MAGNETIC FIELD BEHAVOIR OF SUPERCONDUCTING HETEROSTRUCTURES WITH ANTIFERROMAGNETIC LAYER.

I.V. Borisenko¹, K.Y. Constantinian¹, P.V. Komissinkiy^{1,2}, <u>Y.V. Kislinskii¹</u>, G.A. Ovsyannikov¹, A.V. Shadrin¹

¹Institute of Radio Engineering and Electronics, Mokhovaia st. 11 buiding 7, 125009, Moscow, Russia; ³Technical University of Darmstadt, D-64287, Germany

e-mail: yulii@hitech.cplire.ru

A critical currents I_C versus magnetic field H for Nb/Au/Ca_xSr_{1-x}CuO₂/YBa₂Cu₃O₇ heterostructures (GSA) with antiferromagnetic thin film layer (A) of Ca_xSr_{1-x}CuO₂ 20 ÷ 50 nm in thickness were measured. It were compared with $I_C(H)$ dependencies for Nb/Au/YBa₂Cu₃O₇ Josephson junctions, which were made by similar technique and with the same sizes from 10·10 μ m² to 50·50 μ m². According to [1] GSA structures should have magnetic oscillations of I_C , which are much smaller in period, than period of $I_C(H)$ for SNS junctions, in case of A layer is thicker than coherence length. In figure 1 half widths of the main peak Δ H in dependency $I_C(H)$ are compared for GSA and for the junctions.

The ΔH fields for GSA with 50 nm Ca_{0.5}Sr_{0.5}CuO₂ layer (closed circles) were 25 times smaller, than the fields for junctions, which have no A layer (open circles). ΔH fields were inversely proportional to structure width L in both cases (solid lines). Sensitivity to magnetic field 2mV/G was obtained for 20.20 μ m² heterostructure.

[1] L.P. Gorkov, V.Z. Kresin: Physica C, 367, p. 103, (2002).

It is a poster presentation to section "Magnetism and superconductivity.