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Characterization and Dynamics of [100]-Tilted
Y-B-C-O Bicrystal Junctions on Nd Ga O3

Igor V. Borisenko, Iosif M. Kotelyanski, Anton V. Shadrin, Philippe V. Komissinski, and Gennady A. Ovsyannikov

Abstract—We report on the fabrication technique and electrical
properties of Basal Plane Tilted YBa2Cu3O7 x (YBCO) su-
perconducting bicrystal Josephson Junctions (BTJ). In order to
form the grain boundary in BTJ we apply an inclination of the
(001) YBCO basal planes around the direction of {100} YBCO in
contrast to the common In-Plane Tilted bicrystal Josephson Junc-
tions (ITJ) where misorientation of the crystallographic axes in
the -plane of YBCO has been used. Symmetric and asymmetric
junctions were fabricated on bicrystal NdGaO3 substrates
13–28 tilted from (110) NdGaO3. DC and RF properties of the
BTJ were investigates at temperatures 4.2–77 K, in magnetic fields
up to 100 G, and under influence of electromagnetic radiation of
56 GHz frequency. The experimental dependences of critical cur-
rent and Shapiro steps from RF current fit the Resistive Shunted
model of Josephson junctions (RSJ-model). At T = 77 K the
BTJ reveal critical current density jC = 0 2 0 5 MA cm

2

and characteristic voltage VC = ICRN = 0 6 0 9 mV, that
makes the junctions promising candidate for practical electronic
devices.

Index Terms—Basal plane inclination, bicrystal junction,
Josephson effect, metal-oxide superconductor.

I. INTRODUCTION

ACCORDING to the theoretical models of Josephson
junctions [1]–[5] the critical frequency of the junc-

tion is designated by the characteristic voltage
( —critical current, —normal resistance of the junction)
through Josephson equation and defined by
an order parameter of the superconductors forming the
junction. Thus for (YBCO) with high critical
temperature the amplitude of superconducting
order parameter is , and would be ex-
pected to reach few millivolts at liquid nitrogen temperature
(77 K). However, experimentally obtained values of do
not exceed 300 even for well developed In-Plane Tilted
bicrystal Josephson Junctions (ITJ), where YBCO films are
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(001)-oriented on both sides of the grain boundary but and
axes are rotated around [001] YBCO (Fig. 1(a)) [5], [6].

Recently, significant increase in (up to 1 mV) have been
reported in Basal Plane Tilted bicrystal Josephson Junctions
(BTJ) [7]–[10], where the (001) YBCO planes are symmetri-
cally misoriented by angles by rotation around [100]
YBCO (Fig. 1(b)). However, due to an extra conductivity
channel through the possible superconducting shorts with the
sizes larger than the coherence length of YBCO, high values
of , obtained from dc measurements ( and ), may not
correspond to the dynamic characteristics of the junction like
Josephson oscillations, superconducting current-phase relation,
high frequency impedance and so on [5], [11].

Unfortunately, the considerable anisotropy of the electrical
properties of the tilted YBCO epitaxial films may result in prob-
lems for Josephson devices based on the BTJ. In order to reduce
the effect of anisotropy we suggest Asymmetric Basal Plane
Tilted bicrystal Josephson junctions (ABTJ), where ,

(Fig. 1(b)). In this case the YBCO film on one side from
the grain boundary is (001)-oriented and has no significant elec-
trical anisotropy in the -plane. Note that is usually small
in asymmetric ITJ.

In this paper we present our results on DC and RF prop-
erties of BTJ and ABTJ fabricated on (NGO)
substrates—material with small dielectric losses at millimeter
wavelengths [12]. Electrophysical and dynamic (microwave)
properties of the symmetric and asymmetric junction have been
studied and compared with ordinary ITJ junctions on NGO
substrates with the similar values of misorientation angles.

II. FABRICATION

NGO bicrystal substrates for all types of junctions have been
fabricated by the same technique and have bicrystal boundaries
of the same quality [12]. Misorientation angles are varied
from 13 to 28 . (110) NGO substrates have been used as de-
position template for 150 nm thick (001) YBCO films. We ap-
plied dc sputtering of YBCO target at high oxygen pressure or
laser ablation at substrate temperature 780–800 to obtain crit-
ical temperatures of epitaxial YBCO films .
Josephson junctions namely YBCO thin film microbridges of 4

width and 10 length were patterned across the bicrystal
boundary by photolithography, RF plasma etching in argon and
wet chemical etching in 0.5% ethanol solution of [13].
IV-curves of the junctions were measured in the temperature
range of , magnetic fields up to ,
and under influence of monochromatic microwave radiation of

frequency.
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Fig. 1. Types of bicrystal junctions: a) inplane tilted bicrystal junction (ITJ);
b) basal plane tilted bicrystal junction (BTJ). � and � are misorientation angles.
� = 0, � 6= 0 for asymmetric junctions.

III. EXPERIMENTAL RESULTS AND DISCUSSION

The morphology of the YBCO film deposited on tilted sub-
strate depends on the inclination angle [14]. Fig. 2(a) shows an
AFM 3D-image of YBCO film deposited on ABTJ substrate
with , . A cross section view indicates a dif-
ference in the surface morphology compared with (001)-ori-
ented films on (110) NGO substrates: the elongated step-like
features can be observed, while the edges of the steps are ori-
ented along the substrate rotation axis [001] NGO (Fig. 2(b)).
For small tilted angles the thin film is very smooth (roughness
less than 3 nm) and the step height is close to the YBCO lattice
parameter. If the inclination angle exceeds 3–5 the step height
increases rapidly and becomes much greater (7–10 nm) than the
initial step size on the substrate surface (0.5–1 nm) [14].

Parameters of the three types of bicrystal junctions (ITJ, BTJ,
ABTJ) obtained from DC measurements of the I-V curves at

and 78 K are presented in Table I. As it follows from
the Table I the values of critical current density

and characteristic voltage of
the BTJ at 78 K are much higher (by factor of 10) than ones of
the ITJ.

A. I-V Curves

The I-V curves of the BTJ shown on Fig. 3 are hyperbolic-like
dependences typical for the RSJ model of a Josephson junction.
Two channels of current transport are presented, namely, quasi-
particle current and superconducting current

, where is a phase difference between two super-
conducting electrodes [1], [15]. Large values of excess current,
which are typically about 50% of at , may indicate
on the existence of an additional channel of direct (non tunnel)
conductivity or other current transport mechanism [5]. Note that
ABTJ and BTJ with misorientation angle 13 reveal I-V curves
different from hyperbolic form and typical for viscous flow of
vortices [1], [15]. At the rise of excess current is

Fig. 2. Three-dimensional AFM view for the ABTJ boundary a), crossection
b) and 3-D AFM of the YBCO bridge crossing bicrystal boundary c).

observed and the junctions have higher (up to 10 mV) al-
though their utilization in practical systems is difficult because
of the significant deviation from RSJ model.

B. Critical Current

Typical dependence of BTJ is shown on Fig. 4. Its
shape is rather linear and differs from the theoretically predicted
one for tunnel junctions of s-superconductors (SIS) [1], where
saturation is observed at .

In the SIS tunnel junctions the current transport through
high-energy Andreev states is realized. In con-
trast, linear dependence of has been previously observed
in the junctions with direct conductivity, where within wide
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TABLE I
DC PARAMETERS OF BICRYSTAL JUNCTIONS

, ,
, ,

J1–J3—junction number on sample.

Fig. 3. Normalized (V=V and I=I ) I-V curves for ABTJ (� = 0) for two
misorientation angles � = 21 (solid curve) and 28 (dashed). The reduction of
excess current clearly observed with increasing angles. I-V curves for the same
junctions for large voltage scale are shown on inset.

temperature range superconducting current transport is deter-
mined by low-energy Andreev states [1]. In ITJ

-type of superconducting order parameter symmetry
presumes both and states contributing to current
transport at low temperatures. However, at high temperatures
the influence of the is drastically reduced. Low-energy
states do not appear in BTJ if either or crystallographic axis
in YBCO is parallel to the grain boundary (no in-plane tilting)
[2]–[5]. Hence the significant difference in between ITJ

Fig. 4. Temperature dependences of the BTJ resistance and critical current.
Almost linear I (T) dependence is clear observed.

and BTJ at can be explained by the -wave
symmetry of the superconducting order parameter in ITJ
electrodes. In ITJ the planes are rotated around -axis of
YBCO resulting in smaller along the direction perpendicular
to the grain boundary. The suppression of the order parameter
may as well occur in the vicinity of the grain boundary interface
due to contact phenomenon [3] (Fig. 5).

is decreased more than three times (Table I) when in-
creasing the misorientation angle from 21 to 28 . Such be-
havior is in a good agreement with a theory [16], where large
values of ( is the Fermi energy) typical for YBCO
and significant Fermi surface anisotropy are taken into account.
These two factors lead to dispersion in momenta of incident
electrons and reflecting holes at the grain boundary and, as a re-
sult, the coherence of multiple Andreev reflection is broken and
superconducting current is depressed. At the same time there is a
certain critical misorientation angle according to [16], at which
critical current is reduced almost to zero. Such strong depen-
dence, however, may be decorated by boundary faceting. Note,
that the reduction of with increasing has also been
observed in ITJ (see Table I and [5]).

Dependences of the critical current vs. magnetic field
are presented in Fig. 6. The maximum of the is ob-
served at . However, dependence is different from
the Fraunhofer-type and moreover, asymmetrical. The latter is
typical for distributed Josephson junctions [1], [15]. Actually,
the Josephson penetration depth of magnetic field for

is , which is significantly smaller
than the junction width . Thus, we may consider our
junctions as distributed ones at liquid nitrogen temperature.

C. Shapiro Steps

In order to determine the junctions dynamical parame-
ters we have measured the IV-curves under the influence of
monochromatic radiation of millimeter wavelengths, typically

, . Experimental dependences
of the critical current and Shapiro steps vs. amplitude of the
external electromagnetic radiation may be well fitted by the RSJ
model (Fig. 6). The deviation of the normalized experimental
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Fig. 5. Typical magnetic-field (at T = 78 K) dependences of the critical
current for BTJ.

Fig. 6. Amplitude dependences of the normalized critical current
I (I )=I (0) (squares) and first Shapiro step I (I )=I (0)((solid
rounds) for BTJ at external frequency f = 56 GHz. Solid lines and dotted
line—theoretical dependences at f =f = 0,23.

maximum of the first Shapiro step from
the calculated one is about 7% at nor-
malized frequency . The difference
shows that the effective critical current value is about 7%
lower because of the inhomogeneous current distribution.
Note that absence of subharmonic Shapiro steps (at voltages

), and zero minimum values of and
dependences indicate pure sinusoidal superconducting

current-phase relation [13]. Thus, in spite of the excess current
observations we have obtained a good concordance of DC and
dynamic BTJ and ABTJ junction parameters at liquid nitrogen
temperature.

IV. CONCLUSION

Observation of high characteristic voltages
at in more than 70% of the investigated symmetric

and asymmetric basal plane tilted bicrystal Josephson junctions
make them very attractive for application as elements of super-
conducting electronics. The high value of was confirmed by
measurements at mm wave.

The existence of practically isotropic (001)
film on one side of the asymmetric BTJ easily allows to fabricate
additional circuits and wirings while maintaining high critical
parameters. Furthermore, asymmetric basal plane tilted junc-
tions can be also fabricated using a biepitaxial technology by
the proper selection of a buffer layer material for tilting of the
YBCO basal planes.
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