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Spin-dependent electronic transport is theoretically investigated for double-barrier hybrid structures S–IF–
F–IF–N and S–IF–N–IF–N, where S is a superconductor; F and N are ferromagnetic and normal metals,
respectively; and IF is the spin-active barrier. It is shown that in the case of strong superconducting proximity
effect and sufficiently thin F layers, the differential resistance of such structures can become negative at some
voltages, and the voltage dependence of the current can have an N-shaped form. Characteristic feature of the
differential resistance is its asymmetric dependence on voltage, which is most clearly manifested at strong
polarization of at least one of the barriers. The influence of impurity spin–orbit scattering processes in the
N-layer located between the barriers is investigated. The study was carried out for the case of diffusion elec-
tron transport.
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Investigation of hybrid structures containing
superconductors and ferromagnets has attracted
increased interest due to a variety of interesting phe-
nomena, such as spin-triplet super- conducting pair-
ing, anomalous superconducting and magnetic prox-
imity effects and other ones, which were studied in a
large number of papers [1–5]. In this paper we theo-
retically study phenomena, which have not been pre-
viously studied or which were not given enough atten-
tion that can be realized in double-barrier structures
S–IF1–F–IF2–N, where S is a superconductor; F
and N are ferromagnetic and normal metals, respec-
tively; and IF is a spin-active barrier. We will assume
that the dirty limit is realized, i.e., the frequency of
impurity scattering (in energy units) in all contacting
materials exceeds the energy gap in the superconduc-
tor Δ and the exchange energy h in the ferromagnetic
metal. We will use equations for averaged over the
direction of the momentum quasiclassical Green’s
functions

where , , and  are the retarded, advanced,
and Keldysh matrix Green’s functions, respectively. In
the considered dirty limit, the function  in the F

layer (in which it depends on the coordinate x, perpen-
dicular to the barrier plane) satisfies the equation (see,
e.g., [1])2

(1)

Here , , σ = (σx, σy, σz)
are the Pauli matrices in the spin space, ,

, ,  are the Pauli matrices in the particle–hole
space, ,  and  are the corresponding
identity matrices, DF is the diffusion coefficient in the
F layer,  is the exchange field,  is the
spin–orbit relaxation time due to impurity scattering,
and Planck’s constant is set equal to unity. To take into
account the scattering by spin-active barriers, we shall
assume that their transparencies are small and use the
boundary conditions obtained in [7–10]

(2)

1 The article was translated by the authors.
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2 We use the notation similar to that in [6], but the matrix struc-
ture of the Green’s functions we use differs from the matrix
structure of this work due to the transformation by unitary

matrix . In particular, this

transformation for the function  has the form  .
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where  ,  is the unit vector
in the direction of the exchange field in the barrier ,

,

(4)

 ,  is the conductivity in the F layer,
 denotes the resistance per unit area of

the jth barrier in the normal state, and  and  are
the contributions to the resistance due to spin-up and
spin-down electrons, respectively. Further, we con-
sider the case of a short F layer supposing that its
length . Integrating (1)
over the length of the F layer and taking into account
the boundary conditions (2) and (3), we get the fol-
lowing equation for the Green’s function :

(5)

where

Consider the case where the direction of the exchange
fields in the F layer as well as the directions of the unit
vectors  are parallel or antiparallel to each other.
Then the solution of Eq. (5) for  may be represented
in the form

(6)

where . The retarded and advanced

Green functions are represented in the form

(7)

. For the case of a low spin–orbit
impurity scattering rate , we
obtain

(8)
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Here,  and  are the Green’s functions of
the superconductor S, for which we will use expres-
sions  and 

, where γ takes into account inelastic
processes; in numerical calculations we will use a
model in which γ does not depend on energy. The
Keldysh Green’s function is given by the expression
(further, )

(9)

where  is the matrix distribution function

(10)

where ( )

(11)
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(14)

(15)

(16)

(17)

(18)

Here, , , 

. Using the

boundary condition (3) in calculating the current,
which is determined by the integral

, we get

(19)

Results of numerical calculations of the current and
differential conductance  dependencies on
voltage are presented in Figs. 1–6. A characteristic
feature of the differential conductance is its asymmet-
ric dependence on voltage V and on the direction of
the exchange field h in the F layer, the presence of
intervals V, in which the differential conductance G
(and differential resistance) becomes negative
(Figs. 1–3, 6). The asymmetry of the conductance is
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