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This work proposes a new fractal model of a complex near-surface domain structure that assembles itself in
highly anisotropic uniaxial single crystals, and which is based on a previously unknown modification of the
Sierpinski carpet. The simulation algorithm is described and an example of its application is given.
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INTRODUCTION
Processes observed in magnetically ordered media

of purposeful (spontaneous or induced) change of
symmetry, shape, or type of domain structure (DS)
under the action of external factors or even in their
absence are impressive examples of the self-assembly
of inanimate nature. These processes can be either
static, or dynamic (in this case, they are attributed to
the self-organization).

HISTORY
The existence of the static self-assembly of the DS

was discovered immediately after the elaboration of
the first approach to domain visualization in the
1930s. This approach was called the powder-figure
method or the magnetic suspension method [1–3].
The domain arrangement in magnetic materials is not
random and tends to the formation of certain configu-
rations. Numerous photographs of the DSs obtained
by this method can be found in articles and subject
collections of that time. Growing interest in the obser-
vation, description, and classification of various man-
ifestations of static self-assembly brought about other
methods of domain visualization in the 1960s (magne-
tooptical, i.e., the Kerr effect [4], the Faraday effect
[5], magnetic birefringence [6], electron microscopy
[7, 8], and Hall detectors [9], etc.). Additional devel-
opments in the study of this problem were the experi-
ments on dynamic self-organization carried out by
Urals physicists Kandaurova G.S. and Svidersky A.E.
They revealed the transformation of the labyrinthic
DS into spiral and ring domains under the action of
external low-frequency magnetic field on thin quasi-

uniaxial epitaxial films of garnet ferrite [10, 11]. They
later showed that under similar conditions, other types
of dynamically induced DSs can be observed [12, 13].
The formation of the strictly ordered arrays of bubble
magnetic domains with a generating line in the form of
ellipse, boomerang, figure of eight, dumbbell, and etc.
was observed by authors of [14–17] via the special
choice of the parameters of the oscillating magnetic
field.

An analysis of numerous patterns which occur in
the course of the static and dynamic self-assembly of
the DS, demonstrates that a number of cases are char-
acterized by the presence of fragments with hierarchi-
cal structure and approximate (topological) self-simi-
larity, which allows their description within the fractal
approach. The formation of such units, which can be
observed in various structured media in the case of the
diffusive character of motion of their parts, is called
the fractal clustering (see, e.g., [18]). The size of frag-
ments, which is affected by numerous factors includ-
ing the degree of uniformity of the magnetic material
and the quality of surface on which the DS is observed,
can vary within a significant range. The search for the
complete analogy with the known types of geometrical
fractals is usually unsuccessful; therefore, in all the
cases under consideration, the term “fractal-like DSs”
should be used as in [19].

If the classification of abstract fractals (geometri-
cal, algebraic, and stochastic) uses the principle of
personification (the Koch snowflake, the Sierpinski
carpet, the Mandelbrot set, etc.); usually, in the case
of the fractal-like DSs, the descriptive approach is
employed, upon which they are classified as dendrite,
mosaic, netlike, rhombic, tapered, zigzag, branching,
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Fig. 1. Model of the structure of the closure domains on
the (010) plane of the rhombic FeB single crystal [26].

Fig. 2. Complex near-surface DS with “stars” on the basis
(001) plane of the ErFe11Ti single crystal [27].

Fig. 3. Subsequent stages of the formation of the initial
generations of the subfractals of the classical (top row) and
modified (bottom row) Sierpinski carpet.
and other configurations. Adequate models and algo-
rithms of construction are necessary to study the prac-
tical usage of these structures.

MODEL DESCRIPTION
The configuration which is developed in the course

of the self-assembly of the DS can be rather compli-
cated, and so these models are usually created on the
basis of well-known geometrical fractals, e.g., the
Sierpinski carpet [20, 21]. Different modifications of
Sierpinski carpet are often employed in this case,
which is greatly favored by the fact that these fractal
structures are applied in magnon, phonon, and pho-
ton crystals for micro- and nanoelectronics [22–24].
Models of clusters with the structure of the Sierpinski
carpet were used to estimate the effect of fractal
dimension on magnetization curves of materials com-
posed of exchange-coupled nanoparticles with ran-
domly oriented easy axes of magnetization [25].

To describe the perfect rhombic shape of closure
domains on the (010) plane of FeB single crystals, the
authors of [26] employed the model shown in Fig. 1.
Essentially, this model is the parquet-type tiling in the
chesslike order of two types of subfractals which may
be regarded as a modification of the Sierpinski carpet.
The adjacent subfractals of the two types transform
into each other upon the color inversion.

For the simulation of the complex near-surface DS
with “stars”, which is often observed in highly aniso-
tropic uniaxial single crystals (Fig. 2), we suggest using
the square-shaped Sierpinski carpet with a single type
of deformation of boundaries of all the square ele-
ments in each generation of a fractal. Other examples
can be found in review [12] and the works of Pas-
tushenkov et al. [28].

The creation of the model can be divided into two
stages. At the first stage, an intermediate modification
of the common carpet is constructed by the algorithm
shown in Fig. 3. The stage sequence of the subfractal
formation of the first three generations of the common
Sierpinski carpet is shown in the upper row. At the first
step, the large black square with a dimension of L is
divided into nine equal ones with dimensions of L/3,
and the central square is removed; further, this proce-
dure is performed for each of the eight black squares
which form the boundary of the central “white”
square which remains unchanged. The procedure is
repeated for 64 black squares with dimensions of L/9,
and etc.

The formation of the intermediate modification of
the carpet (see the bottom row of Fig. 3) is also started
from the large black square with a dimension of L , and
the central square with a dimension of L/3 is removed;
however, at the second step, contrary to the common
Sierpinski carpet, the black square with a dimension of
L/9 is inserted at the center of the geometrical figure.
At the third step (last image at the bottom row), the
PHYSICS OF METALS AND METALLOGRAPHY  Vol. 1
square is divided by a mesh with the step of L/9 into
81 squares with the subsequent positioning at the cen-
ter of each of them of a square with a dimension of
L/27 and opposite color (black into white and vice
21  No. 5  2020
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Fig. 4. Results of the replacement of the lines by the triple-
portion broken lines for three generations of subfractals of
the modified Sierpinski carpet.

α
α

versa). This process can be infinitely repeated. To iter-
ate the suggested simulation algorithm of the chosen
DS, the generations of the described modified Sier-
pinski carpet should be counted from the second step.

This carpet has all the characteristics of the fractal,
i.e. upon changing its scale by a factor of three, both its
shape and the diffraction pattern in the distant region
remain the same. Contrary to the common Sierpinski
carpet, which is a connected topologic set, this modi-
fied carpet is not connected. Its Hausdorff dimension
is equal to 2 (for the Sierpinski carpet, it is ln8/ln3 =
1.89), and the scaling coefficients of both fractals are
equal to 3.

At the second stage of model formation, to imitate
the real shape of the domains, at each step of the con-
struction of the modified Sierpinski carpet, sides of all
squares (white and black) are replaced by symmetrical
triple-portion broken lines with equal length of por-
tions (top of Fig. 4). It is easy to show that the k ratio
of the length of the portions of the broken line to the
length of the replaced side of the square is determined
as follows:

Here, α is an angle between the outer portions of the
broken curve and the side of the square, which cannot
exceed 30°. Further, we used the following value α =
15°. By application of the described procedure to the
intermediate modification of the carpet (bottom row
in Fig. 3), for the anticlockwise treatment of the
square sides, we obtained the structures depicted in
the bottom row of Fig. 4.

The replacement of all portions of the lines
obtained at the first stage of the modified Sierpinski
carpet by triple-portion broken lines results in the
transformation of both the outer border and all
boundaries between “black” and “white” inner ele-
ments of the topologic set into fractal curves in the
shape of closed multi-portion broken lines (see
Fig. 4). It is necessary to note that this modification of
the Sierpinski carpet is new and has never been
described in literature before now.

( )24cos 16cos 12 6.k = α − α −
PHYSICS OF META
CONCLUSIONS
The set of modified carpets connected into a chain

or forming a chesslike order with the carpets of oppo-
site “polarity” can be regarded as a rough but suffi-
ciently adequate model of the complex DSs. The com-
pletely new fractal model suggested here is f lexible and
helps to achieve the maximal resemblance of the sim-
ulated image to the real shape of the simulated DSs by
varying the α angle and generation number of the
modified Sierpinski carpet. In this case, it is necessary
to take into account that any geometrical model which
uses non-interacting objects in an “empty” space can-
not completely reproduce the behavior of the real frac-
tals the constituents of which usually interact and
affect each other. That is why the usage of the higher
generations of subfractals for the simulation shifts the
inner regions and changes their sizes.
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