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Abstract—A phase diagram of the dynamic magnetoelastic states of an easy-plane antiferromagnet is con-
structed. A dispersion relation is obtained for nonlinear magnetoelastic eigenwaves. It is shown that, at the
point of the orientational phase transition, the dispersion of coupled spin and elastic waves depends only on
wave amplitudes and parameters of magnetoelastic coupling.
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INTRODUCTION
Coupling of electric, magnetic, and elastic subsys-

tems of material media leads to various physical
effects. In particular, the spectra of magnetically
ordered solids exhibit elementary excitations of cou-
pled magnetoelastic waves (MEWs) the propagation of
which leads to variations in both strain and magnetiza-
tion. The maximum effect is observed in the vicinity of
the points of phase matching where frequencies  and
wave numbers of the spin and elastic waves coincide
in the absence of coupling of the subsystems. A known
example is the hybridization of spin and elastic waves
in ferro- and ferrimagnets that has been theoretically
analyzed in [1] (see also [2, 3]). The first experiments
that prove the theory have been reported in [4–6].

Effect of magnetoelastic interaction on wave pro-
cesses is more complicated in antiferromagnets
(AFMs). The lower branch of the dispersion curves of
spin waves exhibits anomalous behavior at  in
AFMs with easy-plane anisotropy [7–9] due to spon-
taneous magnetoelastic strains in the ground state
[10]. Such an effect was called magnetoelastic gap in
[11]. Easy-plane AFMs with relatively weak ferromag-
netism in the neighborhood of the orientational phase
transition (OPT) exhibit strong dependence of the
speed of sound on magnetic field strength in the basal
plane [12–14]. Effect of pressure and magnetic field
on the propagation of linear eigen MEWs in uniaxial
AFMs has been reported in [15–17]. In the vicinity of
the OPT, such waves that are neither harmonic nor
linear even at small amplitudes owing to orientational
instability of the magnetization vectors of sublattices
exhibit strong dispersion (nonlinear eigen MEWs: sol-
itary, cnoidal, and helical [18–24]). Effects of magne-
toelastic coupling on shock waves and anharmonicity

of acoustic waves have been studied in [25] and
[26, 27], respectively.

In the vicinity of OPT, a spontaneous violation of
symmetry leads to several nontrivial effects. The theo-
retical calculations of [28, 29] and the supporting
experimental results of [30] show that a low-frequency
elastic wave in an easy-plane ferromagnetic material
may cause transitions from one state to another in the
regions of tension and compression with formation of
a traveling domain structure consisting of different
phases. A high-intensity elastic wave generates spatio-
temporal periodicity in a medium and provides condi-
tions for stable and unstable parametric interactions
between spatiotemporal harmonics of spin waves
[31, 32]. Nonlinear MEWs of different types in the
vicinity of OPT can be considered as dynamic states
with a certain symmetry that is modified when the
type of wave changes. Modification of such states in
the presence of variable elastic stress is similar to mod-
ification of static states in the presence of static stress
(i.e., represents a phase transition).

In this work, we study the phase diagram of
dynamic magnetoelastic states and specific features of
solitary and coupled MEWs in the vicinity of OPT in
an easy-plane antiferromagnet.

1. BASIC EQUATIONS

We solve the problem in the framework of the the-
ory of classic fields [33, 34] using the Lagrangian of an
elastically stressed multisublattice magnetic material
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where

is the kinetic potential [35],  and
 are the polar and azimuth angles of the

magnetization vector of the th sublattice

 and  are the saturation magnetization and
gyromagnetic coefficient of the th sublattice,  is the

material density,  is the

potential energy,  are the
components of the strain tensor, and  is the vector of
elastic displacements. The Lagrange equation is writ-
ten as

(2)

,  = 

, the energy–momentum four-vec-

tor of the field is given by ,
where the field tensor is

 is 0 at , +1 at , and –1 at
. Invariance of  leads to the equation

of continuity

Field energy density  and fluence  are inde-
pendent of gyroscopic terms and given by

and the density of the -component of the field
momentum is represented as
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With allowance for dissipation, the Lagrange equa-
tions are written as

(3)

where the dissipative function is represented as

 are the dissipative coefficients of magnetization,
and  are the components of elastic dissipative
tensor,

The following equations of motion are obtained from
expressions (1) and (2):

(4)

where  and 
are the elastic and viscous stresses.

For the system under study, the potential energy
contains contributions of magnetic subsystem ,
elastic subsystem , interaction of the subsystems

, and interaction of resulting magnetization 
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field , so that  –
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is the potential of inhomogeneous exchange inter-
action,

is the homogeneous potential in which the terms that rep-
resent scalar products determine the energy of homoge-
neous exchange interaction and the remaining terms
determine the anisotropy energy, , , and 
are the phenomenological constants, 
is the potential of elastic subsystem,

is the potential of magnetoelastic interaction,

is the resulting magnetization, and  is the demag-
netizing field that satisfies the equations

 and . Dynamic mag-
netoelastic states are determined by Eqs. (2), and
homogeneous and inhomogeneous static states are
determined by the equations

(5)

Using Eqs. (4), we represent the equations of
motion for magnetization vectors of the sublattices as
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   and

 is the normalized homogeneous poten-

tial. Angles  and  determine the degree of non-
collinearity of the magnetization vectors of sublattices.

2. GROUND STATE
We consider a tetragonal antiferromagnetic mate-

rial in the presence of external uniaxial elastic stress
exerted along the edges of a unit cell. We restrict consid-
eration to a system that is far from the spin-flop transition
when , where  and

 are the normalized vectors of
ferromagnetism and antiferromagnetism, respectively.
In such an approximation, the terms of the normalized
potential  can be represented as

(7)

where and  are the exchange constants; , and
 are the constants of magnetocrystalline anisotropy,

 are the magnetoelastic constants, and  are the
elasticity coefficients.

In the absence of stress in the AFM at ,
the ground static state corresponds to the absence of
resulting magnetization. At relatively large constant

, we obtain the easy-plane state. At
, we have one of two degenerate collinear

plane states:  or . External

elastic stresses  normalized by  cause equi-

librium strain  that can be represented in the fol-

lowing way using equations :
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(8)

Substituting expressions for  from (8) to (7), we
find the equilibrium potential

(9)

where  
  + 

and  are the

anisotropy constants renormalized by magnetostric-
tion and

are the effective stresses. Magnetoelastic coupling
leads to renormalization of magnetic constants, and
the external stress leads to additional contribution to
the energy of the plane uniaxial anisotropy. When such
a contribution is sufficiently large and , the
ground state is plane and, in addition, collinear in the
absence of external stress at . External stresses
may cause OPT with respect to polar or azimuth
angles.

Using the formulas for components  and  on
spherical coordinates, we find the conditions for exis-
tence of equilibrium states:
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where  are the functions that
determine angular (with respect to polar angle) phases
(explicit cumbersome expressions are omitted).

The analysis of Eqs. (10a)–(10d) shows that one of
the following phases  is allowed for the equilibrium
static state of AFM. In the collinear (with respect to
vectors  and ) phase  for which

, Eqs. (10a) and (10b) are automatically
satisfied and the orientation of the antiferromagnetic
vector is determined by the following expressions:
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and .

3. MAGNETOELASTIC EIGENWAVES 
IN THE VICINITY OF OPT

We consider evolution of nonlinear waves in the
vicinity of OPT between plane collinear phase  and
angular phase  at point . At a rela-
tively large axial anisotropy constant and low attenua-
tion, the following relationship follows from the first
equation of system (6):
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equations depending on variables  are repre-
sented as
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and uniaxial anisotropy with constant determined by
static and dynamic magnetoelastic interaction

. In accordance with expres-
sion (14), the law of energy conservation for a quasi-
particle can be represented as , where

 is the kinetic energy and inte-
gration constant  serves as the total energy of quasi-
particle. An implicit solution to Eq. (14) is given by

(15)

Type and behavior of MEW depend on function
 the extremum values of which on interval

 are reached at 

 and :

For , the potential reaches an absolute mini-
mum at points  when  and at points 
when . The maxima are located at points  at

, points  at , and points
 at . When , minimum of  is

reached at points  at , points  for inter-
val , and points  at . The
period of the potential is , and the period decreases
by a factor of 2 at point .

Figure 1 shows dependence  for .
The numbers on the dashed lines denote the dynamic
states (MEWs) that correspond to different values of
the potential (see below). A similar plot for  is
obtained by inversion of the plot of Fig. 1 relative to
the origin of coordinates.

Type of MEW is determined by relationship of
parameters  and . When  is above the
potential barriers at  and lower at , the
motion of the quasiparticle is infinite. Vector  rotates
in the basal plane, so that circular nonlinear MEWs
(waves of the rotation of antiferromagnetic vector) are
observed. When  is located between maxima and
minima of the potential, the trajectory of motion is
bounded by the potential barriers, which corresponds
to periodic nonlinear MEWs. When  coincides with
extrema of , the trajectory either lies on the extre-
mum (homogeneous state) or passes from one extre-
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Fig. 1. Plots of dependence : (closed circles) quasiparticles with positive effective mass, (open circles) quasiparticles

with negative effective mass, and (arrows) directions of motion in potential . The numbers on the dashed lines correspond to
the types of dynamic states that exist at different values of the potential.
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mum  another (solitary nonlinear MEWs). When
asymptotes are located in identical minima of poten-
tial, the waves are topologically stable (solitons).

Using the notation  we represent
expression (15) as

(16)

where

Poles  that are complex conjugate at 

become real at  If  , , and

 for  and  for if 

poles  are negative at  and , if ,

the poles are positive and . Using the data for
poles, we calculate the integral in expression (16)
using the tables of [36] and represent the solution in
terms of the Jacobi elliptic functions 

 and , where κ is the modulus of
function. The solutions can be used to determine the
domains of existence and types of possible dynamic
states.

Dynamic state 1:  . In this
case, the azimuth angle is calculated as
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where  is the charac-

teristic length. If  and , the

modulus is ; if  
so that

(18)

In a static coordinate cross section, vector 
rotates with time in the basal plane. At a fixed time
moment, vector  rotates with displacement along
the  axis, so that we obtain circular nonlinear MEW.
At , ,  and

, expression
(16) describes a solitary nonlinear MEW for which

(19)

Asymptotic values  are shifted from  by

.

Substituting expression (17) in expression (11), we
find polar angle  of the exit of antiferromagnetic
vector from the basal plane:

(20)

Polar angle  periodically changes from mini-
mum  ×  at

point  = , where

  to maxi-

mum  at point . At

, we have . When the direction of rota-
tion of vector  changes, the sign of the angle of exit
from the basal plane is changed.

Substituting expression (14) in expression (10) with
allowance for formula (17), we find

(21)

Exit of vector  from the basal plane is related to the
strain

(22)

where  , so that we
obtain

(23)

Strain  ranges from 0 to  and has zero mean
value, the amplitude of the alternating strain is

, and parameter  is given by

, where  is the amplitude of .
Nonlinear circular MEWs are excited by the strains
determined by expressions (21) and (23), and the
domains of existence are given by inequalities

(24)

Dynamic state 2: . The type

of state depends on the sign of :  at
 or ;  at

 or .
Dynamic state 2.1: . Equation (16) has two

solutions

(25)

where ;

  is the characteristic

length;  for  and  for

. We have , when . For

, the modulus  → 1/2, when . We
have  at  in the intervals

 and also at  in the interval

. We have  at  in the intervals
  and at  in the interval

. For , the intervals are obtained
using the inversion of the above intervals. Expres-
sions (25) describe the periodic nonlinear MEWs with
oscillations of  relative to the  axis with the ampli-

tude  that are phase-shifted by
one quarter of the period of elliptic functions.
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For κ2 → 0, expressions (25) correspond to har-
monic waves

where the amplitude is α =
  at .

For , we have  

 and , so that expressions (21)
correspond to either a constant or a solitary wave with
asymptotic values of 0 and :

(26)

Expressions (11) and (25) show that the angle of
exit of vector  from the basal plane is given by

(27)

where

Substituting expressions (25) and (27) in expres-
sions (13) and (22), we find that elastic strains corre-
sponding to the two solutions are represented as

(28)

Mean values of  differ from zero whereas quantities
 and  averaged over period are zeros, and param-

eter  is represented in terms of the wave amplitudes.
The solutions under consideration exist when

(29)

The type of motion is determined by functional
dependence . In the vicinity of the extrema,
we obtain nonlinear wave perturbations (cnoidal
waves). When the amplitude decreases (increases), the
nonlinear waves are transformed into linear harmonic
(solitary) waves. Conditions (29) correspond to stable
dynamic states. In the presence of dissipation, the
oscillations are damped and the magnetic subsystem
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asymptotically tends to the ground state. The oscilla-
tions of quasiparticles with the opposite sign of the
effective mass are unstable. However, topological sta-
bility (26) is implemented when asymptotic values

 correspond to identical extrema separated by
a potential barrier. In the presence of dissipation, such
topological solitons (that determine the boundary
between the vacuum states in the static regime) are
slowed down in the absence of shape changes.

Dynamic state 2.2: . The type of motion
depends on the sign of , which is positive at 

 or   and negative at

  or 

Dynamic state 2.2.1: . Two solutions exist:

(30)

where  = 

 and  is the character-
istic length. Formulas (30) describe the nonlinear
MEWs of the rotation of antiferromagnetic vector
shifted by . The following expressions are valid for
polar angles:

(31)

Vector  rotates around the  axis with oscillations
with respect to ; extrema of  correspond to

Expressions for elastic strains are written as
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The domain of existence of the above solutions is
bounded by the following conditions

(33)

The quasiparticle moves above (under) barriers at
 ( ).

Dynamic state 2.2.2: . Two solutions exist:

(34)

where ; ξ4 =

; and  is the characteristic
length. Formulas (34) describe oscillations with

amplitude  with respect to azimuth, and

oscillations of  relative to the basal plane are given by
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, nonlinear waves (37) are transformed into har-
monic waves

(38)

Note that  when
. The parameter is given by

where  is the oscillation amplitude. When 
or , expressions (37) are transformed into
expressions

(39)

Here, the first expression describes a solitary MEW
with asymptotic values . The polar angles that
correspond to solution (37) are given by

(40)

Maximum values of  are reached at  and
. The strains are represented as

(41)

The domain of existence of such solutions is repre-
sented as
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Dynamic state 3.1:  Two solutions exist:

(43)

where  ,

Oscillations (43) are phase-shifted relative to solu-
tions (37), and the polar angles are given by

(44)

Strains in MEW are described using the relationships

(45)

and the domain of existence of such solutions is repre-
sented as

(46)

Dynamic states 3.2: . Two solutions exist:

(47)

where  

 =  and .
Expressions (47) describe a periodic nonlinear MEW.
At , the oscillations are localized in the vicinity
of . The expressions for polar angles are written as

(48)
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where  F62 =

 and the strains are repre-

sented as

(49)

The domain of existence of such solutions is described
using the expressions

(50)

The quasiparticle moves in the vicinity of maximum
 at  and in the vicinity of minimum  at

.
Figure 2 shows the diagram of dynamic states on

dimensionless coordinates , where 

 for . A similar diagram for 
is obtained using the inversion of the diagram of Fig. 2
relative to the origin of coordinates.

Each of the above dynamic states is characterized
by certain symmetry. In particular, in the periodic
nonlinear MEW, quantity  is symmetric relative to
the basal plane and the result of averaging over the
period is zero. For the nonlinear MEW of the rotation
of antiferromagnetic vector, such a mean value differs
from zero. For the phase transition between such
waves, the minimum (with respect to modulus) value
of  may serve as the order parameter. Such a value
is zero for the periodic wave and proportional to

 for the wave of rotation of antiferromagnetic
vector. The root dependence of order parameter  is
typical of any phase transition. Derivative  at

 exhibits a singularity that is similar to that of
the susceptibility of ferromagnetic materials at the
Curie point. Hence, the above changing of the types of
wave can be considered as a dynamic phase transition.

4. DISPERSION OF NONLINEAR MEWs
Nonlinear MEWs are represented in terms of ellip-

tic functions that have periods  for  and
 for , where  is the complete elliptic
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Fig. 2. Diagram of dynamic states on dimensionless coor-
dinates  for : the closed and open circles
denote quasiparticles with positive and negative effective
masses, respectively, and the numbers correspond to the
types of waves that exist in the regions of the diagram. The
coordinates of points  and  are and ,
respectively.
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integral of the first kind. When , integral 
tends to . For , the integral increases as

. The relationship of spatial
and time periods is , where  for

 and  for and  is the characteristic size.
With allowance for such a relationship, the expression
for the frequency of the 3.1-type wave is written as

(51)

where  is the effective
rigidity. Integral  depends on modulus of , which
depends on , so that the dispersion relation cannot be
represented explicitly. Thus, we consider  as a
parameter. For  (where  is the wave
number), we obtain

(52)

where  is the activation energy,
,  is the critical
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effective constant of anisotropy (at the OPT point
),  is the mag-

netoelastic constant of anisotropy, and

 is the parameter that deter-

mines the magnetoelastic repulsion of branches.
Constant  (that determines the activation energy
and depends on the wave amplitude) depends only on
the magnetoelastic constant at the OPT point. For-
mula (52) describes the dispersion of coupled spin
waves and elastic transverse waves. For 

, the modulus is  and the integral is

  

  
, so that formula (52) is trans-

formed into the dispersion relation of linear waves. In
the region of small wave numbers, the dispersion of
quasi-spin and quasi-elastic waves is described using
the expressions

(53)

CONCLUSIONS
We have theoretically analyzed the behavior of

nonlinear MEWs in the vicinity of the OPT between
the plane collinear and angular phases for a tetragonal
antiferromagnetic material. Seven different dynamic
states with certain symmetries are possible for the sys-
tem under study. Transitions between such states may
result from changes of parameters of external elastic
force.

The motion of antiferromagnetic vector in the
presence of the field of elastic wave is similar to the
motion of an effective spin quasiparticle in a periodic
crystallographic potential that is modified by magne-
toelastic static and dynamic interactions. Dynamic
state 1 at κ → 0 corresponds to a free classical particle,
and state 2.2.1 corresponds to a free quantum quasi-
particle that moves above the maxima of potential but
is sensitive to its variations. A localized spin quasi-par-
ticle oscillates relative to the minimum (maximum) of
the periodic potential for the positive (negative) effec-
tive mass. The potentials with local minima (states 2
and 3 in Fig. 1) correspond to two energy levels, so that
effects typical of two-level quantum systems [37] can
be observed in the systems under study: in particular,
emission of spin waves due to elastic pumping. Non-
linear eigen-MEWs exhibit singularities with respect
to velocity that vanish when the exit of the antiferro-
magnetic vector from the basal plane is taken into
account. Similar dynamic magnetic phase transitions
with spontaneous violations of symmetry may take
place in the presence of a polyharmonic light field [38].
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