this parameter, the 
function F contains a parameter (g) that fixes 
the number of  the boundary around which the 
energy flux is calculated. This subtlety is taken into 
account in formulas (6,7).

The developed mathematical apparatus is 
rather complicated, therefore, for the automated 
control of  calculations, it is proposed to use a 
number of  quantities that must be stored at the 
interfaces between layers. It is checked for a 20-layer 
medium of  ice, air and water layers, that there is no 
accumulation of  errors in calculations, Poynting 
vectors and other auxiliary values are stored at 
the boundaries of  media sections with a relative 
error of  no more than 10-13, when calculating with 
double precision.

It is convenient to write solutions of  linear 
inhomogeneous non-degenerate systems of  
equations using the inverse operator. The 

kernel of  such an integral operator in physics is 
called the Green's function. The use of  Green's 
functions turns out to be an effective and 
productive mathematical apparatus, for example, 
in the equations of  mathematical physics [35]. 
Is it possible to construct an analogue of  the 
Green's function to solve the Fresnel problems 
in multilayer quasi-anisotropic plates? The set 
of  Fresnel-Airy coefficients, in essence, are such 
a discrete analogue of  the Green's function; it 
remains only to write it in the appropriate form, 
this is the function f (see Section 2.3). In the 
event that the radiation sources are completely 
incoherent, with the superposition of  waves, 
their intensities can be added. The problem of  
calculating the intensities at the boundaries of  the 
layers at given intensities of  incoherent sources 
turns out to be linear. To solve it, there must also 
be a discrete analogue of  the Green's function. 
These are the coefficients κ  in formula (1) and 
in its generalization (7) (see Section 2.6). The 
derivation of  these coefficients is complicated 
by the need to take into account coherent and 
incoherent effects in a multilayer plate, as well 
as by the need to construct an adequate method 
for identifying the waves and energy fluxes under 
consideration. The introduction of  the parameters 
(s, q, u, g) turned out to be sufficient for adequate 
identification of  waves and energy fluxes in a 
multilayer plate. (section 2.2). The V coefficients 
relate the amplitudes and intensities of  the waves 
(Section 2.4). The coefficients F have the structure 
of  Green's functions and allow calculating the 
components of  the Poynting vectors averaged 
over the oscillation period taken at the boundaries 
of  the layers (Section 2.5). The products of  the 
functions 

0 0

2
( , , , ) ( , , , , )| |s q u h s q u q uV f , which give the 

intensities of  the observed waves, have the same 
property. This mathematical apparatus allows you 
to calculate the coefficients κ , change the context 
of  problems using the parameters s and h.

This article introduced the specifications 
for the function f. The functions F have been 
extended over the functions f to calculate the 
radiation intensities. They were implemented 
solely for research purposes: to reveal the physical 
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essence and the possibilities of  numerical solution 
of  the problem in the most general possible 
form. For narrower and more utilitarian purposes, 
more efficient implementations are possible and 
necessary. The transition to more developed 
methods of  using computing resources, described, 
for example, in the textbook [36].

5. CONCLUSION
Using the algorithms developed in the article, 
the polarization-angular dependences of  the 
brightness temperatures of  isotropic and 
anisotropic ice sheets 50 cm thick, at 0°C, for 
a microwave radiation frequency of  1.41 GHz, 
were theoretically obtained. In the case of  free 
ice sheets, they are illuminated by radiation with a 
brightness temperature of  273.15 K. The curves 
have exactly the same characteristic features as 
the transmission coefficients obtained earlier 
in [19]. In addition to the results of  [19], the 
influence of  the self-radiation of  the ice plate 
on the intensity recorded by the radiometer was 
estimated. For angles 0-70 degrees, it does not 
exceed 2%. For large angles, the influence of  
intrinsic radiation increases and requires more 
detailed study.

Additionally, the case is considered when there 
is no illumination, but the plate floats in water. 
In this case, the sign of  the amplitude Fresnel 
reflection coefficient between the ice-substrate 
layers changes. Therefore, on the curves, the highs 
and lows are reversed. Changing the plate thickness 
can also change the sign of  the Fresnel coefficient. 
With a plate thickness of  47 cm, the curves for 
a plate floating in water are similar to those for 
free plates of  50 cm. The obtained calculations 
of  the polarization-angular dependences of  
the brightness temperature correspond to the 
estimates and concepts developed in [16,19] for 
the reflection and transmission coefficients of  free 
ice plates. For thicker ice plates, it is necessary to 
take into account the bandwidth of  the radiometer 
[19,21].

The generalized Fresnel-Airy coefficients 
obtained in [16] are generalized below. They 
are reduced to a form 

0 0( , , , , )s q u q uf  that can be 

considered as a method for constructing a 
solution to the linear problem of  interference 
of  coherent plane waves in multilayer plates with 
quasi-anisotropic layers. It is assumed that the 
frequency and projection of  the wave vector of  
waves on the surface of  the plate are given. The 
parameter sign (s) identifies the s- or p-polarization 
of  the wave. The parameters set the location of  
the plane wave source, which can be located not 
only outside the plate, but also inside one of  the 
layers.

Using functions 
0 0( , , , , )s q u q uf , functions 

0 0( , , , , , )s q u q u hF  are constructed which can also be 
considered as a way to construct a solution to 
the linear problem of  interference of  completely 
incoherent plane waves in multilayer plates 
with quasi-anisotropic layers. The coefficients 

0 0( , , , , , )s q u q u hF  relate the intensity of  the plane 
wave source to the intensity of  reflected and 
refracted waves in all layers of  the plate. With 
the help of  the parameter h, it is possible to 
obtain the components of  the Poynting vector 
and quantities similar to the energy, which 
are constants at the interfaces of  the quasi-
anisotropic layers.

It has been verified that in the case of  20 
layers of  ice, water and air, the control values 
at the boundaries of  the layers are preserved 
with an accuracy 10-13, i.e. there is practically no 
accumulation of  computational errors.

The work was carried out at the expense of  
budget funding within the framework of  a state 
assignment.

APPENDIX. Explanation of  the effective 
wave concept use.

The following theorems on averaging over the 
oscillation period are useful.

Let X(t) = |X|exp(iwt + φX), Y(t) = |Y|exp(iwt 
+ φY) – complex oscillating functions with 
frequency w and phase shifts.

Mt(X(t),Y(t)) – the average over the period 
from the product of  these functions.

Then Mt(X(t),Y(t)) = (|X||Y|/2)cos(φX – φY).
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This theorem is well known in electrical 
engineering, for example [37]. Corollary of  this 
theorem:

2 2

| |Re cos( ) ( ( ), ( ))
| |
| | | |Re Re .

2 2

X Y t
X X M X t Y t
Y Y

Y X X Y
X Y

ϕ ϕ  = − ⇒ = 
 

   = ≡   
   

 (A1)

The following statements are also valid: if  (a) and 
(b) are complex numbers, (a*) and (b*) are their 
complex conjugates, then

2 2| | | |( ( ), ( )) Re( ) Re( ),
2 2

( ), ( ) ( ( ), ( )).

t

t i j t i j
i j i j

X XM aX t bX t ab a b

M X t Y t M X t Y t

∗ ∗= ≡

 
= 

 
∑ ∑ ∑∑

There are coherent electromagnetic waves, 
partially coherent and incoherent waves 
(completely incoherent waves) [4]. When 
considering a superposition of  linear coherent 
waves, the amplitudes of  the waves must add up. 
When considering the superposition of  completely 
incoherent waves, their intensities must add up. 
The intermediate case of  the superposition of  
partially coherent waves is not considered in the 
article.

Heat sources of  waves in the microwave range 
are completely incoherent with each other [12]. 
The ability to restrict consideration of  completely 
incoherent and coherent waves greatly simplifies 
the algorithms for calculating the intensities. I 
would like to calculate the contribution to the 
radiation intensity of  thermal sources of  a given 
layer as follows, implicitly used in formula (1).

1.	 Calculate the intensity of  waves from heat 
sources of  a given layer with a given wave 
vector and polarization at the boundaries of  
the layer.

2.	 To convert the intensity into the amplitude of  
the corresponding effective wave.

3.	 The effective wave is refracted and reflected in 
the multilayer plate and reaches a given place 
in the form of  a superрosition of  coherent 
waves. Convert this superposition of  waves to 

intensity and get the desired contribution to 
the calculated intensity.

The superposition of  waves: waves of  radiation 
sources, waves reflected from the boundaries and 
waves going to the opposite boundaries of  this layer 
– transfers energy, but its calculation is not trivial. 
Waves received from one source are coherent, so 
their intensities cannot be added. However, you 
cannot add their amplitudes either, since they have 
different wave vectors. In order to correctly obtain 
the energy flow, it is necessary to add the electric 
fields of  these waves, the magnetic fields of  these 
waves, obtain the Poynting vector from these sums 
and average over the oscillation period. It turns out 
that all these non-obvious operations can be folded 
into F coefficients (Section 2.5) if  the radiation 
sources are statistically independent. Further, we 
use the coefficients F and V in a simplified form; 
in the text of  the article, the arguments of  these 
functions are discussed in more detail.

We consider only monochromatic waves with 
a given frequency and wave vector ky. Let's choose 
layer (m) in a multilayer plate, some point in it and 
calculate the intensity in it. We will consider the 
contribution to this intensity of  the sources in the 
layer with the number n (then going to sum up the 
contributions of  the layers). Let us narrow down 
the task even more. Let us choose one boundary (g) 
of  the (n) layer and consider the waves of  intrinsic 
thermal radiation going towards this boundary. 
The patterns established for such a contribution 
to intensity can be carried over to their sum. The 
source waves in layer (n) are incoherent, but have 
the same wave vector. Let them be numbered (i). 
The amplitude of  each wave will be multiplied by 
a complex coefficient when it reaches the border 
g and gives LiEi. Further, E(t) = FE(m,n,h)LiEi, 
H(t) = FH(m,n,h)LiEi the products will give the 
contribution of  the source (i) to factors for the 
component (h) of  the energy variable P(m, h) at 
the selected place of  the layer (m).

The intensity of  each source, according to 
Planck's formula, is related to a certain small volume 
of  the medium (v). With a decrease in this volume, 
the number of  sources increases, their intensities 
proportionally decrease. Random variables can be 
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considered independent (uncorrelated) therefore 
in the limit (v → 0):

,
( , ) ( ( , , ) , ( , , ) )

( ( , , ) , ( , , ) ).

t E i i H j j
i j

t E i i H i i
i

P m h M F m n h L E F m n h L E

M F m n h L E F m n h L E

= →

→

∑

∑  (A2)

The wave intensity in layer n with amplitude E 

is given by the product 
2| |( ) .

2
EV n

I(n,g) – radiation intensity of  sources in the layer 
(n) at the boundary (g).

Then
2

2
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These equalities make it possible to quite reasonably 
introduce the definitions: I(n,g) - the intensity of  
sources at the boundary (g) of  the layer (n); Eef - the 
amplitude of  the effective wave and the function 
F(m,n,h).

22 ( , ) 1;    ( , ) (| || |) ( );
( ) 2

( , , ) Re( ( , , )( ( , , )) ).

ef i i
i

E D

I n gE I n g L E V n
V n

F m n h F m n h F m n h ∗

= =

=

∑

Note that the concept of  an effective wave is 
correct only under a number of  restrictions. First, 
heat sources are considered completely incoherent 
(formula (A2)). Second, the behavior of  the waves 
is described quite well by the complex wave vector, 
i.e. in the layer environment, internal reflections 
can be neglected. Third, the quasi-anisotropic 
medium of  the layer is transparent or a medium 
with absorption. Media with amplification and 
internal reflections are not considered.
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