Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В. А. Котельникова Российской академии наук (ИРЭ им. В. А. Котельникова РАН)

На правах рукописи

Насретдинова Венера Фатиховна

Фотоэлектрическая спектроскопия квазиодномерных соединений $p ext{-}\mathrm{TaS}_3,\ \mathrm{NbS}_3(\mathrm{I})\ \mathrm{u}\ \mathrm{K}_{0.3}\mathrm{MoO}_3$

01.04.07 – Физика конденсированного состояния

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата физико-математических наук

> Научный руководитель д. ф.-м. н. Зайцев-Зотов С. В.

Содержание

Введен	ие	4
Глава 1	I. Пайерлсовская щель в квазиодномерных проводниках	
и фотоэлектрическая спектроскопия как метод ее изучения		
1.1.	Квазиодномерные соединения с пайерлсовской щелью	10
1.2.	Влияние флуктуаций	16
1.3.	Неидеальный нестинг	20
1.4.	Солитонные состояния	22
1.5.	Влияние примесей	24
1.6.	Проблемы экспериментальных методик исследования пайерлсов-	
	ской щели	25
1.7.	Пайерлсовская щель в p-TaS ₃	27
1.8.	Пайерлсовская щель в голубой бронзе $K_{0.3} { m MoO_3}$	33
1.9.	Щелевое состояние в квазиодномерном полупроводнике ${\rm NbS}_3(I)$	39
1.10.	Фотопроводимость в квазиодномерных проводниках и ее при-	
	менение для изучения плотности состояний	45
Глава 2	2. Использованные экспериментальные методики (техни-	
ка э	ксперимента)	53
2.1.	Изготовление образцов p-TaS $_3$ и NbS $_3(I)$	
2.2.	Изготовление образцов голубой бронзы	54
2.3.	Методика измерений спектров фотопроводимости	55
2.4.	Измерения вольт-амперных характеристик и температурной	
	зависимости проводимости	60
2.5.	Синтез кристаллов ${\rm TaS_3}$ и ${\rm NbS_3}({\rm I})$	61
2.6.	Введение примесей индия в TaS_3	65

Глава	3. Исследование энергетической структуры пайерлсов-	
скої	й щели в TaS ₃	
3.1.	Спектры фотопроводимости р- ${\rm TaS}_3$	
3.2.	Внутрищелевые состояния в ромбическом TaS ₃ 85	
3.3.	Свойства внутрищелевых состояний: влияние поляризации из-	
	лучения, величины электрического поля, дополнительной под-	
	светки	
3.4.	Дополнительные сведения об исследовавшихся образцах 99	
3.5.	Проверка наблюдавшихся эффектов	
3.6.	Сравнение результатов с предыдущими данными	
3.7.	Выводы	
Глава	4. Другие квазиодномерные соединения, исследованные	
мет	одом фотоэлектрической спектроскопии: $\mathbf{K}_{0.3}\mathbf{MoO_3}$ и $\mathbf{NbS_3(I)}112$	
4.1.	Спектры фотопроводимости $K_{0.3} MoO_3$	
4.2.	Сравнение с предыдущими результатами	
4.3.	Дополнительные сведения об исследовавшихся образцах 119	
4.4.	Выводы	
4.5.	Спектры фотопроводимости $NbS_3(I)$	
4.6.	Внутрищелевые состояния в $\mathrm{NbS}_3(I)$ и влияние на них прило-	
	женного электрического поля, дополнительной подсветки, по-	
	ляризации излучения и пластических деформаций	
4.7.	Дополнительные сведения об исследовавшихся образцах ${\rm NbS}_3({\rm I})135$	
4.8.	Выводы	
Заключение		
Литература 147		

Введение

В середине 20-го века в физике конденсированного состояния вещества появились теории, показавшие существование нестабильностей в модели свободных электронов при понижении размерности рассматриваемого объекта. В частности, Пайерлс [1] показал, что основным состоянием одномерной (1D) цепочки атомов при нулевой температуре является диэлектрическое, так как нестабильность одномерного металла по отношению к периодическому потенциалу с волновым вектором $2k_F$ приводит к образованию самосогласованного периодического изменения электронной плотности и величины смещения атомов решетки, а также к открытию щели в энергетическом спектре при энергии Ферми. Такое самосогласованное изменение электронной плотности и положения атомов решетки называется волной зарядовой плотности (ВЗП). Через некоторое время Фрёлих также рассмотрел случай свободных электронов, взаимодействующих с кристаллической решеткой в одномерной цепочке, и пришел к решению с ВЗП, а также предложил бездиссипативный механизм переноса тока ВЗП в бесконечной среде с периодическими граничными условиями. В 70-е годы 20-го века химикам удалось синтезировать низкоразмерные соединения из атомных цепочек, слабо связанных между собой в поперечных направлениях, в которых удалось наблюдать волны зарядовой и спиновой плотности экспериментально, и началось бурное изучение обнаруженных явлений. Оказалось, однако, что бездиссипативному переносу тока препятствует сильное взаимодействие ВЗП с примесями — пиннинг ВЗП, приводящий к пороговому характеру нелинейной проводимости. Количественный расчет основных свойств пайерлсовского состояния в квазиодномерных соединениях осложнен, в частности, из-за необходимости учитывать сильные в 1D системах электрон-фононное и электрон-электронное взаимодействия, поэтому в настоящий момент эксперимент продолжает быть важным инструментом исследования этих материалов.

При образовании волны зарядовой плотности в спектре квазичастичных возбуждений открывается щель, называемая пайерлсовской, и модельный одномерный кристалл переходит в полупроводниковое состояние. В реальных квазиодномерных кристаллах открытие пайерлсовской щели возможно на фоне уже наличествующего полупроводникового состояния с нулевой щелью [2], а также возможно неполное открытие щели не на всей поверхности Ферми (как в NbSe₃), при этом величина щели может варьироваться от нескольких мэВ (в органических материалах) до сотен мэВ [3, 4]. Известно насколько широко используется фотопроводимость для исследования свойств полупроводников [5, 6], поэтому кажется естественной идея выяснить, возможно ли возбуждение квазичастичных носителей тока через пайерлсовскую щель при поглощении электромагнитного поля световой волны.

Долгое время обнаружить фотопроводимость в неорганических квазиодномерных соединениях с ВЗП, с которых началось экспериментальное изучение пайерлсовского перехода, не удавалось [7], что, как правило, объяснялось малым временем жизни квазичастичных носителей, возбужденных через энергетическую щель τ . Оценки приводили к τ меньше, чем $10^{-12}-10^{-13}$ с, после которого происходит образование солитонных состояний [8] с энергией, близкой к половине величины пайерлсовской щели $W_s=2\Delta/\pi$. Солитонные состояния могут быть локализованными или малоподвижными и не давать вклада в проводимость (например, так происходит в цис-полиацетилене [9]). В 2001 году авторами работы [10] была обнаружена сильная зависимость нелинейной проводимости в голубой бронзе $K_{0.3}$ МоО₃ от подсветки, объясненная движением ВЗП под действием света, однако, по всей видимости, явившаяся проявлением фотопроводимости в голубой бронзе. В 2004 году было опубликовано сообщение о первом наблюдении фотопроводимости в ромбическом ТаS₃ (р-ТаS₃) [11].

Настоящая работа посвящена изучению свойств пайерлсовской щели в трех квазиодномерных соединениях при помощи фотоэлектрической спектроскопии — метода, впервые применяемого для исследования квазиодномерных проводников. Под изучением свойств понимается прежде всего определение точной величины щели, а также поиск внутрищелевых состояний, в том числе солитонных, предсказанных для соединений с ВЗП [8]. Несмотря на более чем тридцатилетнюю историю изучения волны зарядовой плотности, к моменту начала работы над диссертацией не существовало единого мнения и однозначных данных по поводу величины пайерлсовской щели в ромбическом TaS_3 . Разброс данных по величине пайерлсовской щели в голубой бронзе был меньше, тем не менее, все еще составлял порядка 30% в зависимости от метода определения [12]. Кроме того, для обоих соединений данные варьировались от образца к образцу [4]. Расчеты величины щели существовали только для третьего соединения — квазиодномерного полупроводника $NbS_3(I)$, по поводу принадлежности которого к классу соединений с ВЗП шла дискуссия [13–16]. Отсутствие однозначных данных было связано с рядом причин. Во-первых, результаты теоретических расчетов на данный момент не являются количественными, что связано с трудностью определения константы электрон-фононного взаимодействия, от которой величина пайерлсовской щели зависит экспоненциально $\Delta \sim \exp(-1/\lambda)$. Во-вторых, свойства индивидуальных кристаллов квазиодномерных проводников с ВЗП очень сильно зависят от количества примесей [4], которое остается достаточно высоким номинально чистыми считаются кристаллы с уровнем примесей менее 10^{-2} атомных процентов, а измерить количество примесей в индивидуальном кристалле очень сложно из-за малых размеров и недостаточной изученности количественного влияния примесей на свойства. При этом, по данным туннельных экспериментов в соединении NbSe₃, даже малые концентрации примесей, вводимых при росте кристаллов, способны менять величину щели на десятки процентов [17]. В третьих, в экспериментах разного типа определяются несколько разные значения щели — так, в транспортных экспериментах измеряется активационная щель, которая в случае непрямозонности вблизи k_F будет отличаться от оптической, а непрямозонность практически обеспечена учетом неидеального нестинга в реальных квазиодномерных веществах (то есть непараллельности волнового вектора ВЗП направлению наибольшей проводимости из-за наличия взаимодействия в поперечном направлении). Результаты измерений величины щели по туннельной проводимости на мезаструктурах [18], изготовленных из квазиодномерных соединений, связаны со свойствами изготовляемых структур — определить, сколько туннельных переходов вносит вклад в измеряемую проводимость, не представляется возможным. Болометрический отклик увеличивается не только при возбуждении носителей через щель, но и при возбуждении оптических фононов. При этом измерения отражения [19–21], пропускания, поглощения [22] для ромбического ${
m Ta}S_3$ не дают достаточного разрешения в области вблизи щели из-за малости сигнала. Из-за огромной элементарной ячейки до сих пор точно не определена структура TaS₃, то есть точное положение атомов в ячейке, необходимое для первопринципных расчетов энергетического спектра.

Применение метода фотоэлектрической спектроскопии, описанное в настоящей работе, позволило разрешить многие из перечисленных затруднений и получить данные о величине щели в перечисленных соединениях. Кроме того, в ромбическом TaS₃ и в NbS₃(I) удалось наблюдать внутрищелевые состояния, зависящие от приложенного электрического поля и подсветки. Малые величины электрических полей, влияющих на величину фотопроводимости связанной с внутрищелевыми состояниями, а также поляризационная зависимость фотопроводимости свидетельствуют о неодночастичном механизме их образования. Фотоэлектрическая спектроскопия позволила также изучить влияние примесей на щель в ромбическом TaS₃.

На защиту выносятся следующие результаты и положения:

- 1) Методом фотоэлектрической спектроскопии определена величина оптической пайерлсовской щели в квазиодномерном проводнике ромбический TaS_3 при температурах ниже 40 K. Величина щели в ромбическом TaS_3 составляет от 0.2 эВ до 0.25 эВ в зависимости от качества образцов.
- 2) Методом фотоэлектрической спектроскопии обнаружены внутрищелевые состояния в ромбическом TaS_3 в области энергий 0.2 эB-0.15 эB разных типов: связанный с примесями континуум состояний, и одиночные уровни, чей вклад в фотопроводимость зависит от электрического поля.
- 3) Определены условия роста фаз квазиодномерного соединения NbS_3 . Методом фотоэлектрической спектроскопии обнаружены внутрищелевые состояния в квазиодномерном полупроводнике $NbS_3(I)$, зависящие от электрического поля и подсветки, в том числе при энергиях, предсказанных для солитонных возбуждений.
- 4) Методом фотоэлектрической спектроскопии определена величина пайерлсовской щели в квазиодномерном проводнике $K_{0.3} MoO_3$ при 20~K. Величина щели составляет 0.11~ 3B.

Структура и объем диссертации.

Диссертация состоит из введения, четырех глав, заключения и списка цитированной литературы. Работа содержит 162 страницы, 59 рисунков, 4 таблицы и список литературы, включающий 133 источника.

Структура диссертации: в главе 1 приводятся определения ключевых понятий из физики волн зарядовой плотности и фотоэлектрической спектроскопии, связанных с тематикой диссертации, а также сведения о изучаемых

соединениях: p-TaS₃, $K_{0.3}$ MoO₃ и NbS₃(I), включая обзор результатов об изучении пайерлсовской щели в этих соединениях. В главе 2 описываются использованные экспериментальные методики. Глава 3 посвящена результатам фотоэлектрической спектроскопии p-TaS₃, глава 4 — результатам фотоэлектрической спектроскопии голубой бронзы и фотоэлектрической спектроскопии NbS₃(I). Главы 3 и 4 содержат краткие выводы. Основные выводы излагаются в заключении.

Глава 1

Пайерлсовская щель в квазиодномерных проводниках и фотоэлектрическая спектроскопия как метод ее изучения

1.1. Квазиодномерные соединения с пайерлсовской щелью

Квазиодномерные (q1D) соединения — химические соединения, в которых наблюдается высокая структурная анизотропия по одному из трех направлений, приводящая к качественному изменению свойств квазичастичных возбуждений. Многие из неорганических q1D соединений обладают цепочечной структурой, то есть состоят из множества одномерных (1D) цепочек из атомов металла, слабо связанных между собой в поперечных к цепочкам направлениях. Структурная анизотропия приводит к анизотропии перекрытия электронных волновых функций — интеграл перескока между цепочками меньше, чем вдоль цепочек $t_{\perp} << t_{||}$ — и, как следствие, к анизотропии физических свойств. Анизотропия проводимости для TaS_3 составляет $\sigma_c/\sigma_a \sim 10^2$, для $K_{0.3} MoO_3 - \sigma_b/\sigma_{a+2c} \sim 10^2$ и $\sigma_b/\sigma_{a-2c} \sim 10^3$ [4].

В первом приближении такие системы можно рассматривать как набор не взаимодействующих 1D цепочек, где каждая цепочка описывается одномерным газом свободных электронов, взаимодействующим с решеткой атомов с периодом a. Если число свободных электронов на атом решетки ρ , то концентрация электронов равна $n=\rho/a$. В такой модели зона Бриллюэна — отрезок от $-\pi\rho/a$ до $\pi\rho/a$ на оси a^* , а поверхности Ферми — две плоскости, перпендикулярные направлению $k_a=a^*$ в импульсном пространстве. Элек-

троны при нулевой температуре заполняют половину зоны Бриллюэна из-за вырождения по спину, от $-\pi \rho/2a$ до $\pi \rho/2a$. В такой системе становится энергетически выгодным появление нового периода в системе $a' = 2a/\rho$, так как при этом новая граница зоны Бриллюэна попадает на место раздела между свободными и занятыми состояниями, в энергетическом спектре $\varepsilon(k)$ открывается щель 2Δ , а энергия свободных носителей понижается, так как на границе зоны Бриллюэна производная $d\varepsilon/dk=0$ (см. рис. 1.1). Создать новый период можно как смещением каждого ρ -го атома (при этом будет проигрыш в упругой энергии), так и просто периодическим изменением электронной плотности. Волновой вектор Ферми в такой системе $k_F = \pi \rho/2a$, волновой вектор смещения решетки $Q = 2 \cdot \pi \rho / 2a = 2k_F$. Впервые неустойчивость одномерной электронной системы по отношению к периодическому смещению атомов с $Q=2k_F$ показал Р. Пайерлс [1], поэтому и физические величины связанные с данной неустойчивостью, получили название пайерлсовских. С повышением температуры выигрыш электронной энергии будет уменьшаться из-за размывания распределения Ферми на $k_B T$, и при некоторой критической температуре должен произойти переход в металлическое состояние. Переход также называется пайерлсовским. В системах большей размерности (2D и 3D) выигрыш электронной энергии будет меньше, так как поверхности Бриллюэна имеют кривизну, и при образовании ВЗП открыть щель на всей поверхности не удастся. Проигрыш в упругой энергии приводит к тому, что в 3D случае перехода металл-изолятор не наблюдается; напротив, в одномерном случае выигрыш за счет понижения электронной энергии (при нулевой температуре) всегда больше, чем увеличение энергии фононной системы за счет фононов [12]. Отчасти это связано с тем, что уменьшение энергии фононов с волновым вектором $2k_F$ (коновская аномалия) из-за взаимодействия с электронным газом в одномерном случае максимально.

Последнее можно увидеть из более обобщенного способа описания Пай-

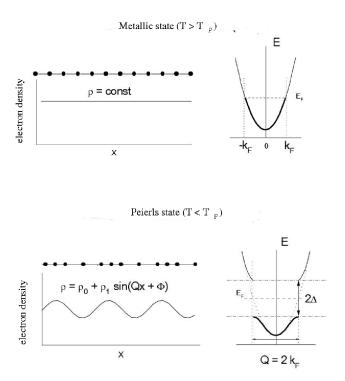


Рис. 1.1. Открытие пайерлсовской щели и образование ВЗП. Рисунок взят из работы [27]

ерлсовского перехода — нестинга. Нестингом называется совмещение поверхностей Ферми или их участков при смещении на некоторый волновой вектор Q, приводящее к расходимости электронной восприимчивости χ_e . В рассматриваемой простой модели $\chi_e = \sum_k \frac{f(\varepsilon_{k+q}) - f(\varepsilon_k)}{\varepsilon_{k+q} - \varepsilon_k}$, где $f(\varepsilon)$ — распределение Ферми, и условие нестинга выполняется для $q = 2k_F$. При этом отклик электронной плотности на периодическое возмущение решетки V(q) $\rho_q = \chi_e(q)V(q)$, а коэффициент упругости, характеризующий проигрыш в упругой энергии, перенормируется как $K_{eff} = K - 2g\chi_e(q)$. Расходимость $\chi_e(q)$ приводит к уменьшению энергии фононной моды с волновым вектором q — коновской аномалии, максимальной по величине в одномерном случае [12, 23] — и индуцирует статическое периодическое смещение атомов решетки.

Квазиодномерные проводники ромбический ${\rm TaS_3}$ и ${\rm K_{0.3}MoO_3}$ (голубая бронза), изучаемые в настоящей работе, при температурах ниже критической T_P переходят в новое фазовое состояние, в котором наблюдается обра-

зование сверхструктуры, детектируемое в экспериментах по рентгеновской и электронной дифракции, а также по нейтронному рассеянию. При переходе на порядки возрастает сопротивление и ход его температурной зависимости меняется с металлического на активационный, появляется нелинейная проводимость в полях выше пороговых E_t , наблюдается смягчение фононной моды с $q=2k_F$, возрастает диэлектрическая проницаемость, изменяется магнитная восприимчивость, меняет знак коэффициент Холла и т.д. (см. обзор [4]). Все эти явления связаны с образованием ВЗП и переходом в пайерлсовское состояние.

В настоящее время эффекты, связанные с зарядовым упорядочением, ВЗП и волной спиновой плотности наблюдаются в огромном количестве систем разной размерности [4, 24], и продолжают обнаруживаться новые классы соединений с пайерлсовским переходом [25, 26].

Значительная часть теоретических работ, посвященных пайерлсовскому состоянию [4], подходит к описанию щелевого состояния с волной зарядовой плотности исходя из фрелиховского гамильтониана:

$$H = H_{el} + H_{el-ph} + H_{ph}$$

учитывающего только электрон-фононные взаимодействия, где:

 $H_{el} = \sum_{k} \varepsilon(k) a_{k}^{+} a_{k}, \ H_{ph} = \sum_{k} \hbar \omega k b_{k}^{+} b_{k}, \ H_{el-ph} = \sum_{p}, kg(k) a_{p+k}^{+} a_{p}(b_{k} + b_{-k}^{+}),$ $\varepsilon(k)$ — закон дисперсии электронов, a_{k}^{+} и a_{k} — оператор рождения и уничтожения электронов с импульсом k (в импульс включен также спиновый индекс), аналогичные операторы для фононов — b_{k}^{+} и b_{k} , g(k) — константа электронфононного взаимодействия, а дисперсия фононов — $\hbar \omega_{k} = ks$, где s — скорость звука. Вклад от H_{el-ph} в гамильтониан можно переписать с использованием электронно-полевых операторов $\psi(x)$ в виде $H_{el-ph} = \sum_{k} \int dx g(k) (b_{k} + b_{-k}^{+}) e^{ikx} \psi(x) \psi^{+}(x)$. Переход второго рода, описываемый при помощи теории среднего поля, приводит к тому, что ниже критической температуры заселенность фононных состояний с волновым вектором $2k_{F}$ становится макроскопи-

ческой, при этом образуется периодическое искажение решетки с периодом $2\pi/2k_F$, амплитуда которого в реальных кристаллах составляет порядка 0.05 ангстрем [27].

1.1.1. Влияние электрон-электронного взаимодействия

На самом деле влияние электрон-электронного взаимодействия на щель существенно: пайерлсовский переход в одномерной цепочке с невзаимодействующими электронами приводит к открытию одинаковой щели в проводимости и в магнитной восприимчивости, в то время как во взаимодействующей электронной системе это может быть не так [28]. Кроме того, состояние с модуляцией электронной плотности вообще можно получить при использовании расширенной модели Хаббарда, рассматривая только электрон-электронное взаимодействие [4, 30]. В этой модели основное состояние одномерной цепочки определяется соотношением параметров $t_{||}$, U и V — величины интеграла перескока вдоль цепочек, кулоновской энергии взаимодействия электронов на одном и том же атоме и энергии взаимодействия между электронами на соседних атомах цепочки.

Случай половинного заполнения зоны Бриллюэна, часто используемый в качестве примера для описания пайерлсовского перехода, на самом деле является специальным случаем. В 3D металле процессы рассеяния электронов с сохранением квазиимпульса с точностью до вектора обратной решетки возможны при любом заполнении зоны Бриллюэна, а в 1D металле такие процессы (называемые процессами переброса) на первый взгляд возможны только при половинном заполнении, а при более аккуратном рассмотрении — только при рациональном значении заполнения ρ (ρN — число электронов в цепочке из N атомов с 2N электронными орбиталями) [30]. Из-за процессов переброса электрон-электронное взаимодействие в таких системах сильнее

влияет на их свойства. Для сильного отталкивания электронов на соседних атомах и рациональных значений заполнения ρ , как показал Хаббард, основное состояние является состоянием наподобие вигнеровского кристалла, в частности для заполнения $\rho = 1/n$ электроны разделены промежутками в n атомов. Для половинного и четвертичного заполнения становится выгодной периодичность в $4k_F$, при этом в случае четвертичного заполнения имеется две конфигурации, одна из которых соответствует ВЗП, другая — тетрамеризации — то есть изменению длин связей вдоль цепочки (так называемая bond-ordered wave, BOW). Такие состояния наподобие вигнеровского кристалла сейчас называют зарядово-упорядоченными состояниями.

Возможно существование промежуточных фаз между ВЗП и ВОW; обе волны могут иметь периодичность как $2k_F$, так и $4k_F$. Возможно сосуществование ВЗП, волны спиновой плотности и ВОW [4]. Концепция ВОW, как и вообще подходы, основанные на Хаббардовской модели, часто применяются для описания органических соединений, особенно с соизмеримым вектором ВЗП [30, 31]. Квазиодномерный полупроводник NbS₃ (I фаза), являющийся кристаллическим аналогом полиацетилена и системой с половинным заполнением, по своей структуре и свойствам ближе к таким системам, чем к классическим системам с некратным заполнением и несоизмеримой с решеткой ВЗП типа TaS_3 . Tak, в $NbS_3(I)$ наблюдается димеризация, то есть удвоение периода решетки вдоль цепочек Nb, нелинейные вольт-амперные характеристики и структурные изменения при нагреве, см. раздел 1.9.

Количество эффектов, связанных с ВЗП, огромно. Современное введение в проблемы, связанные с зарядовым упорядочением и электронными конденсатами в низкоразмерных системах, имеется, например в обзорах [3, 4, 12, 30]. В данной главе я буду касаться только тех явлений, которые связаны с величиной пайерлсовской щели, причем большая часть литературного обзора будет посвящена свойствам пайерлсовского состояния и исследованиям вели-

чины пайерлсовской щели в $p ext{-}\mathrm{TaS}_3$, $\mathrm{NbS}_3(I)$ и $\mathrm{K}_{0.3}\mathrm{MoO}_3$, опубликованным к моменту начала работы над диссертацией.

1.2. Влияние флуктуаций

По теории среднего поля плотность состояний для одночастичных возбуждений в рамках фрелиховской модели описывается обратной корневой зависимостью $dN/dE = D(E) \propto 1/\sqrt{E-2\Delta}$, но в спектрах реальных квазиодномерных соединениях с волнами плотности обратная корневая зависимость практически никогда не наблюдается [4, 35]. Экспериментальные спектры плотности состояний практически всегда размыты вблизи энергий $E=2\Delta$ на величину много больше kT [7, 9, 35–39]. Одной из причин служат сильные флуктуации параметра порядка и электрон-фононное взаимодействие, приводящее к взаимодействию свободных носителей с этими флуктуациями и образованию автолокализованных состояний. Флуктуации, согласно современным представлениям, также приводят к отличию температуры пайерлсовского перехода от величины, предсказываемой теорией среднего поля. Амплитуда нулевых колебаний решетки, количественно характеризующих квантовые флуктуации в соединениях с ВЗП, достигает величин порядка характерного смещения атомов вследствие образования ВЗП [40].

Параметр порядка, описывающий модуляцию ВЗП, выглядит как $\Delta = g(2k_F)\langle b_{2k_F} + b_{-2k_F}^+ \rangle e^{i2k_Fx} = |\Delta|e^{i2k_Fx}$, где скобки $\langle \rangle$ обозначают термодинамическое усреднение. В электронном спектре открывается щель 2Δ на уровне Ферми и дисперсия одночастичного возбуждения становится $E(k) = \operatorname{sgn} \varepsilon(k) [\varepsilon^2(k) + |\Delta|^2]^{1/2}$. Райс и Штрасслер [41] вычислили величину $\Delta(T=0)$ в приближении сильной связи: $\Delta = \Delta_0 = 4E_F e^{-1/\lambda}$, где $\lambda = \frac{2N(0)|g(2k_F)|^2}{\hbar\omega_{2k_F}}$ и N(0) — плотность состояний на уровне Ферми. Видно, что формула по структуре аналогична формуле для сверхпроводника $\Delta_{SC}(0) = \hbar\omega_D e^{-2/N(0)g_{SC}}$, с

заменой характерной дебаевской энергии $\hbar\omega_D$ на энергию Ферми E_F . Поскольку отношение $E_F/\hbar\omega_D$ в реальных материалах составляет 10-100 (в квазиодномерных проводниках скорее ближе к 10), то ожидаемая температура пайерлсовского перехода существенно выше температуры сверхпроводящего перехода. При этом предсказываемое соотношение между величиной пайерлсовской щели и критической температурой, как и для сверхпроводимости, $2\Delta/kT_C=3.52$.

Однако, согласно многочисленным экспериментальным данным [3, 4, 12], в неорганических квазиодномерных проводниках, в зависимости от соединения, $2\Delta/kT_P=8-14$, в связи с чем различают температуру перехода по теории среднего поля T_{MF} и экспериментально определяемую T_P . Согласно современным представлениям экспериментально определяемая T_P соответствует температуре трехмерного упорядочения T_{3D} , при которой взаимодействие между флуктуациями параметра порядка ВЗП на соседних одномерных цепочках (т.е. в направлении, перпендикулярном к направлению максимальной проводимости) приводит к возникновению корреляции параметра порядка по всем трем направлениям и образованию трехмерной ВЗП. Теоретическим обоснованием является работа [42], в которой Ли Райс и Андерсон показали, что ниже $T_{3D}\sim 1/4~T_{MF}$ экспоненциально расходится длина корреляции $\xi(T)$, характеризующая поведение корреляционной функции между значениями параметра порядка ВЗП в точках x и x' вблизи T_{MF} : $<\Delta(x)\Delta(x')>\sim \exp(|x-x'|/\xi(T))$. Для $T_{MF}\approx 1000~{
m K}$ [12] это дает близкие к экспериментальным значения T_{3D} порядка $100\text{-}200~\mathrm{K}$. При этом сильные флуктуации параметра порядка Δ существуют и выше T_{3D} , и скоррелированы вплоть до $T^* > T_{3D},$ а при $T > T^*$ длина корреляции ξ_{\perp} становится меньше расстояния между цепочками. Понижение температуры перехода, полученное в [42] — результат компромисса между двумя противоположными тенденциями: с одной стороны состояние с волной зарядовой плотности

является наинизшим по энергии при $T < T_{MF}$, с другой стороны, в строго одномерной системе при конечной температуре дальний порядок невозможен.

Более прямыми экспериментальными проявлениями флуктуаций в квазиодномерных проводниках являются размытие рентгеновских рефлексов, соответствующих сверхструктуре, и наблюдение псевдощели в оптических спектрах при температурах $T > T_P$ [4, 12], а также флуктуации амплитудной моды возбуждения ВЗП, напрямую наблюдаемые в экспериментах по фемтосекундной спектроскопии [43].

Несмотря на отличие $2\Delta/kT_P$ от предсказываемых теорией, во многих соединениях [4], в частности, в голубой бронзе [28], температурная зависимость величины щели близка к ожидаемой по теории среднего поля, хотя в оптических спектрах наблюдаются признаки существования щели и при более высоких температурах чем T_P , также связываемые с флуктуациями. Для p-TaS₃ и NbS₃(I) имеющихся в литературе данных о зависимости $\Delta(T)$ недостаточно для сравнения с теорией среднего поля.

Как правило, в квазиодномерных системах влияние на пайерлсовскую щель термодинамических флуктуаций параметра порядка рассматривают, следуя Бразовскому [8, 44], аналогично влиянию статического беспорядка — вводя случайный потенциал с распределением типа гауссового белого шума. Бразовский первым получил размытие оптических спектров, связанные солитонные состояния и некоторые другие особенности, которым посвящен раздел 1.4 и которые были успешно применены для описания неорганических и органических квазиодномерных проводников, в особенности полиацетилена, в котором вся проводимость оказалась связанной с солитонным вкладом [45, 46].

В работе [39] с учетом флуктуаций численно вычисляются плотность состояний, а также частотная зависимость оптической проводимости вблизи края щели, $\sigma(\omega)$, в зависимости от одного безразмерного параметра, количественно описывающего беспорядок, обозначаемого η . В η содержатся вклады от всех видов флуктуаций (квантовых, тепловых, из-за дефектов и примесей). Среди полученных результатов — размытие обратной корневой зависимости в спектрах $\sigma(\omega)$ вблизи края щели термическими флуктуациями на величину порядка величины щели, смещение кажущегося максимума оптической проводимости в меньшие энергии. Масштабированные спектры оптической проводимости следуют одной и той же универсальной кривой, хорошо описывающей экспериментальные данные для голубой бронзы и некоторых органических соединений. Все параметры масштабирования выражаются через исходный η . Эти же авторы получают фазовый переход в пайерлсовское состояние минимизируя свободную энергию одномерных цепочек с бесконечной 3D длиной корреляции (то есть цепочки изначально скоррелированы по всем трем направлениям), и разрушение пайерлсовского состояния при температурах ниже T_{MF} вследствие квантовых и термических флуктуаций решетки. Причем с увеличением электрон-фононного взаимодействия температурная зависимость щели $\Delta(T)$ все сильнее отличается от зависимости, предсказываемой теорией среднего поля.

В работе [47] влияние флуктуаций на электронную плотность состояний рассматривается исходя из латтинжеровского гамильтониана для одномерной цепочки и при учете взаимодействия между цепочками. В модели Латтинжера дисперсия электронов вблизи уровня Ферми принимается линейной и получается точное решение уравнения Шредингера для свободных электронов, при этом основным состоянием электронов в одномерной цепочке становится латтинжеровская жидкость (см. обзор [30]), в отличие от фермижидкости в более высоких размерностях. Возбуждениями латтинжеровской жидкости являются бозоны; в литературе описана модель ВЗП как Латтинжеровской жидкости, стабилизированной примесями [29]. В модели Латтинжера нет щели в спектре квазичастичных возбуждений при нулевой температуре

— одночастичная плотность состояний спадает до нуля по степенному закону $D(\omega) \propto \omega^{\alpha}$. В зависимости от величины взаимодействия между цепочками автор работы [47] получает разную величину щели и довольно различные формы спектра плотности состояний.

1.3. Неидеальный нестинг

Пусть ВЗП в модельном кристалле, состоящем из одномерных цепочек без связи (взаимодействия) между цепочками, развивается в направлении вдоль цепочек х. Тогда поверхностью Ферми этого кристалла являются параллельные плоскости, перпендикулярные к оси k_x , обозначаемой далее x^* , а волновой вектор ВЗП или вектор нестинга имеет единственную компоненту в направлении x^* , Q_{x^*} . В реальных квазиодномерных кристаллах, в том числе в ромбическом $\mathrm{Ta}S_3,\,Q$ имеет компоненты и вдоль других направлений k_{\perp} . Это соответствует гофрировке поверхности Ферми в направлениях, перпендикулярных к x^* , возникающей из-за ненулевого взаимодействия между цепочками. В приближении сильной связи гофрировка описывается добавлением слагаемого $t_{\perp}(ky) = -2t_b \cos k_y b$ [48, 49] к линейному закону дисперсии: $\varepsilon(k)-\varepsilon_F=v_F(|k_x|-k_F)+t_\perp(ky)$. Сама по себе гофрировка не нарушает идеального нестинга (идеального совмещения поверхностей Ферми для электронов и дырок, приводящего к пайерлсовской неустойчивости), см. рис. 1.2 (а). Величина щели, как оптической, так и транспортной, остается неизменной по сравнению с модельным случаем без взаимодействия и не зависит от волнового вектора.

Однако, например, синусоидальная модуляция самого интеграла перескока t_{\perp} с удвоенным периодом (см. рис. 1.2 (б)) приводит к нарушению условий нестинга на определенных участках поверхности Ферми и к зависимости параметра порядка от поперечной компоненты волнового вектора. Как след-

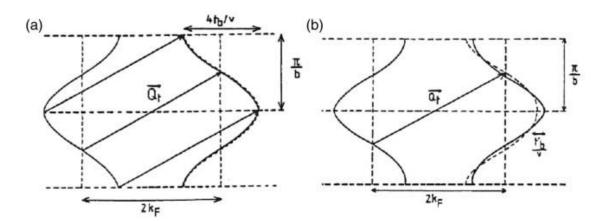


Рис. 1.2. a) Идеальный нестинг при гофрировке поверхности Ферми б) Неидеальный нестинг при гофрировке поверхности Ферми. Рисунок взят из обзора [4].

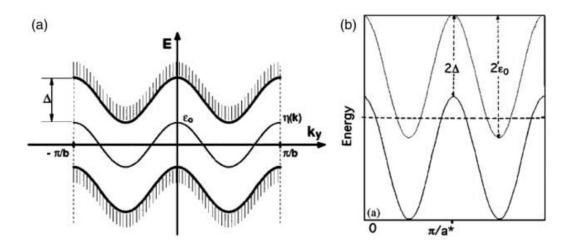


Рис. 1.3. Модуляция пайер
лсовской щели при неидеальном нестинге вдоль оси k_y . Рисунок взят из обзора
[4].

ствие наблюдается периодическое изменение энергий валентной зоны и зоны проводимости (см. рисунок 1.3). В результате: 1) при наличии переходов с участием фононов транспортная щель будет отличаться от оптической, соответствуя наименьшей энергии между потолком валентной зоны и дном зоны проводимости; 2) как показано в [48, 49], образуются особенности в плотности состояний, приводящие к увеличению щели в туннельных экспериментах по сравнению с оптическими. Такое действительно наблюдалось, например, для органических соединений [50].

1.4. Солитонные состояния

При модификации фрелиховского гамильтониана Бразовским с соавторами [8, 44] были получены солитонные состояния — уровни для одночастичных возбуждений в одномерной цепочке с электрон-фонноным взаимодействием. В такой системе избыточные электроны, взаимодействуя с ВЗП, образуют возбуждения ВЗП, характеризующиеся изменением амплитуды (амплитудные солитоны) или фазы (фазовые солитоны) параметра порядка. В реальных квазиодномерных проводниках, в которых существует слабое взаимодействие между цепочками, существование уединенного амплитудного солитона на одной цепочке энергетически невыгодно, и при не слишком низких температурах его появление должно приводить к искажению ВЗП и на соседних цепочках. Поэтому при учете взаимодействия между цепочками в квазиодномерных проводниках предсказываются смешанные амплитудно-фазовые солитоны, солитонные стенки и дислокации электронного кристалла [51].

Солитоны впервые были обнаружены в полиацетилене, органическом квазиодномерном соединении с димеризацией и большой константой электрон-фононного взаимодействия. Впоследствии практически все оптические и транспортные свойства полиацетилена были описаны в рамках солитон-

ной модели [45, 46]. Полиацетилен существует в двух формах, цис-изомер и транс-изомер, при этом цис-изомер нестабилен при комнатной температуре и выше и переходит в транс-форму. Несмотря на то, что спектральные зависимости коэффициента поглощения сходна [52], фотопроводимость в цисполиацетилене не наблюдается, в то время как в транс-изомере спектр фотопроводимости был измерен [9]. В то же время в цис-полиацетилене наблюдается фотолюминесценция при возбуждении с энергией большей оптической щели $2\Delta \approx 1.5$ эВ, в отличие от транс-изомера, где фотолюминесценции не наблюдается. Все эти отличия были объяснены [9, 45, 46] как особенности солитонной подсистемы — в цис-изомере солитоны образуют связанные состояния, не проявляющиеся в фотопроводимости, а фотопроводимость в транс-изомере обусловлена не одночастичными носителями типа электронов и дырок, а парами солитон-антисолитон, не образующими связанного состояния как в цис-изомере. Спектр фотопроводимости транс-полиацетилена оказался отличным от спектра коэффициента поглощения полиацетилена при больших энергиях и более размытым при энергиях меньших щели, что было объяснено урбаховским хвостом состояний, связанным с экспоненциальными вероятностями образования сильного искажения решетки, необходимого для фотовозбуждения солитона при энергиях фотонов близких к началу фотопроводимости $2\Delta/\pi$, а также увеличением вероятности фотовозбуждения при приближении к 2Δ .

В квазиодномерных проводниках размытие щели в плотности состояний также может быть связано с взаимодействием долгоживущих квазичастичных возбуждений с создаваемыми ими флуктуациями решетки. В результате взаимодействия квазичастиц с флуктуациями появляется урбаховский хвост в плотности состояний $n(2\Delta_0 - \omega) \sim \omega^{-1/2} \exp[-(\omega/\varepsilon_1)^{3/2}]$, где $\varepsilon_1/2\Delta \sim (u/v_F)^{2/3}$ и $u/v_F \sim \omega_{ph}/2\Delta_0$, ω_{ph} — характерная частота фононов, а $2\Delta_0$ - величина пайерлсовской щели при нулевой температуре [8, 53]. В глубине

щели, при энергиях вблизи абсолютного порога поглощения $W_s = 2\Delta(0)/\pi$, где $2\Delta(0)/\pi$ — энергия амплитудного солитона, наблюдаются степенные зависимости плотности состояний $dN/d\varepsilon \sim (\varepsilon - W_s)^{\beta}$ с большими значениями показателя β [54].

Экспериментальные свидетельства существования солитонов в трихалькогенидах и голубых бронзах с ВЗП к моменту начала работы над диссертацией были скорее косвенными [12]. Впоследствии были опубликованы сообщения о наблюдении солитонов в NbSe₃ методами сканирующей туннельной микроскопии (СТМ) [55].

1.5. Влияние примесей

Тутто и Завадовский [56], используя подход, предложенный в [57], рассмотрели влияние примесей на плотность состояний вблизи краев пайерлсовской щели и получили, что в случае слабого (коллективного) пиннинга ВЗП на примесях при их малой концентрации возможно появление дискретных состояний вблизи краев пайерлсовской щели. При концентрации примесей, при которой расстояние между ними становится меньше, чем длина амплитудной когерентности ВЗП $\xi_0 \approx 10$ нм, вместо дискретных состояний возникает континуум, приводящий к сдвигу края поглощения $2\Delta' = 2\Delta(1-t^2)^{1/2}$, где $t = T/v_F$ — это отношение амплитуды обратного рассеяния на примеси, T, к скорости Ферми. Величина $\xi_0 \approx 10$ нм соответствует концентрации примесей $n_i \approx 10^{18}$ см⁻³ (10^{-4} на атом или 10^{-2} ат.%) что согласуется с оценкой кол-ва примесей в номинально чистых образцах.

1.6. Проблемы экспериментальных методик исследования пайерлсовской щели

Пайерлсовская щель проявляется во множестве эффектов. Появление активационной энергии в транспортных свойствах (проводимости, температурной зависимости коэффициента Холла, температурной зависимости магнитной восприимчивости), изменение оптических спектров, изменение поверхности Ферми, изменение спектров туннельной проводимости в мезоструктурах и изменение характера дифференциальной проводимости, измеряемой в сканирующей туннельной спектроскопии (СТС) связаны с возникновением щели. Проблема экспериментального исследования плотности состояний вблизи энергий $\approx 2\Delta$ заключается в том, что в системах с ВЗП результаты, полученные разными методами, часто достаточно сильно отличаются для одного и того же номинально чистого материала. Так, неидеальный нестинг (см. разд. 1.3) приводит к особенностям в туннельной плотности состояний при энергиях $2\Delta - \varepsilon_0$ и $2\Delta + \varepsilon_0$ [49], где ε_0 — параметр, характеризующий поперечное взаимодействие и неидеальность нестинга, в то время как в оптических спектрах эти особенности проявиться не должны. Образованием солитонных состояний объясняют как уменьшение транспортной щели по сравнению с оптической [7, 37], так и обратный эффект [50]. Кроме того, для многих неорганических квазиодномерных соединений наблюдается довольно сильный разброс характеристик от образца к образцу, что связывается с влиянием примесей, недостаточно изученным на настоящий момент [4]. Последнее связано со сложностями синтеза высокочистых образцов [58, 59].

В последнее время развивается направление изучения неклассических неорганических слоистых соединений с ВЗП типа RTe₃, где R — Y, La, Ce, Nd, Sm, Gd, Tb, Ho, Dy, Er, Tm [4, 25, 26], квазидвумерная структура и высокое качество поверхности которых позволяют исследование методами

фотоэлектронной спектроскопии с угловым разрешением (ARPES). Исследования поверхности Ферми дают возможность определить величину щели [26], исследовать влияние увеличения степени двумерности соединения и вносят вклад в исследование микроскопического механизма образования ВЗП. Тем не менее, трактовка результатов по классическим соединениям типа голубой бронзы остается достаточно затрудненной. Характерными особенностями спектров интенсивности ARPES-сигнала для q1D соединений с ВЗП является [60] смещение максимума интенсивности спектра вглубь от уровня Ферми, и его уширение с более сильным размытием по энергиям, чем для обычных квазичастиц в трехмерных металлах на уровне Ферми, для которых максимум описывается лоренцианом. Из неорганических материалов, изучавшихся в данной диссертации, ARPES применялся к голубой бронзе, результаты более подробно изложены в разделе 1.8. Также из близких неорганических соединений недавно исследовался (TaSe₄)₂I [2]. До последнего времени смещение и размытие максимума плотности состояний объяснялись в рамках поляронной теории, то есть квазичастицами признавались подвижные поляроны с малой длиной когерентности, хотя для голубой бронзы в этом объяснении и существовали противоречия [61].

Последние исследования [62] показали, что в голубой бронзе спектры ARPES несколько лучше описываются теоретической "лестничной" моделью, в которой существенны электрон-электронные взаимодействия, в то время как в $(TaSe_4)_2I$ остаются существенными электрон-фононные взаимодействия и ВЗП-щель, по всей видимости, открывается на фоне поляронной щели, существующей при температурах выше T_P [2]. Заметим, что предварительно полученные нами методом, описываем в данной диссертации, спектры фотопроводимости $(TaSe_4)_2I$ также содержат признаки существования двух щелей при энергиях, описанных в работе [2].

Исследование плотности состояний при энергиях вблизи 2Δ классиче-

ских квазиодномерных соединений с ВЗП типа трихалькогенидов и голубых бронз методикой сканирующей туннельной спектроскопии (СТС) затруднены по причине сложности получения хорошей поверхности и недостаточного разрешения полученных дифференциальных ВАХ. Тем не менее, в работе [17] методом СТС наблюдалось, что легирование малыми (<1 ат.%) концентрациями Fe кристаллов NbSe₃ приводит к уменьшению обоих щелей на 30% по величине, в то время как легирование Со (<1%) увеличивает величину щели, связанной с верхней ВЗП на 37%, а щели, связанной с нижней ВЗП, на 28%.

Обзор результатов исследования плотности состояний при энергиях вблизи 2Δ , для каждого из веществ, изучаемых в данной работе, будет приведен в отдельном разделе.

1.7. Пайерлсовская щель в р- TaS_3

1.7.1. Некоторые свойства р- ${ m TaS_3}$

Ромбический TaS_3 (p- TaS_3) обладает лишь одним пайерлсовским переходом, в отличие от некоторых других квазиодномерных проводников, например, NbSe₃ или моноклинной фазы TaS_3 (м- TaS_3). При комнатной температуре p- TaS_3 является "плохим металлом" — удельное сопротивление ρ составляет $3-4\times 10^{-4}$ ом см (примерно как у Bi; ρ варьируется от образца к образцу), а при понижении температуры до T_P сопротивление активационно падает более чем на порядок и p- TaS_3 становится полупроводником. Проводимость при комнатной температуре — дырочная, и в пайерлсовском состоянии, при температурах ниже T_P , проводимость p- TaS_3 остается дырочной [63]. Проводимость в пайерлсовском состоянии, вообще говоря, связана с кривизной поверхности Ферми в точке $2k_F$ [64] и для голубой бронзы ниже

 T_P также становится дырочной, хотя при комнатной температуре у голубой бронзы проводимость n-типа.

Уже при определении T_P проявляется основная черта этого соединения, присущая в той или иной степени многим квазиодномерным проводникам, но ярко проявляющаяся именно в p- TaS_3 — сильная вариативность свойств от образца к образцу. Даже если не учитывать размерные эффекты, T_P в номинально чистых образцах p-TaS₃ может варьироваться в пределах нескольких градусов от 222 К [65] до 215 К [66]. Из-за размерных эффектов при утоньшении образца — т.е. изменении сечения — T_P может упасть и на десятки градусов [65]. Также на T_P влияют примеси [4, 12]: при увеличении концентрации примесей в образце T_P понижается, а пайерлсовский переход размывается. Понизить пайерлсовскую температуру T_P на десятки градусов можно и растяжением образца [67], при этом при определенных значениях растяжения кристалла ВЗП переходит в когерентное состояние, пороговое поле срыва ВЗП становится очень маленьким, а также наблюдается отрицательное дифференциальное сопротивление. При других же значениях ВЗП, напротив, становится соизмеримой с решеткой и нелинейная проводимость исчезает, при этом меняется также термоэдс и некоторые другие характеристики. Влияние перечисленных эффектов — примесей, растяжения, размерных эффектов на величину пайерлсовской щели и плотность состояний вблизи края щели к началу работы над диссертацией почти совсем не было изучено теоретически и совсем не изучалось экспериментально. Сама величина щели оставалась определенной неточно, так как различные непрямые методы давали различные результаты. Размеры элементарной ячейки ромбической фазы TaS_3 очень велики — $a=36.804~A,\,b=15.173~A,\,c=3.34~A,\,$ она формируется из 24-х металлических цепочек из атомов Та [68], вокруг каждой из которых расположены атомы серы (см. рис. 1.4, где показано сечение перпендикулярное направлению цепочек). Симметрия решетки соответству-

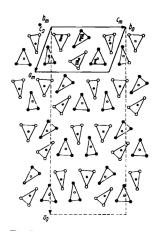


Рис. 1.4. Элементарная ячейка p- TaS_3 (прямоугольник) и м- TaS_3 (параллелограмм). Рисунок взят из работы [70]

ет пространственной группе С2221 [69] или Стст [70]. Точная структура кристаллической решетки ромбической фазы до сих пор неизвестна, на рисунке 1.4 показано предположительное расположение атомов в элементарной ячейке (пунктирный прямоугольник). Различные расстояния между атомами серы, S, в основании треугольника на рисунке влияют на валентность Та, находящегося в центре - при увеличении расстояния между атомами S связь Та с атомами S усиливается и степень окисления становится ближе к 5+ вместо 4+ [69]. Пары халькоген-халькоген ведут себя как резервуары электронов и электронная плотность получается различной для различных цепочек. Анализ длин связей S-S привел авторов работы [69] к выводу, что TaS₃ является более одномерным соединением, чем NbSe₃. Также ими была высказана гипотеза, что из-за большого числа цепочек распределение длин связей S-S между цепочками (а следовательно, и степеней окисления Та) в реальном кристалле почти непрерывное. Такое распределение соответствует наблюдавшемуся расщеплению фононных мод [71], а также затрудняет точное определение положений атомов, что и наблюдается. Параллелограмм на рисунке 1.4 соответствует элементарной ячейке моноклинной фазы TaS_3 , структура которой определена точно (кристаллы моноклинной фазы, как правило, существенно

больше по размеру, что облегчает рентгеновское исследование).

Трудности определения структуры ромбического TaS_3 отчасти связаны с большим количеством так называемых stacking faults — дефектов упаковки слоев, присущих квазиодномерным соединениям [72]. Такие дефекты приводят к подавлению $B3\Pi$ в 2H- TaS_2 , соединении с двумерной $B3\Pi$ [73]. Кроме того, в 2H- TaS_2 единственная дислокация может приводить к изменению упаковки слоев и нелокальному дефекту, который невозможно убрать без перекристаллизации соединения [74].

Ромбический TaS₃ анизотропен уже в металлическом состоянии, величина проводимости вдоль металлических цепочек примерно в 200 раз превышает проводимость поперек цепочек [27], а в диэлектрической фазе начинает увеличиваться и особенно возрастает ниже 50 K, достигая значений 10^8 при температуре жидкого гелия [75]. Ось наибольшей проводимости совпадает с кристаллографической осью с. Компоненты волнового вектора ВЗП при температуре ниже T_P , но выше 130 K составляют $q = [0.5a^*, (0.125 - \epsilon)b^*, 0.255c^*],$ где * обозначены векторы обратной решетки. С понижением температуры $\epsilon \to 0$ и имеется тенденция к достижению четырехкратной соизмеримости вдоль оси ${f c}$, т.е. $q_c \to 0.250 c^*$. В работе [76] рентгеноструктурные исследования при помощи синхротронного излучения показали, что при температурах ниже 130 К возникает соизмеримая с решеткой компонента волнового вектора $q_c = 0.250c^*$. Появлению этой компоненты соответствует расщепление брегговского пика в рентгенограммах, отражающее расщепление волнового вектора на соизмеримую и несоизмеримую ($q_c = 0.252c^*$) части. Обе компоненты сосуществуют вплоть до 30 К, ниже 30 К ВЗП становится полностью соизмеримой. При этом при пропускании через образец тока выше критического происходит изменение отношений интенсивностей компонент брегговского пика — соизмеримая ВЗП становится несоизмеримой. В работе [76] механизм такого перехода связывается с генерацией дислокационных петель ВЗП или

солитонов. Наблюдавшееся возрастание анизотропии [75] также может быть связано с переходом в полностью соизмеримое состояние ВЗП. Ниже 40 К в ТаS₃ наблюдается уменьшение ширины ЭПР-резонанса, которое также может быть признаком перехода ВЗП в новое фазовое состояние [77]; а кроме того, изменение характера ВАХ, в которой появляются ярко выраженные участки с крипом [27]. Крипом называется переползание ВЗП через потенциальные барьеры за счет термических флуктуаций и квантового туннелирования. При увеличении приложенного к образцу электрического поля до значений, близких к порогу начала скольжения ВЗП, энергии флуктуаций становится достаточно для начала крипа ВЗП.

Кристаллы TaS_3 обладают необычными механическими свойствами: они очень растяжимы, и максимальное растяжение на 2% от длины кристалла все еще не приводит к его разрыву [67]; при приложении электрического поля к кристаллу наблюдается деформация кручения [78], причем пьезомодули достигают аномально высоких величин.

1.7.2. Особенности в электрофизических свойствах

Одним из наиболее характерных атрибутов температурной зависимости сопротивления кристаллов р-ТаS₃ является гистерезис. Петля гистерезиса наблюдается между кривыми, полученными при нагреве и охлаждении образца [79], и связывается с метастабильными состояниями ВЗП. Для каждой температуры существует равновесное значение волнового вектора ВЗП q. От величины волнового вектора зависит и концентрация одночастичных возбуждений, экранирующих дефекты ВЗП и обеспечивающих проводимость. Если слишком быстро менять температуру, то ВЗП не успевает полностью подстроиться и значение волнового вектора не достигает равновесного значения, а вместе с ней не достигают равновесных значений и концентрация одноча-

стичных возбуждений и проводимость. Однако некоторые авторы полагают, что изменение проводимости обеспечивается неравновесным распределением несоизмеримостей волнового вектора — то есть дислокаций электронного кристалла [79].

Наблюдаемое в некоторых образцах ${\rm TaS_3}$ отклонение проводимости от активационного закона при температурах $T<100~{\rm K}$, соответствующее вкладу дополнительных носителей, приписывают солитонам, так как оно присутствует только в направлении вдоль кристалла и отсутствует для поперечной проводимости [80].

Увеличение порогового поля ниже 100 К приписывают образованию дислокаций ВЗП. Высказывались гипотезы, что именно с образованием дислокаций, ростом соизмеримости и уменьшением экранирования искажений ВЗП могут быть связаны температурные ограничения на наблюдение фотопроводимости в TaS₃ [11].

1.7.3. Обзор результатов о величине пайерлсовской щели в р- ${ m TaS_3}$

Данные о величине пайерлсовской щели сильно отличаются друг от друга: измеренная энергия активации температурной зависимости проводимости варьируется от 600 K ($2\Delta=0.1$ эВ) [80] до 800-850 K ($2\Delta=0.14$ эВ) [4], в то время как энергия активации коэффициента Холла соответствует величине $\Delta=1000$ K ($2\Delta=0.17$ эВ) [63]. В спектральных исследованиях болометрического отклика величина пайерлсовской щели, определенная по началу поглощения составила $2\Delta=0.125-0.127$ эВ при $T\approx100$ K и $2\Delta=0.15$ эВ при 20 K [7, 36]. При исследовании туннельной проводимости мезоструктур при температурах 100 K < $T< T_P$ было получено значение $2\Delta=0.18$ эВ, определенное по максимуму туннельной проводимости, при этом туннелирование начиналось при с энергий 0.036 эВ [18]. Измерения туннельной проводимости

были проведены на структурах, включающих в себя 20-30 атомных слоев, поперек которых через наиболее плохой слой и происходило туннелирование, при этом наблюдается плавный размытый спектр более низкого разрешения, чем для NbSe₃. Измерения температурной зависимости фотопроводимости позволили оценить энергию активации одночастичной проводимости при низких температурах значением 1250 K ($2\Delta=0.22$ эВ при $T\approx50$ K) [82]. Коэффициент поглощения при 80 K составляет порядка (3 ± 0.5) × 10 см⁻¹ на длине волны 2000 см⁻¹. При 15 K на той же длине волны он составляет $2-3\times10^4$ см⁻¹ [22]. Проведенные эксперименты по фотоиндуцированному поглощению не обнаружили солитонных состояний в p-TaS₃ [83].

1.8. Пайерлсовская щель в голубой бронзе $K_{0.3} MoO_3$

1.8.1. Некоторые свойства $K_{0.3}MoO_3$

Голубая бронза $K_{0.3}$ Мо O_3 — квазиодномерный проводник, который переходит в пайерлсовское состояние при температуре ниже $T_P = 180$ К. При этом предвещающие переход эффекты наблюдаются и гораздо выше T_P . Так, магнитная восприимчивость уменьшается на треть величины в интервале от 700 К до 180 К, а в рентгенограммах вплоть до температур $T^* \sim 2T_P$ при значениях k, соответствующих волновому вектору ВЗП, q_{CDW} , регистрируются диффузные участки, соответствующие двумерным анизотропным флуктуациям в плоскостях Мо O_6 . Эффекты, связанные с флуктуациями, наблюдаются и при изучении нейтронного рассеяния [12]. 1

В пайерлсовском состоянии в энергетическом спектре голубой бронзы

 $^{^{1}}$ Голубые бронзы — это класс соединений. При замене K на Rb свойства (T_{P} , параметры решетки) практически не меняются. Переход металл-диэлектрик в голубой бронзе был обнаружен несколько раньше, чем в трихалькогенидах [84], и лишь после появления сообщений об анизотропии электрической проводимости и об спектров отражения [85] был однозначно определен как пайерлсовский.

открывается щель, а в спектрах поглощения и отражения в инфракрасном диапазоне, спектрах комбинационного рассеяния и спектрах рассеяния нейтронов появляются признаки коллективных возбуждений [4]. В спектре рассеяния нейтронов наблюдается коновская аномалия — смягчение фононной моды с волновым вектором $2k_F$. При этом проводимость в пайерлсовском состоянии преимущественно дырочная, как показывают измерения холловского сопротивления [84], в то время как в основном состоянии — электронная, что связано с кривизной поверхности Ферми вблизи точки $2k_F$ [64].

Кристаллическая структура голубой бронзы состоит из слоев, составленных из деформированных октаэдров МоО₆, сгруппированных в повторяющиеся ячейки; между слоями находятся атомы калия (см. рис. 1.5). Особенно хорошо слои видны на части (b) рисунка, они расположены вдоль направления a+2c. Видно, что уже структура отражает большую двумерность по сравнению с p-TaS₃, что соответствует и анизотропии. Тем не менее два типа октаэдров (синие и зеленые на рис. 1.5) формируют также бесконечные цепочки из атомов Мо вдоль оси наибольшей проводимости **b**, разделяя общие вершины вдоль оси b, что приводит к квазиодномерным свойствам. Наивысшие по энергии зоны кристалла, образующиеся из молекулярных зон MoO_6 , заполняются электронами, донорами которых служат атомы К. Анизотропия голубой бронзы при комнатной температуре достигает величин $\rho_b/\rho_{a+2c}\sim 10^2$ и $\rho_b/\rho(\bar{2}\ 0\ 1) \sim 10^3\ [28]$ и несколько меняется от образца к образцу. Симметрия кристаллической решетки голубой бронзы $K_{0.3} MoO_3$ — центрированная моноклинная, пространственная группа C2/m. Параметры элементарной ячейки: $a=18.25~{
m \AA}$, $b=7.560~{
m \AA},\, c=9.855~{
m \AA}$ и $\gamma=117,53^{\circ}$. Проводимость при комнатной температуре в направлении кристаллографической оси b составляет примерно $\sigma_b = 3 \times 10^2 \; \mathrm{Om^{-1} cm^{-1}}$, в перпендикулярных же направлениях $\sigma_{2a-c} = 10 \text{ Om}^{-1}\text{cm}^{-1}$ и $\sigma_{2a+c} = 0.5 \text{ Om}^{-1}\text{cm}^{-1}$ [12]. Деформированные октаэдры MoO_6 сгруппированы в кластеры $Mo_{10}O_{30}$, при этом имеется три типа

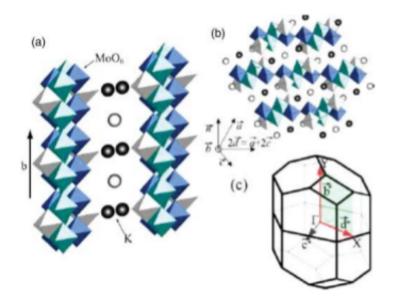


Рис. 1.5. Кристаллическая решетка голубой бронзы (рисунок взят из работы [95])

октаэдров, с немного разными положениями ионов Мо, которые по-разному смещаются при образовании ВЗП, причем смещение в перпендикулярном к цепочкам направлении является наибольшим. То есть поляризация ВЗП является преимущественно поперечной, хотя небольшие смещения атомов в направлении вдоль цепочек также детектируются. Поперечная поляризация ВЗП наблюдалась в рентгеноструктурных исследованиях [87, 88], а также в экспериментах, где измерялось термическое расширение кристаллов [89]. При нагреве образцов до T_P наблюдается анизотропное скачкообразное увеличение коэффициента теплового расширения, наибольший скачок в его величине наблюдается в направлении, перпендикулярном как и к направлению цепочек, так и к плоскости скола $(\bar{2}\ 0\ 1)$. Величина смещения $(0.03\ A\ для\ ионов$ Мо из одного типа октаэдров и 0.05 А для ионов из другого) модулируется вдоль цепочек с волновым вектором ВЗП $q_{CDW}=(1,q_b,0.5)$ [87] (все значения даны в периодах решетки в k -пространстве). Величина $q_b=0.7$ при комнатной температуре, зависит от температуры вплоть до 100 К (при 100 K), почти достигая при этой температуре соизмеримого значения $q_b = 0.75$, не изменяющегося при дальнейшем понижении температуры, хотя, по всей

видимости, полного перехода в соизмеримое состояние не происходит вплоть до температуры 4.2 К [86].

Наблюдаемая поперечная поляризация ВЗП была связана [89] с наличием двух зон, пересекающих уровень Ферми в металлическом состоянии наблюдаемое изменение расстояния между цепочками Мо (основной вклад в образование каждой из двух зон обусловлен своей цепочкой) обеспечивает рассеяние с k ветви одной зоны на -k ветвь другой, необходимое для одновременного открытия пайерлсовской щели для обоих зон. Гипотезу об одновременном открытии щели на обоих поверхностях Ферми [90] подтвердили расчеты [91]. Было получено, что в металлическом состоянии уровень Ферми пересекают сразу две одномерные невырожденные зоны, что заполнение зон составляет примерно 3/4, а вектор нестинга, величина которого определяет волновой вектор ВЗП, равен сумме волновых векторов Ферми, соответствующих двум зонам $q_{CDW} = k_{F1} + k_{F2}$. Более поздняя работа [92], где зонная структура рассчитывается методом функционала плотности, уточнила этот результат и привела к величине заполнения зон, соответствующей наблюдаемому $q_{b.CDW}$ при T_P : $q_b=0.7$. Гофрировка поверхности Ферми вдоль k_\perp в этих расчетах оказывается порядка величины пайерлсовской щели $t_{\perp} \approx 0.1~\mathrm{pB},$ что много меньше E_F .

В энергетических спектрах, полученных методом ARPES, наблюдается смещение квазичастичного пика от энергии Ферми при температурах ниже T_P и его сильное размытие. Такие особенности характерны для одномерных соединений, см. [60], и в 2002 году была выдвинута гипотеза об их поляронном происхождении в голубой бронзе [61]. Взаимодействие с фононами (в голубой бронзе наблюдается высокая интенсивность фононных мод с частотами 10-50 мэВ [86]) приводит к увеличению эффективной массы носителя и появлению гармоник вблизи квазичастичного пика при E_F , вместо характерного лоренциана, а также к размытию и смещению квазичастичного пика на $\langle n \rangle \hbar \Omega$,

где $\langle n \rangle$ — среднее число фононов, взаимодействующих с электронов, а $\hbar\Omega$ — характерная энергия фонона. Однако последние исследования [62], где квазичастичный пик был получен при 80 К с разрешением порядка 1 мэВ и у него была обнаружена тонкая структура, показали, что эти особенности, а также малая длина когерентности квазичастиц, извлекаемая из дисперсии по k, лучше описываются в рамках лестничного приближения, в рамках которого за пик ответственны связанные состояния, объясняемые наличием спинонных и холонных возбуждений. Особенности, присущие этим возбуждениям, в спектрах ARPES размываются из-за гауссовых флуктуаций и флуктуаций волнового вектора ВЗП на поверхности кристалла (метод исследует приповерхностную область толщиной порядка нанометра).

В измерениях комбинационного рассеяния [93] голубой бронзы был обнаружен пик в области $50~{\rm cm}^{-1}$, испытывающий небольшое смягчение частоты (порядка 13%) с уменьшением температуры и исчезающий при повышении температуры выше $T_P=180~{\rm K}$. Авторы приписывают этот пик амплитудной моде возбуждения ВЗП. Из маленькой энергии возбуждения следует, что эффективная масса ВЗП очень велика.

Замещение Мо изоэлектронными примесями, например, вольфрамом, приводит к снижению температуры пайерлсовского перехода с коэффициентом 30 К/моль. Замещение К щелочными металлами — к более медленному снижению температуры пайерлсовского перехода, с коэффициентом 1.4 К/моль [86]. Разница в коэффициентах означает, что межслоевые примеси влияют на ВЗП в голубой бронзе существенно меньше, чем примеси, замещающие ионы внутри проводящих цепочек. Примеси также влияют на электрические свойства, увеличивая порог нелинейной проводимости и создавая метастабильные состояния ВЗП. Облучение образцов ионами приводит к сходным результатам. При этом зависимость порогового поля от концентрации примесей соответствует сильному пиннингу на примесях, в отличие от ТаS₃, где, как правило,

1.8.2. Обзор данных о пайерлсовской щели в голубой бронзе

Данные о пайерлсовской щели для голубой бронзы полученные из различных экспериментов, в отличие от p-TaS₃, в большей степени согласуются друг с другом. Так, температурная зависимость магнитной восприимчивости приводит к значению $\Delta(0) = 550 \, \text{K}$, т.е. $2\Delta = 0.095 \, \text{эВ}$, которое с хорошей точностью совпадает с величиной, полученной в экспериментах по нейтронному рассеянию [86]. Измерение оптического поглощения и отражения приводят к величинам, несколько большим, чем 100 мэВ [85, 86], что отчасти связано с выбором точки, соответствующей 2Δ . Так, в первой работе по измерению коэффициента отражения [85], при температурах, ниже $T_P = 180 \text{ K}$ наблюдается спад коэффициента отражения для поляризации P||b при энергиях меньших $0.15~{\rm pB}$, и авторы определяют $2\Delta = 0.15~{\rm pB}$ по началу спада, в то время как конец спада приходится на значение 0.09 эВ.Температурная зависимость проводимости приводит к сходным значениям энергий активации 80-140 мэВ [12]. Начиная с 90-х годов проводились исследования по фотоэлектронной спектроскопии с угловым разрешением (ARPES), которые позволили изучить поверхность Ферми в голубой бронзе непосредственно [61, 94–96] и подтвердили наличие двух зон, пересекающих уровень Ферми, и двух волновых векторов Ферми, один из которых оказался зависящим от температуры. Также этим методом удалось определить величину пайерлсовской щели, составившую 80 мэВ [96]. Температурная зависимость щели совпала с предсказываемой по теории среднего поля в пределах ошибки эксперимента.

В работе [83] проведен поиск фотоиндуцированного поглощения в области внутри пайерлсовской щели голубой бронзы, а также TaS₃. Состояний, дающих вклад в фотоиндуцированное поглощение внутри щели, не обнаруже-

но, в отличие от референтного образца поливинилена, в котором наблюдалось фотоиндуцированное поглощение в области вблизи края щели и подавление поглощения в области за щелью, аналогичное опубликованным данным. Авторы [83] отмечают, что ни в одном из трех исследованных материалов с волновыми векторами ВЗП, отличными от двукратной соизмеримости с решеткой, фотоиндуцированного поглощения не наблюдается.

Голубая бронза является материалом, отличным от ${\rm TaS_3}$, обладает в некотором смысле более двумерной поверхностью Ферми, и двумерностью структуры, и, по всей видимости, меньшим количеством структурных дефектов (судя по результатам рентгеноструктурных исследований). Можно также ожидать, что спектры фотопроводимости голубой бронзы также будут отличаться от энергетических спектров ромбического ${\rm TaS_3}$.

1.9. Щелевое состояние в квазиодномерном полупроводнике ${ m NbS}_3({ m I})$

1.9.1. Некоторые свойства ${\rm NbS_3}({\rm I})$ и обзор данных о щели в ${\rm NbS_3}({\rm I})$

Степень окисления Nb в соединении NbS₃(I) составляет 4+; на d-орбитали находится 1 электрон. Из-за искажения подрешетки серы при образовании кристалла верхняя энергетическая зона Nb расщепляется на подзоны, нижняя из которых может вместить два электрона [97]. Таким образом, NbS₃(I) является системой с половинным заполнением. Пайерлсовская модель дает представление о том, почему оказывается выгодным дальнейшее понижение симметрии системы с открытием щели на уровне Ферми, которое сопровождается димеризацией — смещением атомов Nb, приводящим к чередованию длинных и коротких связей Nb-Nb вдоль цепочек.

Но, как частично обсуждалось выше, в системах с кратным заполнением и особенно с половинным заполнением, за счет процессов переброса усиливается электрон-электронное взаимодействие, и в одномерной цепочке с половинным заполнением щель будет наблюдаться при сколь угодно малом электрон-электронном взаимодействии без учета смещений в решетке [98]. Исследования проводимости подтверждают сложность применения пайерлсовской парадигмы — пайерлсовского перехода в металлическое состояние не наблюдается при нагреве соединения вплоть до 400 °C [102], когда из соединения начинает вылетать сера; в настоящей работе (см. раздел 4.7) мы подтвердили этот результат, хотя выше $T_C = 67$ °C, совпадающей с температурой перехода в пайерлсовское состояние металлической фазы NbS₃(II), мы наблюдали увеличение проводимости и изменение энергии активации.

Димеризация приводит к удвоению элементарной ячейки вдоль направления наибольшей проводимости b (см. рис. 1.6). Величина смещения, ответственного за димеризацию в NbS₃, составляет $u_0 = 0.005$ Å — что меньше типичных для ВЗП смещений в 0.05 Å [27]. В фазе (II) NbS₃ димеризации не наблюдается, удельное сопротивление при комнате 0.1-1 Ом·см, $d\sigma/dT > 0$. Для NbS₃(I) удельное сопротивление при комнате составляет порядка 100 Ом·см [102]. Элементарная ячейка фазы II в обратном пространстве является подъячейкой элементарной ячейки фазы I. Размер элементарной ячейки фазы II в прямом пространстве в два раза больше размера ячейки фазы I вдоль осей а и с, а вдоль оси b в два раза меньше за счет отсутствия спаривания Nb-Nb. NbS₃ (I) обладает триклинной симметрией решетки и центром инверсии, пространственная группа PĪ. Элементарная ячейка решетки NbS₃ (I) имеет следующие параметры: a = 4.963 Å, b = 6.730 Åи c = 9.114 Å, углы $\alpha = 90^\circ$, $\beta = 97.17^\circ$, $\gamma = 90^\circ$.

Половинное заполнение и димеризация обеспечивают сходство $NbS_3(I)$ с квазиодномерным органическим соединением (транс-)полиацетиленом $-CH_x =$

 CH_{x} , в котором наблюдались эффекты, связанные с образованием солитонов [46]. Особенностям энергетической структуры полиацетилена посвящено множество работ, см., например, [32–34, 45]. Если аналогично [34] связать величину щели с димеризационным смещением по формуле $2\Delta = 8qu_0$, где q—константа электрон-фононного взаимодействия, получим g=25 — в три раза больше, чем в полиацетилене. Существует мнение, что $NbS_3(I)$ — полупроводник [16], но в целом эта фаза изучена очень мало. Например, несмотря на явную анизотропию кристаллов — они легко щепятся вдоль плоскостей, параллельных направлению цепочек — в литературе не имеется данных об анизотропии проводимости, что, по всей видимости, связано с высоким удельным сопротивлением. Наш интерес к этому соединению был обусловлен как желанием опробовать метод фотоэлектрической спектроскопии на квазиодномерном соединении с хорошо определенной щелью, для величины которой имеются первопринципные теоретические оценки $\Delta \approx 0.5 \text{ эВ}$ [16], не противоречащие спектрам поглощения [101] и данным по болометрическому отклику [15, 109], так и интересом к сходству с полиацетиленом и возможному наблюдению солитонных состояний в оптических спектрах.

Отчасти малое количество работ по данной фазе связано с трудностями воспроизводимого синтеза определенной фазы. К моменту начала работы над диссертацией достоверно было установлено существование двух фаз [102], имелось единичное сообщение о наблюдении третьей фазы [14], которая, однако, могла являться смесью фаз I и II [78, 103]. Фазы (I) и (II) легко отличить по величине удельного сопротивления при комнатной температуре, кристаллы также слегка отличаются по внешнему виду (кристаллы фазы I, как правило, крупнее). Вторая фаза ${\rm NbS_3}$, (II) выделяется среди других квазиодномерных соединений необыкновенно высокой температурой пайерлсовского перехода $T_P=330-350~{\rm K}$ [102], также в ней наблюдается второй пайерлсовский переход при $T_{P2}=150~{\rm K}$.

В ходе работы над диссертацией были синтезированы кристаллы фаз I и II, исследованы условия, необходимые для получения каждой фазы, и опубликованы результаты исследований свойств синтезированных кристаллов [78, 103]. Среди результатов — тенденция к исчезновению нижнего перехода (150 K) и одновременному повышению удельного сопротивления для кристаллов второй фазы, выращенных при определенной температуре, связанная с изменением квазисверструктуры, наблюдаемой для обычных образцов. Само изменение, вероятнее всего, связано с дефектами упаковки. Также в ходе работы над диссертацией было обнаружено, что в NbS₃(I) при температуре 340 K наблюдается изменение энергии активации температурной зависимости проводимости, а также одновременное изменение характера рефлексов на рентгенограммах в направлении, перпендикулярном к цепочкам, похожее на наблюдавшиеся недавно в квазиодномерном полупроводнике TiS₃. Подробнее эти результаты изложены в разделе 4.7.

Исследования теплоемкости [104], проведенные на порошке из кристаллов $\mathrm{NbS_3}(\mathrm{I})$, показали, что в области низких температур 12-35 К наблюдается квадратичная зависимость удельной теплоемкости от температуры $C\sim T^2$, характерная для слоистых двумерных соединений, в то время как для цепочечных кристаллов ожидаются дробные степени 2.5 и 0.5 с повышением температуры. В области 35-80 К наблюдалась зависимость $C\sim T^{1.5}$. Эти данные согласуются с наличием двумерных дефектов — квазиупорядоченных сдвигов слоев цепочек друг относительно друга, признаки которых наблюдались в рентгенограммах [105].

Вольт-амперные характеристики $NbS_3(I)$ показывают существенную нелинейность в области высоких полей [14, 15], а именно, степенные зависимости $I \propto V^{\beta}$, со степенями β , не характерными для нелинейностей ВАХ, связанных с областью пространственного заряда, наблюдаемых в полупроводниках [99]. Некоторые исследователи приписывают ее движению ВЗП [15].

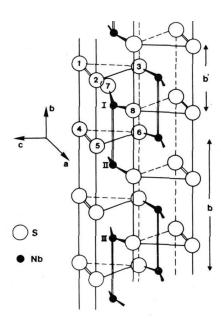


Рис. 1.6. Структура $NbS_3(I)$. Толстыми линиями отмечены более короткие связи Nb-Nb. Рисунок взят из работы [97]

Температурная зависимость проводимости фазы I для многих образцов имеет характерный участок с малой энергией активации, переходящей при понижении температуры в участок с большей энергией активации, что совершенно нехарактерно для обычных полупроводников [106] и может быть связано с фазовыми переходами. При увеличении давления фаза I переходит в металлическое состояние с температурой сверхпроводящего перехода 2.14 К [107]. При нагреве проволок из NbS₃ выше 600 °C они также становятся металлическими, что, по всей видимости, связано с разложением NbS₃ [108].

 ${
m NbS_3(I)},$ как и ${
m TaS_3},$ обладает высокой диэлектрической проницаемостью на низких частотах [13]: $\varepsilon(9.8\Gamma\Gamma{
m II})\approx 10^4$. Такие величины означают высокую поляризуемость электронной системы и характерны для соединений с ВЗП [12].

В измеренных спектрах комбинационного рассеяния [100, 101] при 300 К и ниже 100 К наблюдаются расщепленные фононные моды, связанные с образованием новой зоны Бриллюэна при $k=\pi/2b$ из-за димеризации — смещения атомов Nb. Измеренное электронное поглощение имеет максимум для

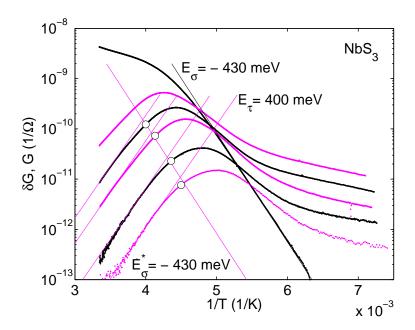


Рис. 1.7. Температурная зависимость фотопроводимости ${\rm NbS_3}({\rm I})$. Рисунок взят из работы [110]

длины волны 600 нм, то есть при 1.77 эВ, за которым следует спад вплоть до 1.5 эВ [101]. В работе [109] опубликована спектральная зависимость коэффициента поглощения образца $NbS_3(I)$ в области от 1.5 $\ni B$ до 0.4 $\ni B$ полученная как при 300 К, так и при 8.5 К из измеренных спектров отражения и пропускания. Максимальный коэффициент поглощения в этой области на порядок меньше, чем в р-ТаS₃, $\alpha_{NbS_3(I)}=3(2)\times 10^3~{\rm cm}^{-1}$ при 300 K (8.5 K), а определяемая авторами величина щели составляет 0.8 эВ и не меняется с температурой. Однако нам кажется более логичным определять величину щели по точке изменения наклона кривой $\alpha(\hbar\omega)$ [35], которая, согласно приводимым в [109] графикам, находится вблизи $8000~{\rm cm}^{-1}=1~{\rm эB}$ для $8.5~{\rm K}$ и лишь для 300 К остается равной 0.8 эВ. Спектр коэффициента отражения, приводимый для 300 К, сильно размыт для обоих поляризаций, в то время как спектр пропускания размыт гораздо меньше, примерно на 10% от величины щели. Температурная зависимость фотопроводимости кристаллов $NbS_3(I)$ (см. рис. 1.7) приводит к величине щели $2\Delta = 2E_{tau} = 0.8$ эВ, меньшей, чем $2\Delta = 1$ эВ в оптических измерениях при температуре $8.5~\mathrm{K}$, близкой

к нулевой по отношению к предполагаемой T_C структурного перехода [109]². Расчетные данные [16] также приводят к величине 1 эВ, температурная зависимость проводимости - к величинам $2\Delta_{tr} \approx 0.65$ эВ (варьируется на 10-15%). Однако, следует отметить, что для приводимого на рисунке 1.7 образца NbS₃ и величина активации проводимости оказалась несколько больше средней: $E_a \approx 4500$ K, при средней величине [109] $E_{a,mean} \approx 3800$ K (варьируется на 10-15% по данным [109]).

1.10. Фотопроводимость в квазиодномерных проводниках и ее применение для изучения плотности состояний

Фотопроводимость — изменение проводимости при поглощении излучения за счет перехода электрона из валентной зоны или со связанных состояний в зону проводимости или из валентной зоны в связанные состояния (см.табл 1.1) — не включает в себя отклика на фононное поглощение или поглощение на свободных носителях, в отличие от болометрического отклика. Спектр фотопроводимости полупроводника определяется спектром поглощения и подвижностью носителей [6], и для соединений, где частота оптических фононов может достигать величин порядка значения щели, позволяет наиболее непосредственно исследовать спектральную зависимость диэлектрической функции, а следовательно, и плотности состояний. p-TaS₃ относится к таким соединениям: в комбинационном рассеянии наблюдались фононные моды с энергией $\hbar\omega_{ph}=60$ мэВ [71], а транспортные измерения приводят к $\Delta_{tr}=60-75$ мэВ [63, 80]. Кроме того, p-TaS₃ обладает малой подвижностью носителей даже при низких температурах [63]. Для идеального одномерно-

 $^{^2}$ Несмотря на утверждение авторов, оценивающих $2\Delta_{opt}=0.8$ эВ, представленные им графические данные для $8.5~{\rm K}$ лучше соответствуют $2\Delta=1~{\rm эB}$

го полупроводникового кристалла плотность состояний вблизи края щели пропорциональна $1/\sqrt{E-2\Delta}$ где $2\Delta=E_g$ — величина щели или ширина запрещенной зоны.

Тем не менее, в соединениях с ВЗП, как и в полупроводниках большей размерности, из-за наличия связи между проводящими цепочками может наблюдаться зависимость энергии электрона от поперечных компонент волнового вектора ВЗП (см.рис. 1.3), приводящая к изменению интегральной плотности состояний, следовательно, к особенностям Ван Хова в спектрах фотопроводимости при энергиях, больших 2Δ (см. рис. 3.8). Кроме того, флуктуации и взаимодействие с решеткой в соединениях с ВЗП (см. разд. 1.2 и 1.4) должны привести к размытию спектра и хвосту состояний внутри щели. Помимо этого, к ненулевой плотности состояний внутри щели — хвосту состояний в соединениях с ВЗП должны привести примеси [56] при концентрации выше критической, а при более низких концентрациях примеси могут создать энергетические уровни внутри щели. Экситонные уровни [35] и дополнительное размытие спектра вследствие серий таких уровней также могут повлиять на спектр фотопроводимости исследуемых квазиодномерных соединений, хотя до сих пор сообщения о наблюдениях экситонных уровней в квазиодномерных проводниках с ВЗП, насколько нам известно, не публиковались. Во всяком случае ясно, что обратная корневая зависимость сигнала фотопроводимости от энергии излучения может быть замаскирована различными эффектами.

В настоящий момент фотопроводимость применяется для изучения спектров плотности состояний в различных низкоразмерных системах: квазиодномерных органических полупроводниках, нанопроволоках и нанотрубках а также в цепочечных соединениях, в которых наблюдается моттовский переход [81]. Состояние квазиодномерного проводника с ВЗП при $T < T_P$ обладает многими чертами полупроводникового состояния, как было получено в работе [64], при этом уровень легирования зависит от величины волнового

Таблица 1.1. Оптическая спектроскопия в системах с ВЗП

Метод	Что вносит вклад	Информация
ИК поглоще-	Оптическая плотность со-	Величина щели, число степе-
ние/отражение;	стояний ¹ , фононы, коллек-	ней свободы системы, симмет-
Болометрический	тивные моды возбуждений	рия, энергетические уровни
отклик	ВЗП, свободные носители	
Комбинационное рас-	Фононы	Симметрия, структурные пере-
сеяние		ходы
Фотолюминесценция	Электрон-дырочная ре-	Величина щели, дефекты; экси-
	комбинация, экситонная	тонные энергетические уровни
	рекомбинация	
Фотопроводимость	Оптическая плотность со-	Величина щели, дефекты; энер-
	стояний, переходы связан-	гетические уровни
	ные с внутрищелевыми со-	
	стояниями	
Сверхбыстрая оптиче-	Фононы, коллективные	Структурные переходы
ская спектроскопия	моды возбуждений ВЗП,	
	плазмоны	

^[1] Имеется в виду плотность одночастичных состояний.

вектора ВЗП. Таким образом, можно ожидать наблюдения фотопроводимости при освещении, тем более что фотопроводимость, правда, описанная как солитонная, уже наблюдалась в близком классе соединений - в транс-полиацетилене. Тем не менее фотопроводимость в квазиодномерных проводниках с ВЗП впервые была обнаружена в р-ТаS₃ в 2004 году [11], хотя, по всей видимости, наблюдалась и ранее, но не была опознана в качестве таковой ¹. С тех пор в ИРЭ им. В. А. Котельникова РАН были также проведены измерения фотопроводимости в голубой бронзе[110, 111], моноклинной фазе ТаS₃[111], (ТаSe₄)₂I(не опубликовано) и в квазиодномерном полупроводнике NbS₃(I). ³

1.10.1. Свойства фотоотклика в изучаемых соединениях

Температурная зависимость фотопроводимости квазиодномерных соединений является немонотонной. Как можно видеть на рис. 1.8, фотопроводимость в случае TaS_3 наблюдается при температурах, много меньших T_P . Для наиболее тонких кристаллов заметный рост фотопроводимости начинается примерно при $T \sim T_P/2 \sim 100~K$, для более толстых — при более низких

 $^{^3}$ Довольно долгое время считалось, что из-за малых времен жизни $au pprox 10^{-12} - 10^{-13}$ секунд фотовозбужденных электрона и дырки фотопроводимость во многих неорганических квазиодномерных проводниках наблюдать нельзя. Столь малые времена жизни связывались с сильным электрон-фонноным взаимодействием, приводящим к быстрому образованию локализованных солитонов и поляронов из фотовозбужденных носителей [53]. В 1999 году при помощи фемтосекундной спектроскопии возбуждений в голубой бронзе были получены времена жизни фотовозбужденных носителей согласующиеся с [53]. Тем не менее, болометрический отклик — изменение проводимости полупроводника в связи с нагревом при освещении — в р- TaS_3 при гелиевых (T < 50 K) температурах, о первых наблюдениях которого сообщили Брилл и Херр в 1986 году [7], а также Иткис и Надь [22], как показали недавние исследования [111], являлся именно фотопроводимостью. Представление о коротких временах жизни явилось парадигматическим, и, хотя Брилл и отметил рост относительной величины отклика $\delta G/G$ на два порядка ниже $40~\mathrm{K}$, который нельзя было связать ни с уменьшением теплопроводности, ни с изменением температурной зависимости сопротивления, тем не менее он счел гипотезу о фотопроводящем происхождении отклика маловероятной. В 2001 году были получены результаты по влиянию подсветки на проводимость ВЗП в голубой бронзе [10], которые были проинтерпретированы как непосредственное движение ВЗП под действием света, однако также гораздо лучше объясняются фотопроводимостью.

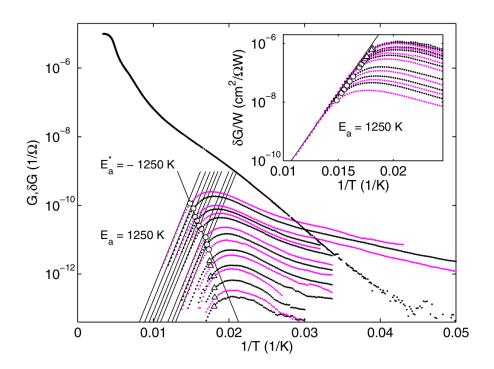


Рис. 1.8. Температурная зависимость фотопроводимости p- TaS_3 при различных интенсивностях излучения. Рисунок взят из работы [82].

температурах, около 70 K, затем наблюдается активационный рост с энергией порядка 1000-1250 K, в зависимости от чистоты образца, а после максимума соответствующего температурам 50 K - 60 K и варьирующегося от образца к образцу наблюдается спад фотопроводимости. Частично эти особенности были объяснены в работе [82] следующим образом: участок активационного роста фотопроводимости с понижением температуры аналогичен режиму линейной рекомбинации носителей в полупроводниках, при котором концентрация носителей δn , возбужденных светом через щель, меньше, чем концентрация термически возбужденных носителей в образце n и фотопроводимость обратно пропорциональна времени жизни термоактивированных носителей, $\delta G(T) \propto \tau^{-1} \propto e^{2\Delta/T}$ [5]. Прекращение роста с охлаждением связано с переходом к нелинейной рекомбинации, а спад фотопроводимости с дальнейшим понижением температуры может быть связан с появлением нового канала рекомбинации носителей, например, с увеличением числа дислокаций ВЗП. На

дислокации параметр порядка подавлен, соответственно, щель в энергетическом спектре исчезает. При этом важной отличительной особенностью p- TaS_3 является отсутствие поверхностной рекомбинации [82].

Само появление сигнала фотопроводимости при достаточно низких температур связывается [82] с увеличением времени жизни носителей за счет пространственного разделения носителей в потенциальном рельефе взаимодействия ВЗП с примесями. С понижением температуры потенциальный рельеф углубляется. Величину углубления можно оценить по пороговому полю E_t , необходимому для срыва ВЗП с примесей. То, что E_t увеличивается и при освещении (за счет улучшения экранировки искажений ВЗП дополнительными носителями) означает возможность самосогласованного увеличения времени жизни носителей за счет углубления потенциального рельефа при подсветке. Как и пороговое поле, времена релаксации фотоотклика растут с понижением температуры, и при гелиевых температурах в p-TaS₃ достигают величин порядка десятков секунд. Медленный, "равновесный" тип фотоотклика, для которого наблюдаются описанные эффекты, наблюдается при достаточно слабой интенсивности источника излучения. Всего в ромбическом TaS_3 было обнаружено два типа фотоотклика — второй тип характерен для больших интенсивностей, для которых время релаксации отклика, напротив, уменьшается с понижением температуры.

При измерении спектров фотопроводимости, приводимых в настоящей работе, практически во всех случаях наблюдалась осциллограмма сигнала. Для спектров фотопроводимости ромбического TaS_3 осциллограмма, как правило (при энергии фотонов 0.3 эВ), имела вид более близкий к характерной для быстрого отклика на всех энергиях.

В работе [82] была определена зависимость изменения порогового поля при подсветке от линейной проводимости (при разных уровнях подсветки) — $V_T \propto G^{1/3}$, что соответствует случаю одномерного пиннинга ВЗП примеся-

ми [27]. Для тонкого образца и $W=110~{\rm mBT/cm^2}$ изменение концентрации составило $10^{14}~{\rm cm^{-3}}$ а время жизни $10^{-10}~{\rm cek}$ при $100~{\rm K}$. При понижении температуры до $65~{\rm K}$ время жизни становится на два порядка больше. Изменение проводимости при $100~{\rm K}-{\rm порядка}~0.01\%$ от проводимости. $dG/G\cdot dT/dG$ дает изменение температуры порядка $1~{\rm mK}-{\rm что}$ означает очень хороший тепловой контакт с подложкой.

Температурная зависимость фотопроводимости в режиме линейной рекомбинации для $\mathrm{Ta}S_3$ является активационной, $\delta G(T)/G = \delta n/n \propto 1/\tau \propto$ $e^{\Delta/T}$. Определенная по этой активационной зависимости величина оптической щели 2Δ составляет $2400-2900~{\rm K}$ для чистых образцов, т.е. 0.21-0.22 эВ. Это значительно больше, чем энергия активации обычной проводимости вблизи пайерлсовского перехода, которая приводит к величинам щели $2\Delta \sim 1600-2000~{\rm K}=0.14-0.17~{\rm эВ}$ [12]. Авторы [82] используют также и другой способ определения концентрации одночастичных возбуждений из фотопроводимости. Он состоит в следующем: для интенсивности излучения, при которой начинается квадратичная рекомбинация, концентрация фотовозбужденных носителей $\delta n \approx n_0$, и одновременно выполняется $\delta G/W = 2/3\delta G_0/W_0$, где δG_0 — проводимость в пределе малой интенсивности освещения, при которой $\delta G/W = {\rm const} \ [5, 82]$. Зависимость таким образом определенной концентрации n_0 от температуры хорошо приближается активационной (хоть и на ограниченном промежутке температур) и дает энергию активации E_{Δ} . Эти две энергии активации для большинства чистых образцов примерно равны 1200-1300 К и совпадают между собой с довольно хорошей точностью до 50-100 К [82]. В образцах с примесями $E_{\tau} < E_{\Delta}$, разница составляет порядка 200-300 K, при этом E_{Δ} не меняется по сравнению с чистыми образцами.

Для голубой бронзы температурная зависимость фотопроводимости изучены значительно хуже — провести измерения при малых напряжениях, при

которых ВЗП не движется, не удается, приходится измерять фотопроводимость в режиме нелинейного отклика на приложенное напряжение. Согласно предварительным измерениям в этом режиме сигнал детектируется при температурах ниже 40 K, не сильно изменяется вплоть 20 K, затем спадает. Энергию активации температурной зависимости фотопроводимости в голубой бронзе определить до сих пор не удалось.

Аналогичным способом была изучена температурная зависимость фотопроводимости $NbS_3(I)$ [110]. При достаточно высоких интенсивностях порядка $1mBt/cm^2$ фотопроводимость наблюдается уже при комнатной температуре. Энергия активации фотопроводимости соответствует величине щели в 0.8 эВ, что меньше оптической щели и расчетного значения для I фазы [16], однако совпадает с транспортной щелью.

Глава 2

Использованные экспериментальные методики (техника эксперимента)

2.1. Изготовление образцов p-TaS $_3$ и NbS $_3(I)$

Большинство исследованных кристаллов p-TaS₃ были предоставлены R. E. Thorne (Cornell University) и F. Levy (Institute de Physique Appliquée, Lausanne). Также было изучено несколько кристаллов p-TaS₃, синтезированных автором под руководством С. В. Зайцева-Зотова. Все изучавшиеся кристаллы NbS₃ синтезированы автором под руководством С. В. Зайцева-Зотова. Использованные методики синтеза изложены в разделе 2.5.

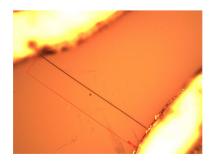


Рис. 2.1. Фотография образца TaS_3 . Образец # disq1. Длина образца 0.39 мм.

Образцы TaS₃ и NbS₃ представляли собой нитевидные кристаллы, отбиравшиеся по признаку отсутствия видимых дефектов с учетом оптимального для фотопроводимости соотношения ширины к толщине. Для измерений образцы помещались на подложку из ситалла или сапфира. Для повышения относительного вклада фотопроводимости в проводимость объема изучались сравнительно тонкие кристаллы: параметры образцов p-TaS₃ представлены в таблице 3.1. Типичные размеры образцов NbS₃ — сечение порядка ста-двухсот мкм² и длина 1-3 мм. Отношение ширины к толщине для образцов NbS₃(I) составляло от 6 до 40.

Поверхностное натяжение водяной пленки и электростатическое притяжение приводят к фиксации расположения образца микронных поперечных размеров на подложке. После помещения образца на подложку контакты изготавливались методом холодной пайки индием. Качество образцов TaS₃ контролировалось дополнительно с помощью измерения температурной зависимости сопротивления и значения порогового поля начала нелинейной проводимости. Некоторые справочные данные приведены в таблице 3.2.

2.2. Изготовление образцов голубой бронзы

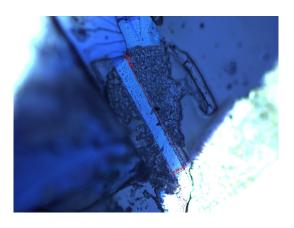


Рис. 2.2. Фотография образца #3, длина образца 275 мкм, ширина 30 мкм

Образцы были изготовлены С. Г. Зыбцевым из кристаллов $K_{0.3}$ МоО₃, предоставленных R. Е. Thorne (Cornell University). Из партии кристаллов отбирался образец в виде тонкой чешуйки с участком типа тонкой пленки, на этот участок прикреплялась маска из вискера ВТСП, покрытого золотом, а остальная поверхность тонкой пленки стравливалась при помощи лазера. На толстопленочные края образца наносились золотые контакты методом лазерного напыления. Три изготовленных образца оказались приблизительно прямоугольны по форме (см.рис. 2.2), и имели следующие размеры: 1) длина l=120 мкм, ширина d=30 мкм 2) l=275 мкм, d=30 мкм 3) l=500 мкм, d=20 мкм. Сопротивление образцов при комнатной температуре R состави-

ло 10 Ом, 80 Ом и 464 Ома соответственно. Толщина образцов оценивалась из формулы $R=\rho l/(ad)$, где $\rho=0.003$ Ом см — удельное сопротивление, d — ширина, a — толщина, и лежит в пределах 0.1-1 мкм.

2.3. Методика измерений спектров фотопроводимости

Измерения фотопроводимости производились с помощью решеточного монохроматора ИКС-31 с набором фильтров, излучение с выхода которого фокусировалось при помощи сферического зеркала на образец, находившийся в оптическом заливном гелиевом криостате. Схема установки представлена на рисунке 2.3. Для TaS_3 и $K_{0.3}MoO_3$ спектры фотопроводимости были получены в ближнем ИК диапазоне (энергия фотона 0.4-0.05 эВ что соответствует диапазону $3250\text{-}400~\text{cm}^{-1}$) и в качестве источника излучения использовался глобар (потребляемая мощность составляла примерно 24 Вт при токе 4.5 А, использовался режим заданного тока). Согласно данным калибровки, величина сигнала фотопроводимости для образца p- TaS_3 в области 6 мкм (0.2 эВ) на нашей установке соответствует величине сигнала фотопроводимости при той же температуре при плотности мощности излучения на поверхности образца порядка 10 мкВт/см². Изменение температуры, соответствующее такому изменению фотопроводимости, составляет менее 1 мК [82]. Такое малое значение, связанное с с хорошим тепловым контактом образца с подложкой и нахождением подложки в теплообменном газе, полностью исключает влияние эффектов нагрева на спектр. В целом, фотопроводимость квазиодномерных соединений достигает максимума в температурном диапазоне, где болометрический эффект незначителен, см. главу 1 и работу [111]. На оптическом пути излучения имелось три уменьшающих мощность излучения окна — окно на выходе монохроматора (материал — КРС-5), внешнее окно криостата (материал — КРС-5), находящееся при комнатной температуре, и внутреннее окно

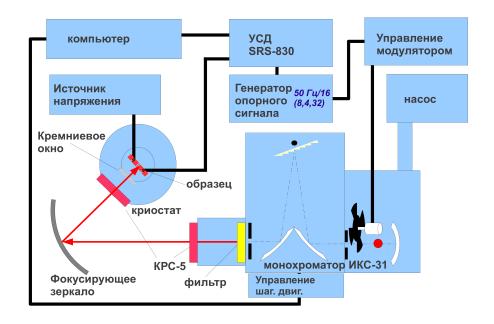


Рис. 2.3. Блок-схема установки по измерению фотопроводимости.

криостата, находящееся при низких температурах (материал — кремний), что приводило к ослаблению интенсивности излучения почти на порядок. Измеряемые сигналы имеют характерную величину порядка нескольких пикоампер, что в сочетании с непрозрачностью кремния в видимом диапазоне осложняет юстировку. КРС-5 пропускает примерно 50% излучения в использованном диапазоне длин волн.

Для $NbS_3(I)$ спектральный диапазон был другим: 1.6-0.4 \Rightarrow B или 13000-3250 см $^{-1}$, и в качестве источника излучения использовалась кварцевая лампа (потребляемая мощность примерно 35 Вт при напряжении 12 В). Также для измерений $NbS_3(I)$ использовался другой оптический канал криостата — с кварцевыми окнами.

В области 1.35-0.40 эВ использовалась дифракционная решетка монохроматора 300 штрихов/мм (штр/мм), в области 0.46-0.17 эВ — решетка 150 штрихов/мм, в области 0.23-0.085 эВ — решетка 75 штр/мм, в области 0.085-0.056 эВ — решетка 50 штр/мм.

Большинство измерений проводилось при ширине раскрытия выходной

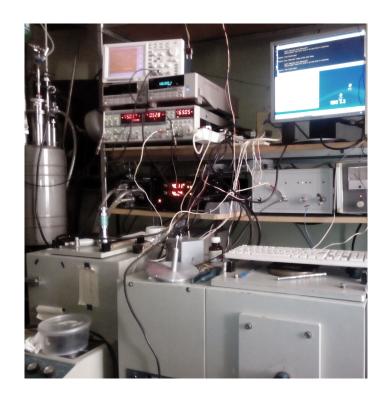


Рис. 2.4. Фотография установки по измерению фотопроводимости.

щели монохроматора 6 мм для максимального увеличения слабого сигнала источника. Разрешение спектров, определенное по калибровке линейчатого спектра излучения, составило около 4 мэВ при ширине выходной щели в 1.36 мм и для дифракционной решетки 300 штр/мм. При ширине щели 6 мм для решетки 300 штр/мм разрешение составило около 16 мэВ, для решетки 150 штр/мм разрешение составило около 8 мэВ, для решетки 75 штр/мм — около 4 мэВ. Для калибровки монохроматора использовалась ртутная лампа в качестве источника и кремниевый фотодиод в качестве фотоприемника. Мы провели также тестовые измерения спектров фотопроводимости квазиодномерного проводника TaS_3 для других значений ширины выходной щели (4 мм и 2 мм) и не обнаружили различий в форме зависимости сигнала.

Вертикальный размер изображения щели, проектирующегося на образец, составлял около 1 см. Все исследуемые образцы имели длину менее 2 мм и засвечивались полностью вместе с контактами. В таком случае возникает вопрос о вкладе контактной фотоэдс. Мы не обнаружили сигнала фотоэдс, который мог бы свидетельствовать о контактных эффектах для $K_{0.3}$ Мо O_3 и p-Ta S_3 . Сигнал фотоэдс не наблюдался и в предыдущих исследованиях фотопроводимости p-Ta S_3 [82]. Для одного из образцов квазиодномерного полупроводника Nb S_3 (I) наблюдался спектрально зависимый сигнал фотоэдс, в этом случае нами были проведены дополнительные измерения спектров фотоэдс и фотопроводимости с затенением контактов образца при помощи полосок фольги, результаты изложены в разделе 4.6.

Во время измерений голубой бронзы и TaS₃ монохроматор непрерывно откачивался форвакуумным пластинчато-роторным насосом до давления менее 1 Торр чтобы уменьшить эффект поглощения излучения атмосферой. Полная длина оптического пути в воздушной среде определялась расстоянием между монохроматором и криостатом и составляла около 30 см. Области высокого поглощения излучения атмосферой из спектров фотопроводимости были исключены. Поглощение при энергиях 0.295-0.275 эВ (4.2-4.5 мкм) связано с парами углекислого газа, а при энергиях 0.345-0.365 эВ (3.44-3.6 мкм) — с парами воды [114]. Характерные особенности спектров при этих энергиях позволяли контролировать точность калибровки монохроматора. Измерения NbS₃(I) проводились без откачки монохроматора. Все измерения в криостате производились в атмосфере теплообменного газа при атмосферном давлении. При измерениях при температурах выше 78 К в качестве теплообменного газа использовался азот, при температурах ниже 78 К — гелий.

В большинстве измерений излучение источников было неполяризованным, однако, был проведен также ряд измерений с решеточным ИК-поляризатором Edmund Optics #62-775 (материал — КРС-5). При помощи болометра были получены спектры поляризованного излучения для двух взаимно перпендикулярных поляризаций, которые мы использовали для калибровки этих измерений.

Измерения проводились двухконтактным методом в режиме заданного

напряжения с использованием стандартного усилителя с синхронным детектором. Частота модуляции излучения $3.125~\Gamma$ ц (типичная величина постоянной времени $\tau=1$ с). Такая частота, соответствующая периоду модуляции, кратному $1/50~\Gamma$ ц, была выбрана, чтобы уменьшить влияние сетевых наводок. Результаты тестовых измерений спектров фотопроводимости на частотах 0.85, 1.7 и $6.25~\Gamma$ ц оказались такими же, как и на частоте $3.125~\Gamma$ ц. Сопротивление образцов TaS_3 и NbS_3 при температурах, при которых измерялись спектры, составляет десятки и сотни мегаом.

Для сбора данных использовался компьютер с платой GPIB и платой управления шаговым двигателем монохроматора Advantech PCL-839. Плата Advantech PCL-839 подключалась к шаговому двигателю с помощью изготовленного самостоятельно устройства управления, которое подавало напряжение на 4 электромагнита, контролирующих движение шагового двигателя. Для измерений была написана программа на языке С, которая по задаваемым спектральному интервалу и количеству точек рассчитывала значения длин волн и число шагов для шагового двигателя. Шаговый двигатель обеспечивал необходимый угол поворота дифракционной решетки и соответствующее изменение длины волны излучения. После установки длины волны производилось автоматизированное измерение сигнала на усилителе с синхронным детектором и запись в файл. Управляющая программа работала в операционной системе Linux (дистрибутив Fedora).

Требуемое значение температуры устанавливалось вручную на терморегуляторе tSTAT310х, подсоединенном к криостату. Регулировка температуры осуществлялась при помощи изменения скорости потока газа в измерительный объем при помощи PID-регулируемого клапана. Колебания температуры вблизи установленной величины за время измерения не превышали 0.1 К.

Спектры фотопроводимости $S(\hbar\omega)$, приведенные в диссертации, нормированы на число фотонов: $S(\hbar\omega) \equiv \delta I\hbar\omega/W(\hbar\omega)V$, где $W(\hbar\omega)$ — мощность

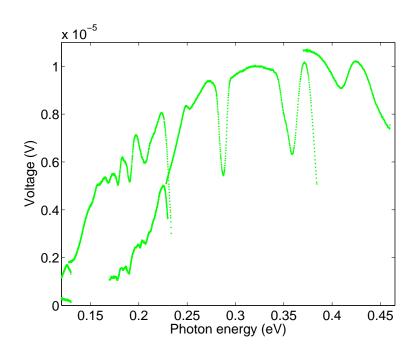


Рис. 2.5. Спектр излучения на выходе монохроматора, измеренный болометром.

излучения, измеренная с помощью болометра, δI — изменение тока при освещении, а V — напряжение, приложенное к образцу. На графиках спектров фотоотклика на поляризованное излучение вместо S для той же величины используется обозначение $\delta G_{||}$ в случае излучения, поляризованного вдоль цепочек, и δG_{\perp} — для излучения, поляризованного в перпендикулярном направлении (в этих случаях для нормировки использовалась соответствующая мощность поляризованного излучения $W_{||(\perp)}(\hbar\omega)$). Измеренный болометром спектр неполяризованного излучения в области 0.4-0.10 эВ, на который нормировались измеренные спектры фотопроводимости для TaS_3 , приведен на рисунке 2.5.

2.4. Измерения вольт-амперных характеристик и температурной зависимости проводимости

Автоматизированные измерения вольт-амперных характеристик (BAX) и температурной зависимости проводимости производились на криогенерато-

ре двухконтактным методом, при этом образец во время измерений находился в атмосфере теплообменного газа. Напряжение, как правило, задавалось программно и подавалось с выхода электрометра Кеуthley на образец через защитное сопротивление. Для подключения образца к приборам использовались малошумящие триаксиальные кабели с двойным экраном, измерение тока производилось тем же электрометром. Температура устанавливалась программно посредством PID-регулированной подачи напряжения на нагреватель, расположенный недалеко от образца, и за время измерения одной ВАХ варьировалась не более чем на 0.1 К. Система сбора данных состояла из измерительных приборов, GPIB-кабелей, интерфейсного модуля GPIB-USB и компьютера с операционной системой Linux и программой измерений (написанной на C).

Не упомянутые в этом разделе, но требующиеся для понимания текста подробности методик измерения изложены непосредственно в тексте глав 3 и 4 при описании результатов.

2.5. Синтез кристаллов TaS_3 и $NbS_3(I)$

Кристаллы TaS_3 были получены методом прямой газофазной реакции компонентов в стехиометрическом соотношении в запаянной и откачанной кварцевой ампуле при перепаде температур с 670° С до 710° С на длину ампулы (20 см). Рост продолжался в течение 10 дней. Оценка количества примесей образцов TaS_3 проводилась по величине порогового поля нелинейной проводимости при 100 К. Высокочистыми образцами для этого материала считаются кристаллы с пороговыми полями $0.5~\mathrm{B/cm}$ и ниже.

Пороговые поля полученных автором кристаллов ${\rm TaS_3}$, исследовавшихся в данной работе, составляли от 2.5 до 5 ${\rm B/cm}$ при 100 K, что заметно выше, чем у предоставленных нам Levy и Thorne образцов (0.6 ${\rm B/cm}$). Тем

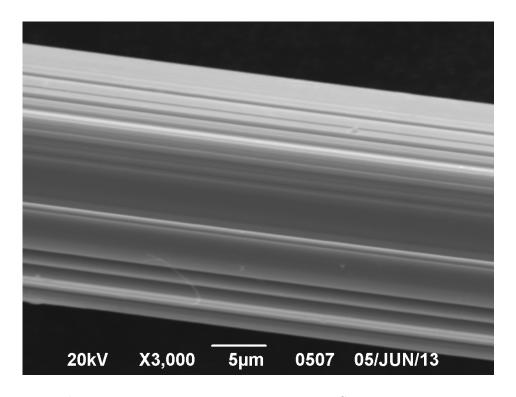


Рис. 2.6. Фотография выращенного нами кристалла ${\rm TaS_3}$, полученная при помощи электронного микроскопа Боровиковым Н. (ИФВД)

не менее, спектры фотопроводимости наших образцов несущественно отличаются от спектров образцов, синтезированных R. E. Thorne (см. главу 3). Относительно высокие пороговые поля синтезированных нами кристаллов TaS₃ могут быть следствием недостаточного количества серы при синтезе, что может приводить к росту более дефектных кристаллов [59]. Основанием для предположения о недостатке серы служат предварительные исследования кристаллов из одной из синтезированных нами партий материала методом энергодисперсионной рентгеновской спектрометрии¹. Эти исследования показали что процент содержания Та в некоторых кристаллах немного превышает соответствующий стехиометрическому составу, однако точность данного метода недостаточна для окончательных выводов. Другой причиной может быть недостаточная чистота исходного материала — в работе [77] указывается, что, по данным ЭПР, исходный высокочистый Та может содержать

¹ Автор благодарит Евгения Михайловича Дижура и Николая Боровикова за помощь в исследовании химического состава образцов и предоставленные данные.

до 10^{-3} примесей железа и других металлов.

Кристаллы фазы I NbS₃ также были получены методом прямой газофазной реакции компонентов в стехиометрическом соотношении с небольшим (1 % по массе) преобладанием серы [78, 103, 113]. Было проведено несколько циклов роста для выявления условий, оптимальных для синтеза каждой из фаз NbS₃. Рост происходил в запаянной вакуумированной кварцевой ампуле в 3-зонной трубчатой печи Gero при постоянном температурном градиенте, варьировавшемся для разных циклов роста от 1.5 до 2 К/см. Температура задавалась по зонам. Распределение температур сглаживалось за счет керамической трубы внутри печи, толщина стенок 8 мм. Распределение температур внутри трубы при установленной температуре зон измерялась термопарой Pt-Re.

Перед загрузкой реагентов ампула промывалась раствором NaOH, а затем дистиллированной водой, и сушилась в печи при температуре 800-900° С в течение двух суток. После этого в ампулу загружались реагенты, и ампула запаивалась при непрерывной откачке безмасляным насосом. Срок пребывания открытой ампулы на воздухе после сушки не превышал часа. После загрузки ампулы в печь температура сначала плавно повышалась при заданном градиенте от 200° C до требуемой, со скоростью 20° C/в час, а затем оставалась неизменной в течение всего периода роста. Типичное время роста составляло 10 дней. Эксперименты с изменением времени роста не выявили разницы в соотношении количества фаз I и II в получаемом NbS₃. Неизменными во всех экспериментах оставались масса реагирующих компонентов Nb и S. После окончания роста ампула вскрывалась, из нее доставался "кокон" (вата из вискеров). Проводились измерения транспортных свойств вискеров (не менее 10), извлеченных из кокона в определённых точках, т.е. на разных расстояниях от холодного конца ампулы. Таким образом была получена информация о физических свойствах кристаллов NbS₃ в зависимости от температуры и градиента. Эксперименты показали, что наилучшим градиентом является 2 K/см.

Рост кристаллов фазы I, использованных для измерений спектров фотопроводимости, проводился описанным выше способом в течение трех недель. Градиент вдоль кварцевой ампулы длиной 20 см составлял 570° С -610° С. Эта температура была выбрана в процессе экспериментов, в результате которых мы установили, что для того, чтобы получить преимущественно кристаллы фазы I, необходимы температуры не выше 700° С. При более высоких температурах вырастает меньшее количество кристаллов фазы I и повышается содержание кристаллов фазы II [78, 113], в которой наблюдаются два пайерлсовских перехода, и, соответственно, две ВЗП. Как показал проведенный эксперимент, температурах ниже 550° C давление паров серы слишком низкое, и без дополнительного транспортного агента синтез трихалькогенидов не идет. Согласно литературе [59], при использовании галогенов в качестве транспортного агента синтез при таких температурах происходит. Оптимальная температура для синтеза фазы II находится в районе 720-750° С, кристаллы фазы I обнаруживаются в частях кокона, находившихся при температуре ниже 720° С. Кристаллы NbS₃ фазы II оказались рекордно чистыми [103], что дает основания считать, что и кристаллы фазы I также достаточно чистые. Такая разница в эффективности синтеза высокочистых TaS₃ и NbS₃, близких по химическому составу, может быть связана с особенностями роста халькогенидов Nb и Ta. По имеющимся данным, примеси кислорода в соединениях с Nb обладают геттерными свойствами [58], что может не выполняться для соединений с Та.

2.6. Введение примесей индия в TaS_3

Примеси вводились с помощью температурной диффузии, следуя методике, описанной в [115] для NbSe₃. Для внедрения примесей образец с прижимными контактами из индиевой проволоки (диаметр проволоки ~ 200 мкм, размер образца $400 \text{ мкм} \times 2 \text{ мкм}^2$) нагревался в потоке аргона до температуры 120° С и выдерживался при этой температуре в течение фиксированного промежутка времени (от двух с половиной до пяти часов). Согласно данным работы [115] скорость диффузии индия в NbSe₃ (для образца 2000 мкм $\times 25$ мкм²) при этой температуре достигает 1 ат.% в час. Проводился также нагрев на атмосфере, который не выявил никаких отличий в характере изменения спектров по сравнению с нагревом в аргоне. Таким образом, при нагреве р-ТаS₃ на воздухе основным процессом, влияющим на спектр фотопроводимости, остается диффузия индия. Точная оценка концентрации введенного индия в объеме для TaS_3 довольно сложна в связи с низкой чувствительностью большинства методов для определения малых (менее 1 ат.%) концентраций примесей в квазиодномерных проводниках и малой толщиной образца (менее одного мкм). По оценке, основанной на изменении величины порогового поля, абсолютная концентрация введенных примесей составляет $1-2\times 10^{-4}$ на атом $(1-2\times 10^{-2} \ {\rm at.\%})$. После того, как суммарное время диффузию достигло 23-х часов, микрорентгеноспектральный анализ подтвердил высокую концентрацию индия вблизи контактов (6 ат.%), быстро спадающую с удалением от контактов, что подтверждает диффузию индия в образец.

Глава 3

Исследование энергетической структуры пайерлсовской щели в ${\rm TaS}_3$

3.1. Спектры фотопроводимости р- ${ m TaS}_3$

Глубина поглощения ИК излучения в области 0.5-0.1 эВ в образцах р- TaS_3 в области температур 20-40 К составляет около 1 мкм [75] (см. также раздел 3.5). Изучавшиеся нами образцы с толщиной, варьирующейся в пределах $0.3-0.03~\mu$ м, попадают в категорию оптически тонких. Спектральная зависимость коэффициента отражения [22,75] позволяет считать, что спектр фотопроводимости практически полностью определяется спектром поглощения. Все образцы измерялись в конфигурации нормального падения излучения на образец.

Первые спектры, полученные нами, показали, что форма спектра при энергиях фотона $\hbar\omega \lesssim 0.3$ эВ достаточно сильно варьируется от кристалла к кристаллу. На рис. 3.1 и 3.2 представлены нормированные спектры фотопроводимости. Спектры нормированы на величину фотопроводимости вблизи максимума, так как величина сигнала фотопроводимости для различных образцов могла отличаться (в более тонких образцах величина сигнала фотопроводимости может быть на порядки меньше, чем в толстых). В целом, результаты нормировки спектров на величину фотопроводимости при энергиях $\hbar\omega_0 = (0.3-0.4)$ эВ мало отличаются друг от друга, поэтому здесь и далее мы пользуемся разными $\hbar\omega_0$ из этой области. На рисунках, где не указана нормировка, как правило, используется $\hbar\omega_0 = 0.32$ эВ. Из рисунков 3.1 и 3.2 видно, что характерные особенности типа максимума спектральной плотности могут сдвигаться на величину порядка $\delta\varepsilon \sim 10$ мэВ. При этом

при энергиях фотона выше 0.3 эВ спектры спадают с увеличением энергии практически по одному и тому же закону, близкому к обратной корневой зависимости $dN/dE = D(E) \propto 1/\sqrt{E-2\Delta}$, характерной для плотности состояний одномерных систем (см. пунктирную линию на рис. 3.1).

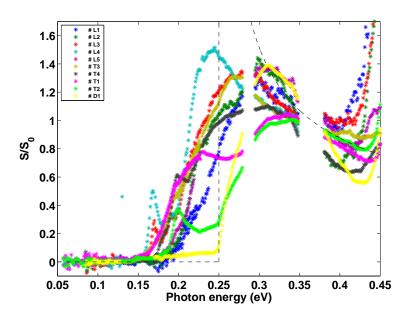


Рис. 3.1. Нормированные спектры фотопроводимости 10 изученных образцов р-ТаS₃. Пунктиром показана зависимость $dN/dE=D(E)\propto 1/\sqrt{E-2\Delta}$ для $2\Delta=0.25$ эВ. Образцы #L изготовлены из кристаллов, предоставленных F. Levy, образцы #T — из кристаллов, предоставленных R. E. Thorne.

Мы предположили, что область совпадения спектров соответствует энергиям $\hbar\omega > 2\Delta$, в то время как область различия спектров соответствует области $\hbar\omega \lesssim 2\Delta$ и описывается суммой спадающей кривой, отвечающей краю пайерлсовской щели, и набором пиков фотопроводимости, связанных с внутрищелевыми состояниями. Первоначально мы приближали зависимость, отвечающую краю пайерлсовской щели, спектром образца без пиков фотопроводимости — в качестве такового мы использовали спектр образца # L1.

На рисунке 3.2 представлены спектры фотопроводимости четырех образцов, внизу приведены разностные спектры. Заметно, что пики в разностных спектрах имеют разную форму, узкие пики ближе по форме к лоренциану и расположены при меньших энергиях, в то время как наиболее широкие пики хорошо приближаются гауссианами и расположены при более высоких

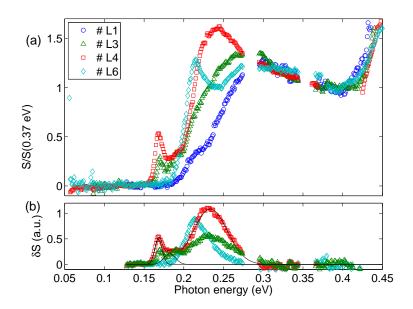


Рис. 3.2. (а) Спектры фотопроводимости 4-х образцов p-TaS₃. Для удобства все спектры нормированы на единицу при энергии $\hbar\omega=0.35$ эВ; (b) разностные спектры фотопроводимости 3-х образцов: # L2, # L3 и # L4. Разностные спектры получены вычитанием спектра образца # L1 из спектров остальных образцов. Сплошными линиями показана подгонка разностных спектров суммой гауссианов и гауссианы.

энергиях. Но гауссовы пики при вычитании спектров можно получить и за счет сдвига края спектра от образца к образцу. Такое может, например, случиться, если флуктуации параметра порядка приводят к большему размытию спектра для одного образца, чем для другого. В работе [39] вычисляется оптическая проводимость квазиодномерного проводника с ВЗП, причем флуктуации параметра порядка, вызванные примесями, температурой или квантовые флуктуации учитываются одинаковым образом, а именно — как случайный потенциал с распределением типа гауссового белого шума (следуя результатам работ [8, 44]). Учет флуктуаций приводит к размытию щели, уменьшению амплитуды максимума оптической проводимости и его сдвигу в более низкие частоты. При нормировании спектров оптической проводимости на величину проводимости в максимуме, сдвиге и масштабировании частот с учетом уширения из-за флуктуаций, спектры оптической проводимости в области $\hbar\omega < 2\Delta$ совпадают друг с другом, следуя единой универсальной зависимости оптической проводимости от энергии фотона. В работе [39] эта универс

сальная зависимость получена при численном расчете плотности состояний и описывается формулой:

$$\sigma(\omega) = \sigma(\omega_{peak}) \exp\left[-c_1 \left| \frac{\omega_{peak} - \omega}{\Gamma_{peak}} \right|^2 - c_2 \left| \frac{\omega_{peak} - \omega}{\Gamma_{peak}} \right|^3\right]$$
(3.1)

где $c_1=0.49$ и $c_2=0.2$, Γ_{peak} — полуширина на полувысоте максимума оптической проводимости в области $\hbar\omega < 2\Delta$, ω_{peak} — сдвиг максимума оптической проводимости из-за флуктуаций, $\sigma(\omega_{peak})$ — амплитуда максимума. Все нормировочные параметры зависят от характеризующей флуктуации безразмерной величины $\eta=\gamma/hv_F\Delta$, где $\gamma\delta(x-y)=\langle\xi(x)\xi^*(y)\rangle$ описывает усреднение по беспорядку случайного потенциала обратного рассеяния, $\xi(x)$, с нулевым средним.

Оригинальная работа Бразовского и Дзялошинского и их последующие работы [8, 44, 53] описывают сходное размытие щели в плотности состояний из-за солитонных эффектов (см. раздел 1.4). В результате при энергиях $\omega < 2\Delta$ (\hbar положено равным 1) появляется урбаховский хвост в плотности состояний: $n(2\Delta_0 - \omega) \sim \omega^{-1/2} \exp[-(\omega/\varepsilon_1)^{3/2}]$, где $\varepsilon_1/2\Delta \sim (u/v_F)^{2/3}$ и $u/v_F \sim \omega_{ph}/2\Delta_0$, ω_{ph} — характерная частота фононов, а $2\Delta_0$ — величина пайерлсовской щели при нулевой температуре.

На рисунке 3.3 представлены спектры с рисунка 3.1, отнормированные на соответствующие $\Gamma_{peak}, \omega_{peak}, \sigma(\omega_{peak})$, а также зависимость, задаваемая формулой 3.1 (синяя штриховая линия). Значения параметров нормировки представлены в таблице 3.3. Видно, что спектры, в принципе, описываются универсальной зависимостью [39], что пики типа лоренцевых остаются в спектрах, а остальные различия при масштабировании устраняются.

Но какого происхождения эти флуктуации параметра порядка ψ , приводящие к размытию спектра? Квантовые флуктуации решетки должны быть одинаковы во всех образцах одинаковой толщины (влияние толщины рассмот-

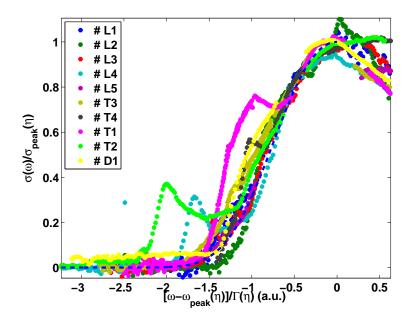


Рис. 3.3. Нормированные согласно модели 3.1 из работы [39] спектры фотопроводимости 10 изученных образцов с рис. 3.1. Подробности в тексте.

рено ниже), а, следовательно, и размытие спектров должно совпадать. Однако между спектрами близких по толщине образцов наблюдаются различия (заметные при сравнении данные таблиц 3.1 и 3.2 и рис. 3.2). Остаются флуктуации, связанные с примесями и дефектами, тепловые флуктуации, а также возможное влияние электрического поля.

Отличия спектров при энергиях $\hbar\omega < 2\Delta$, представленные на рисунках 3.1,3.2,3.3, нельзя объяснить тепловыми флуктуациями, несмотря на то, что некоторые из спектров на этих рисунках получены при разных температурах. Эти температуры находятся в области 25-45 K, в которой изменение температуры не меняет существенно уровня размытия спектров ни согласно теории [39], ни согласно изученной нами температурной зависимости спектров. В изучаемом нами диапазоне T < 50 K изменение температуры приводит лишь к небольшому сдвигу края поглощения и не приводит к сильному размытию спектра. Более подробно зависимость спектров фотопроводимости от температуры рассмотрена в разделе 3.1.3.

Зависимость спектра от электрического поля рассматривается ниже, в

разделе 3.3.1. Величина приложенного электрического поля влияет на форму спектра некоторых образцов, изменяя amnлumydy фотопроводимости в определенных областях спектра. Но с изменением величины приложенного электрического поля сдвига положения спектральных особенностей no энергии не наблюдалось с точностью до ~ 5 мэВ. Это значение много меньше наблюдаемой разницы между спектрами разных образцов.

Проведя нормировку на размытие флуктуациями, то есть, отмасштабировав спектры согласно работе [39], мы попытались определить коэффициенты корреляции геометрических размеров образцов и параметров нормировки. Наибольших величин, 0.5 и 0.7 соответственнно, коэффициент корреляции Пирсона достигает для толщины d и логарифма длины l образцов по отношению к непосредственно величине размытия Γ_{peak} , хотя доверительные интервалы в обоих случаях велики и имеют вид [0.03 0.9]. По причине столь слабой корреляции, график зависимости Γ_{peak} от $\log(l)$ представлен в конце главы в дополнительном разделе 3.4. Тем не менее, наиболее размытые спектры действительно были получены для самых тонких и длинных образцов.

Влияние толщины согласуется с априорными представлениями — с уменьшением площади поперечного сечения квазиодномерных проводников, в особенности р-TaS₃, наблюдаются эффекты, связанные с ростом флуктуаций параметра порядка: размытие пайерлсовского перехода и понижение пайерлсовской температуры T_P , происходит "увеличение степени одномерности" образца [27]. Кроме того, в очень тонких образцах край поглощения сдвигается в меньшие энергии так как для оптически тонких образцов в этой области поглощение, а следовательно и величина фотопроводимости на фиксированной длине волны уменьшается с увеличением толщины образца: $\delta G \sim \exp[-\alpha d]$. Здесь α — коэффициент поглощения, а d — толщина образца.

Причины же корреляции размытия спектров Г с длиной образцов неочевидны. Мы предполагаем, что приводить к такой корреляции может наличие

внутренних дефектов или градиента свойств по длине образца, например изменение стехиометрии или же концентрации примесей в процессе роста кристалла. Заметим, что образцы, предоставленные R. E. Thorne (они обозначены буквой Т в аннотации на рис. 3.2 и в разделе 3.4) демонстрировали более резкий край спектра, а все образцы, предоставленные F. Levy, демонстрировали размытый спектр. Мы связываем это с применением F. Levy галогенов в качестве транспортных агентов [59].

Таким образом, мы пришли к гипотезе, что различия спектров в области $\hbar\omega\lesssim 2\Delta$ связаны с размытием вследствие различной концентрации примесей и дефектов, а прямая щель, которой соответствует наибольший спад фотопроводимости, составляет не менее 0.2 эВ. Чтобы проверить нашу гипотезу, мы изучили спектры образцов с примесями, введенными при росте, а также провели последовательное легирование номинально чистого образца р-ТаS₃ индием, со снятием спектров фотопроводимости, набора ВАХ и температурных зависимостей проводимости до и после каждого этапа легирования. Результаты изложены в следующем разделе.

3.1.1. Спектры фотопроводимости легированных образцов

Если вводить примеси в р-ТаS₃ в процессе синтеза вместе с исходными веществами, процент примесей в выращенном кристалле определить достаточно трудно из-за малых размеров кристаллов [4]. Вообще введение примесей в квазиодномерные проводники при росте не гарантирует нужной концентрации примесей в кристалле из-за особенностей используемых газотранспортных реакций (см. [4]). Оценить количество примесей можно по величине порогового поля начала скольжения ВЗП при температурах около 100 К [4, 12]. Вклад в пороговое поле начала скольжения ВЗП от слабого пиннинга пропорционален квадрату концентрации примесей [27] $E_t \sim n_i^2$, $E_t \approx 0.1 - 1$ В/см

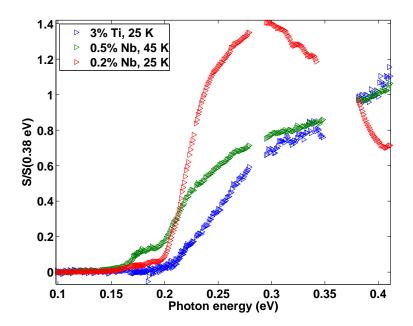


Рис. 3.4. Нормированные спектры фотопроводимости образцов p-TaS $_3$ с примесями Тi и Nb.

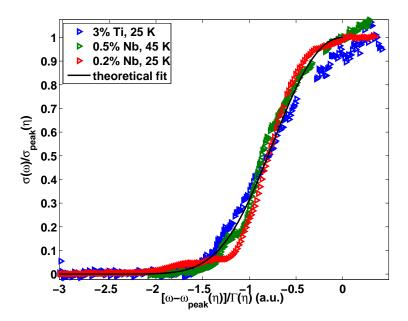


Рис. 3.5. Нормированные согласно модели 3.1 из работы [39] спектры фотопроводимости образцов p-TaS $_3$ с примесями Тi и Nb.

соответствует n_i порядка 10^{18} см $^{-3}$. Известно, что даже очень малые концентрации примесей в полупроводниках приводят к заметным пикам в спектрах фотопроводимости и методика фототермоионизационной спектроскопии [118] дает возможность измерить эти концентрации с пределом обнаружения в 10^6-10^7 см $^{-3}$ или $10^{-16}-10^{-15}$ на атом ($10^{-14}-10^{-13}$ ат.%). Следуя аналогии между щелевым состоянием ВЗП с полупроводниками, развитой в работе [64] можно ожидать, что примеси окажут влияние на спектр и в нашем случае. Работа [56] предсказывает, что в случае слабого пиннинга внутри пайерлсовской щели появляются парные уровни, а при концентрации примесей больше критической — хвост состояний, то есть область внутри щели, непрерывно заполненная состояниями.

На рисунке 3.4 представлены спектры фотопроводимости трех образцов, два из которых содержат изоэлектронные примеси Nb — 0.2 и 0.5 ат. %, введенные при росте, а третий — 3 ат. % примесей Ті также введенных при росте. Пороговое поле E_t при 77 К для образца с 0.5 ат. % Nb составило около 80 В/см (см.табл 3.2). Это соответствует концентрации примесей n_i порядка 10^{-3} на атом (т.е. 0.1 ат.%) в промежуточном случае между одномерным ($E \propto (n_i)^{2/3}, n_i \approx 6 \times 10^{-3}$ на атом) и трехмерным пиннингом ($E \propto (n_i)^2, n_i \approx 4 \times 10^{-4}$ на атом). Отметим согласие номинального значения концентрации примесей и оценки исходя из порогового поля. Характерное пороговое поле номинально чистых образцов измеренных нами составляет 1-5 В/см и соответствует величине n_i менее, чем 10^{-4} на атом (менее, чем 10^{-2} ат.%).

Примеси Nb приводят к появлению "полки" фотопроводимости в спектрах в области $0.17 < \hbar\omega < 0.2$ эВ, расположенной за основным спадом фотопроводимости, соответствующим краю пайерлсовской щели. В области "полки" фотопроводимость остается практически постоянной и мало спадает. Для образца с примесями Ti "полки" не наблюдается, что может быть связа-

но с известным по литературе плохим легированием Ті кристаллов TaS_3 [12]. Спектр образца с примесями Ті размыт сильнее, чем спектры номинально чистых образцов (см. таблицу 3.3).

Спектры образцов с концентрацией примесей больше 0.5% вообще размыты сильнее, чем спектры номинально чистых образцов (см.таблицу 3.3) и не имеют пиков фотопроводимости или особенностей, отличных от "полки". Пайерлсовский переход в таких образцах размыт, а величина логарифмической производной в максимуме, характеризующая качество и чистоту кристалла, в 2-5 раз меньше, чем для чистых кристаллов (см.таблицу 3.3). На рисунке 3.5 показаны отнормированные по 3.1 спектры образцов с рис. 3.4. Видно, что спад фотопроводимости, соответствующий пайерлсовской щели, в целом так же неплохо приближается теорией [39] и формулой 3.1, как и для чистых образцов. Для ненормированных спектров наибольший сигнал фотопроводимости наблюдается в образце с 0.2 ат.% Nb, с увеличением номинальной концентрации примесей величина сигнал фотопроводимости, как и величина сигнала проводимости, уменьшается.

Для образца с 0.5 ат.% Nb также была измерена температурная зависимость фотопроводимости при различных интенсивностях света [116]. Энергия активации температурной зависимости фотопроводимости составила примерно 700 K, что соответствует оптической щели $2\Delta_a \approx 0.13$ эВ — то есть началу фотопроводимости на рис. 3.4. Аналогичное совпадение энергий активации и энергий начала спектрального отклика $2\Delta_{0\%}$ наблюдалось и для чистых образцов (см.подробнее в разделе 3.4).

Увеличение фотопроводимости в области $0.17 < \hbar\omega < 0.2$ эВ при увеличении концентрации примесей соответствует предсказаниям теории [56] для случая слабого пиннинга. Увеличение плотности состояний за счет образования континуума примесных состояний внутри щели предсказывается в [56], если концентрация примесей n такова, что расстояние между примеся-

ми меньше, чем длина амплитудной когерентности ВЗП $\xi_0 \sim v_F/\Delta(0)$, где v_F — скорость Ферми. Согласно оценкам [56] $\xi_0 \approx 10$ нм, чему соответствует концентрация примесей $n=10^{18}~{\rm cm}^{-3}~(10^{-4}~{\rm Ha}$ атом или $10^{-2}~{\rm at.\%})$ — значение, типичное для номинально чистых образцов. Таким образом, "хвост состояний" или "полка фотопроводимости", то есть увеличение фотопроводимости в области энергий внутри щели, можно наблюдать и в номинально чистом кристалле.

Примером явился номинально чистый кристалл #D1, синтезированный непосредственно перед измерениями и подвергнутый нами последовательной процедуре легирования индием [117]. До и после каждого этапа легирования измерялись температурная зависимость проводимости, набор ВАХ при температурах от 10 до 120 К и спектры фотопроводимости при 40 К. Исходное пороговое поле этого образца при 100 К составило 4.7 В/см, что несколько больше, чем у большинства номинально чистых образцов, измеренных нами и означает большее (в 2 или 3 раза) количество примесей в кристалле, по сравнению с ними. В спектре фотопроводимости нелегированного #D1 (синяя кривая на рис. 3.6) мы наблюдаем хвост состояний при энергиях $0.15 < \hbar\omega < 0.25$ эВ, наличие которого согласуется с более высоким пороговым полем, чем у образцов, у которых данный хвост проявлен в меньшей степени.

Легирование производилось методом температурной диффузии, описанным в [115] для NbSe₃ (см. главу 2). Концентрация примесей, измеренная при помощи зондового микроанализа быстро спадает при удалении от контактов, что доказывает диффузию индия в образец.

Результаты измерения спектров фотопроводимости при увеличении времени диффузии индия представлены на рисунке 3.6. Заметно линейное со временем увеличение сигнала фотопроводимости в области $\hbar\omega < 0.25$ эВ. Одновременно с ростом сигнала фотопроводимости происходит уменьшение температуры пайерлсовской перехода T_P и увеличение порогового поля нели-

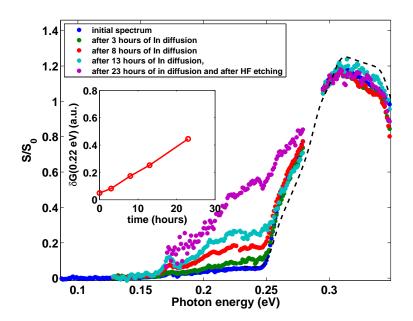


Рис. 3.6. Изменение спектра фотопроводимости номинально чистого образца # D1 p-TaS $_3$ с увеличением времени диффузия индия. На вставке показано амплитуда сигнала фотопроводимости при 0.22 эВ в зависимости от времени диффузии

нейной проводимости [117]. После 23-х часов суммарной процедуры диффузии наблюдается размытие края пайерлсовской щели на величину порядка 50 эВ, суммарный сдвиг $\delta T_P \approx -5$ К и увеличение порогового поля $E_t(100~K)$ на 20%. Такое увеличение соответствует количеству введенных примесей от 1.3×10^{-2} ат.% в случае трехмерного пиннинга, до 2.7×10^{-2} ат.% в случае одномерного пиннинга, то есть увеличению общего количества примесей в номинально чистом образце примерно в 2 раза (начальная концентрация примесей n_0 в этом образце, определенная по E_t 3.2 составляет $n_0 \approx 3 \times 10^{-4}$ на атом, т.е. 3×10^{-2} ат. % (3D) или $n_0 \approx 3 \times 10^{-1}$ ат.% (1D)). Аналогичные изменения наблюдались в образцах, которые находились между измерениями на атмосфере при комнатной температуре (см. рисунок 3.7), но только в достаточно коротких ($L < 400~\mu$ м). По всей видимости, это означает, что диффузия индия происходит и при комнатной температуре. Влияние окисления поверхности на спектры исключается проведенным травлением образца в HF, изучением влияния атмосферы на процедуру диффузии (влияния не

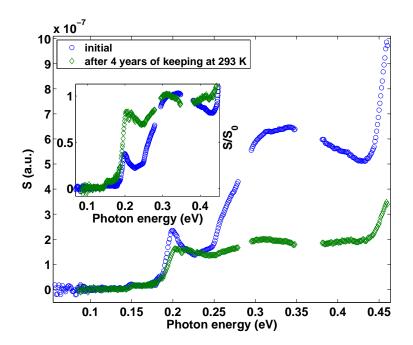


Рис. 3.7. Изменение спектра фотопроводимости номинально чистого образца # T2 p-TaS₃ с течением времени (синим цветом показан исходный спектр, зеленым — после четырех лет хранения). На вставке показаны отнормированные на величину при 0.32 эВ спектры.

обнаружено, см. главу 2), а также отсутствием спектральных изменений в достаточно длинных образцах, находившихся при комнатной температуре.

Сдвиг края щели из-за континуума состояний, связанных с примесями, по формуле из [56] должен составлять $2\Delta'=2\Delta(1-t^2)^{1/2}$ где $t=T/v_F$ это отношение амплитуды обратного рассеяния на примеси, T, к скорости Ферми. Исходя из спектров 3.6 для #D1 мы приняли $2\Delta=0.25$ и $2\Delta'=0.15$ что привело к величине T=0.6, адекватной для случая слабого пиннинга и сравнимой с величиной T=0.7 полученной в [7].

Таким образом, проведенное исследование показало, что хвост состояний, наблюдаемый в легированных образцах при энергиях меньших 0.2-0.25 эВ, действительно связан с примесями, а величина прямой щели в TaS_3 составляет не менее 0.2 эВ (точное значение близко к 0.25 эВ).

Также мы обнаружили, что сигнал фотопроводимости $\delta G(\hbar\omega)$ становится практически нулевым при энергиях фотонов $\hbar\omega_{zero} \leqslant 0.15 \pm 0.015$ эВ для всех образцов независимо от степени легирования. Положение максимума

или начала спада фотопроводимости варьируются сильнее (см. таблицу 3.3). При этом величина $\hbar\omega_{zero}=0.15$ эВ примерно совпадает с энергией активации температурной зависимости проводимости p-TaS3. Такая разница между энергией $\hbar\omega_{zero}=0.15$ эВ и энергией, при которой наблюдается край спектра, который мы приписываем пайерлсовской щели $2\Delta=0.25$ эВ, может включать в себя вклады от нескольких эффектов. Влияние примесей, приводящее к континууму состояний согласно теории [56] мы обсудили выше. Следующая возможность: несовпадение и хвост состояний могут быть следствием непрямой щели. Несовершенный нестинг [48, 49] приводит к периодическому изменению фазы параметра порядка в k-пространстве и к непрямой щели $2\Delta_i$ с переходами с участием фононов в области энергий $2\Delta_i < \hbar\omega < 2\Delta$. Также хвост состояний могут давать автолокализованные состояния электрона, характерные для квазиодномерных систем [53] (см. раздел 1.4).

В данном разделе мы показали, что вклад примесных состояний существенен и не противоречит существующим теоретическим моделям [56]. В следующем разделе рассматривается модель, учитывающая неидеальный нестинг и модуляцию щели в k-пространстве, опубликованная нами в [111], хорошо описывающая особенности Ван-Хова, наблюдающиеся при энергиях вблизи 0.25 эВ в наиболее совершенных образцах р-ТаS₃, а также спектры фотопроводимости голубой бронзы (см. раздел 4.1) и NbS₃(I) (см. раздел 4.5).

3.1.2. Модуляция щели в k-пространстве

Модель, описывающая щелевое состояние квазиодномерного проводника с ВЗП, в которой дисперсия зон проводимости и валентной зоны в поперечном направлении не совпадает и величина щели в поперечном направлении является промодулированной, рассмотрена в [111]. При этом условии величина оптической щели начинает зависеть от величины волнового вектора элек-

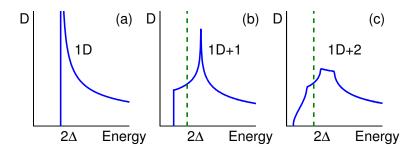


Рис. 3.8. Особенности Ван Хова в оптической плотности состояний в случае а) отсутствия модуляции щели b) модуляции по одному направлению с) модуляции по двум направлениям

трона, то есть, фактически, является разной в разных точках обратного пространства, см. уравнение 3.2 и рисунок 3.10. Физически это можно интерпретировать как разное значение скоростей Ферми в верхней и нижней точках параболы $\varepsilon(k_{||})$ исходного металлического состояния, возле которых оказываются дно и максимум зон проводимости и валентной зоны при открытии пайерлсовской щели. Учет непараболичности закона дисперсии электрона в исходном квазиодномерном металле при энергиях, близких к E_F дает:

$$E_c(\mathbf{k}) - E_v(\mathbf{k}) = 2\Delta + (\hbar \delta k_{\parallel})^2 / m^* + \varepsilon_1 \cos(\pi k_{\perp 1}/a) + \varepsilon_2 \cos(\pi k_{\perp 2}/b), \quad (3.2)$$

где a и b это период изменения пайерлсовской щели в направлениях перпендикулярных к цепочкам, и $k_{\parallel},\ k_{\perp 1}$ и $k_{\perp 2}$ — компоненты волнового вектора в направлениях вдоль и поперек цепочек.

Изменение величины щели от точки обратного пространства означает изменение и в прямом пространстве, то есть модуляцию величины щели на разных цепочках. Эффекты, связанные с изменением щели в обратном пространстве действительно наблюдались для некоторых квазиодномерных и квазидвумерных соединений [25, 119]. В работе [121] рассмотрена модель с двумя цепочками и разными скоростями Ферми, и получена вариация величины щели 2Δ в обратном пространстве. В работе [62] рассмотрено сходное лестничное приближение.

На рисунке 3.9 представлено приближение спектра фотопроводимости

образца #D1 при помощи модели уравнения 3.2, значения параметров даны в подписи к рисунку. Амплитуда модуляции значения щели составляет порядка 10% от величины щели, при этом величина гауссовых флуктуаций, ответственных за размытие особенностей Ван Хова, много меньше, $\delta \varepsilon \approx 2\%$, и согласуется с величиной приборного разрешения в эксперименте (см. главу 2). Видно, что приближение 3.2 хорошо описывает спектр свежеприготовленного образца #D1, включая характерные особенности — точки изменения наклона спектра, которые в этом приближении объясняются особенностями Ван Хова межзонной плотности состояний. Это же приближение показано на рисунке 3.6 черной штриховой линией. Видно, что в результате легирования индием спектр размывается и характерные особенности вблизи 0.25 эВ, 0.31 эВ и 0.34 эВ становятся почти неразличимы на фоне размытия спектра. Стоит отметить, что подобные характерные особенности не наблюдались для кристаллов, предоставленных Levy (см. рис. 3.1), а для других кристаллов наблюдались только в случае высококачественных образцов с хорошим качеством поверхности и изготовленных непосредственно перед измерением. С течением времени эти характерные особенности также становятся неразличимы, как и в спектрах образцов, предоставленных Levy (см. рис. 3.7). Необычайно широкое размытие спада спектра, соответствующего пайерлсовской щели $\delta\Delta \approx 50-100$ мэВ, где $\delta\Delta$ — полуширина на полувысоте (см. рис. 3.1 и таблицу 3.2), наблюдающееся для большинства образцов, может быть связано не только с количеством примесей, но и с дефектами образующимися при синтезе, и быть связанным с большей или меньшей стехиометричностью состава. Так или иначе, из неплохого согласия модели 3.1.2 и эксперимента следует вывод, что относительно большое размытие спектра $\delta\Delta$ в свежеприготовленном образце p-TaS₃ лучше согласуется с моделью с модуляцией величины щели, чем с теорией размытия электрон-фононным взаимодействием, меняющим вероятность Франк-Кондоновских процессов [53], которое могло бы приво-

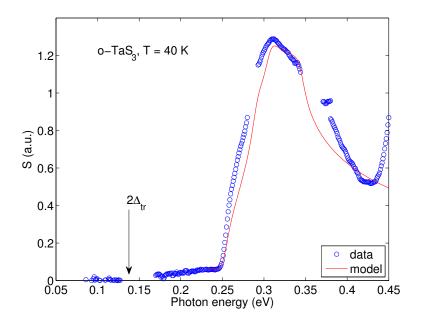


Рис. 3.9. Приближение спектра фотопроводимости TaS_3 при помощи уравнения 3.2. Значения параметров, использованных для подгонки $2\Delta = 0.253$ эВ, $\varepsilon_1 = 27$ мэВ и $\varepsilon_2 = 19$ мэВ, $\delta \varepsilon = 4$ мэВ.

дить к сходному эффекту уширения обратной корневой зависимости, но не к особенностям Ван Хова. Мы предполагаем что размытие из-за электрон-фонноного взаимодействия скорее может приводить к дополнительному вкладу в "хвост состояний" внутри щели $\hbar\omega < 2\Delta$.

Для р- TaS_3 имеются отдельные основания считать гипотезу о модуляции щели в обратном, а следовательно, и в прямом пространстве очень вероятной. Огромная величина элементарной ячейки, состоящей из 24-х цепочек Ta, окруженных серой (S), и особенности стуктуры квазиодномерных трихалькогенидов, где очень важную роль играют расстояния в паре S-S и близость цепочек друг другу 1 , приводили к гипотезе, что возможна длинноволновая модуляция параметра порядка на мало отличающихся друг от друга цепочках Ta [69]. В пользу этой гипотезы свидетельствует исследование фононных

¹ При очень небольшом изменении расстояний внутри элементарной ячейки электронная плотность на атомах Та, и, как следствие, валентность Та и проводимость вдоль цепочек могут сильно меняться. Выдвигалось предположение, что именно с возможностью аккумулирования части электронов в "резервуары" связей серы связано сильное взаимодействие ВЗП и основной решетки, проявляющееся в аномально больших пьезоэлектрических константах и эффекте кручения ВЗП в электрическом поле [78]

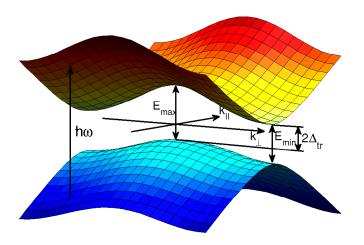


Рис. 3.10. Предполагаемая модуляция зон проводимости (желто-красный цвет) и валентной зоны (синий цвет) вблизи пайерлсовской щели в трехмерной проекции. Отмечены величина транспортной щели $2\Delta_{tr}$ и максимальное и минимальное расстояния между зонами

мод в комбинационном рассеянии [71]. Количество мод удивительно мало, при этом наблюдается расщепление основных мод, что как раз соответствует случаю почти идентичных цепочек.

На рисунке 3.10 представлена иллюстрация модели 3.2 для р-ТаS₃. Окончательным подтверждением модели явилось бы прямое наблюдение изменения величины щели в зависимости от координаты при помощи, например, сканирующей туннельной спектроскопии (СТС). Несмотря на относительную сложность эксперимента, он остается возможным при современном уровне развития туннельной спектроскопии, хотя и выходит за рамки настоящей диссертации.

3.1.3. Влияние температуры на спектры фотопроводимости

Температурная зависимость фотопроводимости р- TaS_3 при энергиях фотонов $\hbar\omega\gtrsim 0.2$ эВ оказалась немонотонной с максимумом при температуре $T_m\approx 50$ К. Это согласуется с предыдущими исследованиями, проводившими-

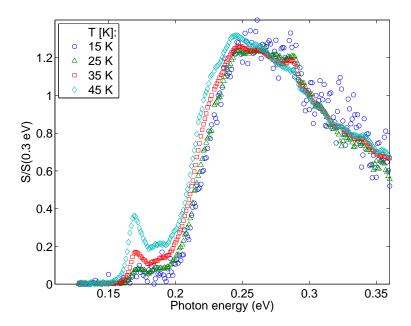


Рис. 3.11. Характерная температурная зависимость спектра фотопроводимости образца о-TaS₃. Для удобства все спектры нормированы на единицу при энергии $\hbar\omega = 0.3$ эВ. Образец # L4.

ся при $\hbar\omega\approx 1.3$ эВ [11, 82]. Из-за малой величины фотосигнала на фоне большой величины омического тока в десятки наноампер (максимальное значение фотосигнала — несколько пикоампер) нам удалось измерить спектры только в ограниченной температурной области вблизи T_m . Линейная проводимость, которая являлась главным источником шумов, уменьшается с понижением температуры, поэтому оптимальная температура T_{opt} при которой удавалось достигнуть лучшее отношение сигнала к шуму, несколько ниже, чем T_m и варьировалась от образца к образцу в диапазоне $25~{\rm K}\lesssim T_{opt}\lesssim 45~{\rm K}$. У тонких образцов величина максимума расположена при более высокой температуре. Так, для двух образцов #T1 и #T2, отщепленных от одного кристалла, для более тонкого #T1 (площадь поперечного сечения в 10 раз меньше) максимум сигнала наблюдается при температуре 30 K, т.е. на 5 K выше, чем у #T2.

На рис. 3.11 приведена типичная зависимость формы спектра от температуры. Часть спектра при высоких энергиях $\hbar\omega>0.3$ эВ практически не зависит от температуры в пределах точности измерений, а спад фото-

проводимости, соответствующий размытому краю пайерлсовской щели $\hbar\omega < 0.3$ эВ, сдвигается в низкие энергии с повышением температуры со скоростью 0.3 мэВ/К. Энергия активации, соответствующая уменьшению фотопроводимости с понижением температуры в области края щели, составляет $E_a \approx 15$ К. Ненормированный сигнал фотопроводимости с понижением температуры от T_{opt} на 15-20 К падает примерно на порядок. Независимость формы спектра от температуры соответствует практическому отсутствию зависимости щели от температуры при гелиевых температурах, полученной в [39]. Наиболее заметно уменьшение относительной величины пика при 0.17 эВ с понижением температуры, которое происходит несколько быстрее, чем сдвиг края фотопроводимости, с энергией активации $E_{a_{peak}} \approx 20$ К. Для большинства других пиков наблюдалась схожая зависимость.

3.2. Внутрищелевые состояния в ромбическом ${\bf TaS}_3$

Как следует из результатов, представленных на рис. 3.2, уже в первых измеренных спектрах р- TaS_3 нам удалось обнаружить пики фотопроводимости внутри пайерлсовской щели. Мы изучили зависимость амплитуды пиков от угла падения, чтобы исключить интерференционное происхождение, а также провели некоторые другие тесты (см. раздел 3.5) и убедились, что пики являются свойством материала р- TaS_3 . Пики наблюдались исключительно в номинально чистых образцах TaS_3 , но не во всех. В разностных спектрах на рис. 3.2(b) выделяются два типа пиков — широкие при более высоких энергиях 0.2-0.23 эВ и узкие при энергиях менее 0.2 эВ, оба типа мы первоначально приближали гауссианами (см. работу [123]). Однако, как оказалось, размытие края щели вследствие введения примесей может приводить к сдвигу края спектра и, как следствие, также и к широким гауссовым пикам в разностных спектрах. В итоге наиболее широкие пики, проявившиеся толь-

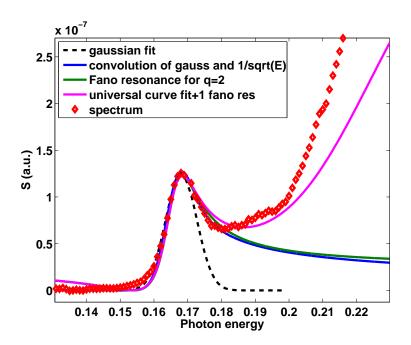


Рис. 3.12. Образец # L4, различные приближения формы пика при $\hbar\omega_p=0.17$ эВ. Пунктиром обозначено приближение пика гауссианом, синим цветом — конволюция $\int\limits_{-\infty}^{+\infty} (\hbar\omega-\hbar\omega_p)^{-1/2} F(\hbar\omega)\hbar d\omega$, где $F(\hbar\omega)$ — нормальное распределение, зеленым цветом — резонанс Фано построенный по ф-ле $(2\Gamma_f/2+\hbar\omega-\hbar\omega_p+2)^2/(\Gamma_f^2/4+(\hbar\omega-\hbar\omega_p+2)^2)$, где $\hbar\omega_p$ — энергия пика, $\Gamma_{f/p}$ — соответсвующее значение уширения. Розовым цветом обозначена сумма резонанса Фано и приближения края спектра по ф-ле 3.1; красным цветом построены оригинальные данные измерений.

ко в разностных спектрах из рассмотрения были исключены. Обновленные данные о пиках представлены в таблице 3.1.

На рисунке 3.12 представлен оригинальный спектр фотопроводимости образца #L4 с пиком при энергии 0.17 эВ, а также его приближение тремя разными функциями — гауссианом (аналогично рис. 3.2(b)), резонансом Фано и обратной корневой зависимостью (ОКЗ), размытой при помощи гауссовых флуктуаций, а также приближение спектра суммой универсальной зависимостью 3.1 и резонанса Фано.

Видно, что ассиметрия пика, которую на рис. 3.2 приходилось приближать дополнительным гауссовым пиком, на рис.е 3.12 достаточно хорошо описывается всего одним резонансом Фано или обратной корневой зависимостью. Интересно, что форма резонанса Фано и обратной корневой зависимости, размытой по гауссу, совпадают. Также заметно, что сумма универсальной

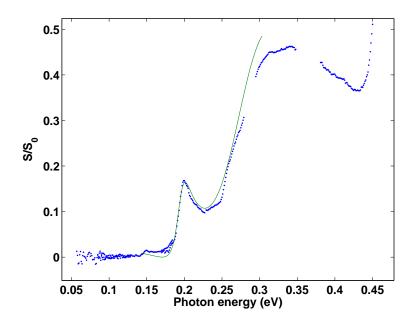


Рис. 3.13. Спектры фотопроводимости, образец # Т2. Синим цветом обозначены исходные экспериментальные данные, зеленым цветом — сумма резонанса Фано и приближения края спектра по ф-ле 3.1.

зависимости и резонанса Фано хорошо приближает спектр вплоть до энергий 0.2 эВ, а дальше расходится, что, по всей видимости, связано с наличием состояний на краю щели при энергиях 0.22-0.23 эВ в достаточно старом образце #L4. Для свежеотщепленного образца #T2 это приближение в области энергий 0.22-0.23 эВ работает значительно лучше, как видно из рис. 3.13.

Физической причиной появления резонансов Фано в спектрах мог бы быть аналогичный наблюдающемуся в сильно легированном кремнии резонанс между континуумом состояний на краю щели и оптическими фононными переходами, которые становятся разрешенными в присутствии акцепторных примесей [124]. Пики, форма которых описывается резонансом Фано, наблюдаются также в спектрах оптического поглощения полупроводников и полупроводниковых гетероструктур, в том числе, на краю щели и при энергиях, больших величины щели, вблизи особенностей Ван Хова. Эти пики связываются с экситонными состояниями [106, 125].

Обратная корневая зависимость, размытая по гауссу, может возникнуть вследствие присутствия одномерных дефектов, на которых параметр поряд-

ка подавлен. Тем не менее, согласно нашим представлениям, для появления вклада в фотопроводимость требуется достаточно большая концентрация одномерных дефектов, причем именно внутри цепочек. В принципе, они могут порождаться дефектами упаковки, характерными для трихалькогенидов. Однако не удалось обнаружить в литературе информации о взаимодействии одномерных дефектов с ВЗП и проявлении такового в оптических свойствах.

Достаточно экзотической возможностью, комбинирующей две последних гипотезы, кажется гипотеза о существовании экситонного газа, приводящего к ОКЗ. Тем не менее далее будут приведены экспериментальные наблюдения, которые подводят некоторые основания под такую гипотезу.

3.3. Свойства внутрищелевых состояний: влияние поляризации излучения, величины электрического поля, дополнительной подсветки

3.3.1. Влияние электрического поля

Рис. 3.14 иллюстрирует один из наиболее интересных обнаруженных эффектов — зависимость спектра фотопроводимости от напряжения, приложенного к кристаллу. Образец, для которого был обнаружен этот эффект, выделялся сильной зависимостью фотопроводимости от напряжения: величина сигнала фотопроводимости δG возрастала почти на полтора порядка при увеличении напряженности приложенного электрического поля от $E=0.3~\mathrm{B/cm}$ (граница области линейной проводимости) до 8.2 $\mathrm{B/cm}$ (нелинейная проводимость). На рис. 3.14 видно, что рост поля от $E=0.3~\mathrm{B/cm}$

 $^{^2}$ Для некоторых образцов TaS_3 , а также NbS_3 наблюдается резкое возрастание фотопроводимости при увеличении приложенного электрического поля. Это возрастание, тем не менее, спектрально зависимое, в образце $TaS_3 \# T2$ оно составляет почти порядок при энергиях 0.2 эВ и выше и уменьшается почти в два раза в области пика при 0.15 эВ. По всей видимости, оно связано с изменением потенциального

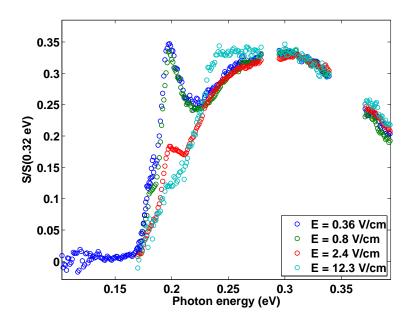


Рис. 3.14. Образец #T4, T = 30 K, спектры фотопроводимости при разных значениях приложенного к образцу электрического поля.

до $E=2.4~\mathrm{B/cm}$ приводит к заметному подавлению фотопроводимости при $\hbar\omega<0.3~\mathrm{sB}$ и, в частности, к подавлению пика при $\hbar\omega=0.2~\mathrm{sB}$. Эта область значений напряжений соответствует началу слабой нелинейности на вольтамперной характеристике. Дальнейшее увеличение напряжения приводит к почти полному исчезновению этого пика и одновременно к возрастанию фотопроводимости при энергиях фотона около $0.24\text{-}0.25~\mathrm{sB}$. Дальнейших изменений в спектре не происходит вплоть до сравнительно больших полей около $E_M=16.4~\mathrm{B/cm}$. Быстрый рост шума с напряжением вследствие развития крипа ВЗП усложняет исследование спектра в больших, чем E_M , электрических полях. Мы не наблюдаем каких-либо существенных изменений в высокоэнергетической части спектра, т.е., при энергиях $E_1>0.3~\mathrm{sB}$. Пик при $0.2~\mathrm{sB}$, как и другие пики в остальных образцах, подавляется с уменьшением температуры.

Пик 0.2 эВ был обнаружен нами в спектрах многих образцов, преимущерельефа ВЗП, которое приводит к углублению потенциальных ям для свободных дырок и электронов и увеличению времени жизни носителей. ственно из ростовой партии, предоставленной R. Е. Thorne. Правда, в некоторых более тонких образцах (например #T1 и #T3), где спектры оказались сильно размытыми вглубь щели, пики приобрели форму особенностей на фоне спада (см. рис. 3.2). Кроме того, через два месяца после пребывания образца на воздухе относительная амплитуда пика 0.2 эВ уменьшилась примерно в два раза, хотя характер зависимости от приложенного напряжения сохранился, а через четыре года пик исчез из спектров полностью. При этом рост амплитуды фотопроводимости в области 0.24-0.25 эВ при приложении поля E > 10 В/см сохранился.

В спектрах номинально чистых образцов из другой партии, также предоставленной R. Е. Thorne, пики и особенности при 0.2 эВ также продемонстрировали зависимость от электрического поля, однако теперь оказалось, что амплитуда пика увеличивается с приложенным напряжением. Эти образцы, так же, как и #Т4, продемонстрировали сильную зависимость фотопроводимости от напряжения, относительно большую величину проводимости вплоть до температур 10 K и линейные ВАХ при этих температурах, нехарактерные для чистых образцов, а также "полку" в температурной зависимости проводимости в области температур от 50 K до 100 K (см. раздел 3.4). При этом пороговые поля при 100 K оставались удивительно низкими $E_t \approx 0.1 \text{ B/cm}$, что говорит о высокой чистоте образцов.

На рисунках 3.15 и 3.16 представлены спектры одного из таких образцов (с зависимостью пика 0.2 эВ от приложенного электрического поля) для различных поляризаций излучения монохроматора. Фотоотклик на излучение с поляризацией вдоль образца (параллельно металлическим цепочкам и кристаллографической оси \mathbf{c}) обозначен $\delta G_{||}$, а перпендикулярно цепочкам — δG_{\perp} . Видно, что на самом деле пик при 0.2 эВ появляется только для излучения, поляризованного продольно. Таким образом, в спектре, полученном при неполяризованном излучении, который является суммой спектров

 $\delta G_{\perp} + \delta G_{||}$ мы можем наблюдать не пик, а сглаженную особенность. Появление пика, зависящего от напряжения, в отклике на продольную поляризацию, а также волнообразное изменение фотосигнала при больших энергиях в области 0.3-0.4 эВ в меньшем поле на рис. 3.15, очень напоминают спектры фотопроводимости одномерных органических полупроводников, в частности, поливинилена [35, 126], в которых подобные особенности были количественно описаны как проявление экситонных состояний на краю щели. В работе [126] была также получена немонотонная зависимость проводимости, связанной с экситонными состояниями от приложенного к образцу поля. При небольшом увеличении электрического поля $E \approx E_{medium}$ таком, что все еще сохраняется барьер для ионизации экситона $E_{medium} \cdot vL_{exciton} < \hbar \omega_{exciton},$ фотопроводимость образца в целом и в области экситонного пика увеличивается, так как происходит ионизация экситона посредством туннелирования через барьер. Здесь $L_{exciton}$ и $\hbar\omega_{exciton}$ — расстояние, на котором локализованы электрон и дырка, и энергия экситона соответственно. При сильном увеличении поля $E_{large} \cdot L_{exciton} >> \hbar \omega_{exciton}$ фотопроводимость в целом растет, однако образование связанных экситонных состояний становится невозможно и пик поглощения, связанный с экситонами, исчезает. Подобные рассуждения в применении к p-TaS₃ позволяют объяснить наблюдавшееся подавление пика при $0.2~{
m sB}$ в одном образце $(Epprox E_{medium},~E\cdot L_{exciton}>> \hbar\omega_{exciton})$ и рост в других, в которых $E \approx E_{large}$ и $E \cdot L_{exciton} < \hbar \omega_{exciton}$. Тем не менее на данный момент остаются неясными причины сильного разброса в характерных значениях E_{large} и E_{medium} для различных номинально чистых образцов.

Исчезновение пика фотопроводимости при 0.2 эВ после продолжительного хранения образца #Т4 на воздухе в этом случае может быть связано диффузией примесей (в т.ч. из индиевых контактов, см. раздел 3.4), приводящей к уменьшению вероятности связывания носителей в электрон-дырочную пару из-за увеличения рекомбинации на примесях. Абсолютная амплитуда

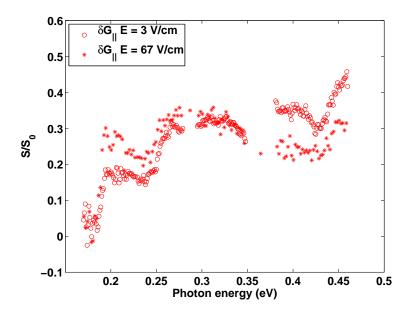


Рис. 3.15. Образец #Z2, T = 20 K, спектры фотопроводимости при разных значениях приложенного к образцу электрического поля.

пика со временем уменьшилась и в образце #T2 (см. рис. 3.7). Отсутствие пиков в образцах с примесями согласуется с известным для полупроводников требованием высокой чистоты кристаллов для наблюдения экситонных пиков [127].

Заметим, что образцы с пиками, зависящими от напряжения, обладают также характерной формой спектра, в которой наклон в области энергий $\hbar\omega < 0.3$ эВ сравнительно меньше, чем у других образцов, т.е. спектры имеют более "квадратную" форму, чем у других образцов. В работах [35, 126] описано сходное исчезновение обратной корневой зависимости плотности состояний в спектрах фотопроводимости в связи с образованием экситонов с энергиями выше щели в образцах одномерных органических полупроводников.

И все же главным и нерешенным вопросом, возникающим при обсуждении гипотезы об экситонном происхождении пиков, остается малая величина приложенного поля, приводящая к изменению в спектрах. Так, в образце #Z2 эта величина соответствует размеру экситона порядка 2 μ M, что сравнимо с длиной фазовой корреляции ВЗП вдоль цепочек. Таким образом, природа

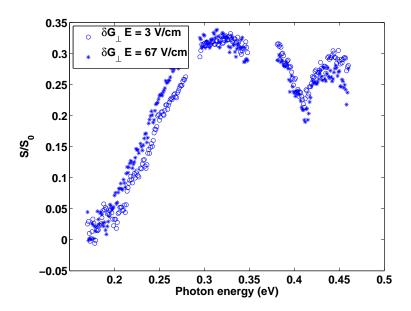


Рис. 3.16. Образец #Z2, T=20 K, спектры фотопроводимости при разных значениях приложенного к образцу электрического поля.

исследуемого состояния может быть сложнее, и связана с ВЗП.

Интересной особенностью является также наблюдавшийся в одном из свежеотщепленных образцов небольшой сдвиг пика 0.2 эВ в область больших энергий на величину порядка нескольких мэВ при понижении температуры до 10 К.

3.3.2. Влияние дополнительной подсветки на состояния вблизи середины щели

На рисунках 3.17 и 3.18 показаны спектры образца #T2 при энергиях глубоко внутри пайерлсовской щели, близко к середине, для разных значений приложенного электрического поля и интенсивности дополнительной подсветки светодиодом с длиной волны 940 нм.

При включении дополнительной подсветки с энергией излучения выше ширины запрещенной зоны при значении приложенного электрического поля в 25 B/см величина фотопроводимости падает почти для всех спектральных длин волн, что связано с уменьшением времени жизни носителей вследствие

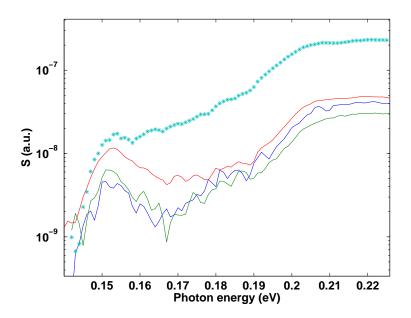


Рис. 3.17. Пик фотопроводимости при 0.15 эВ в образце #T2, T=15 К. Синим цветом показан исходный спектр для приложенного поля E=4 В/см и без подсветки, зеленым цветом — для E=4 В/см и подсветке светодиодом с мощностью P=0.05 мВт/см², красным — для E=25 В/см и P=0.05 мВт/см², голубыми * — E=25 В/см и без подсветки.

квадратичной рекомбинации при высокой интенсивности излучения [82]. Исключение: величина пика фотопроводимости при 0.15 эВ, наблюдавшегося в образце #T2, не падает даже в абсолютном выражении, а относительная величина (если нормировать спектры на величину фотопроводимости при 0.2 эВ, как на рис. 3.18) напротив, возрастает. Это означает отсутствие перехода к квадратичной рекомбинации для носителей, связанных с состояниями при 0.15 эВ. С одной стороны, отсутствие такого перехода частично объясняется малым поглощением внутри щели, приводящим к малой концентрации носителей, и большим временем рекомбинации этих носителей. С другой стороны, отсутствие перехода может быть также следствием других особенных свойств носителей, связанных с состояниями при 0.15 эВ, таких как большая эффективная масса и малая подвижность, характерных для электронов в самолокализованных состояний типа поляронных или солитонных. Энергия этих состояний может быть близка к середине щели [53].

Пики поглощения при энергиях, близких к середине щели, действитель-

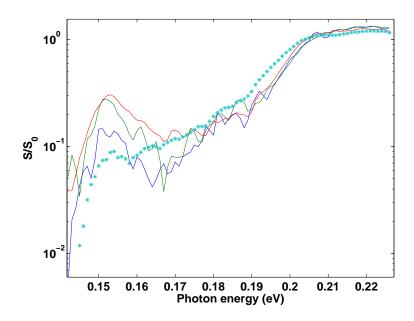


Рис. 3.18. Нормированные спектры фотопроводимости с рисунка 3.17, условия и обозначения те же, что и на рисунке 3.17

но наблюдались в полиацетилене и были идентифицированы с солитонными состояниями [45, 46]. Следует отметить необычную температурную зависимость пика при 0.15 эВ — мы наблюдали увеличение его относительной амплитуды с понижением температуры до 5 К. Увеличение амплитуды пика с понижением температуры наблюдалось и для пика при 0.6 эВ в NbS₃(I), причем этот пик также расположен вблизи середины щели и величина его зависит от подсветки и приложенного электрического поля (см.раздел 4.6).

3.3.3. Влияние поляризации излучения на спектры. Аномальный образец: солитонные стенки?

Следует отдельно упомянуть о влиянии поляризации излучения на спектры фотопроводимости. При 40 К наблюдается преобладание фотоотклика на поляризацию, перпендикулярную к направлению цепочек, для $\hbar\omega > \varepsilon_c$, равенство откликов при энергии ε_c и преобладание отклика на поляризацию вдоль цепочек при энергиях фотонов $\hbar\omega < \varepsilon_c$. Это можно увидеть на ри-

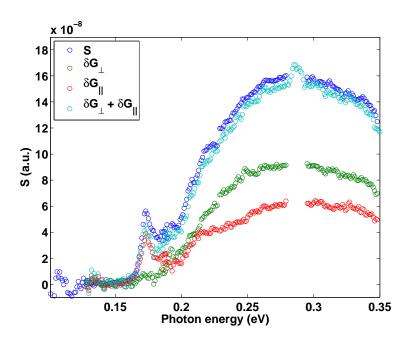


Рис. 3.19. Спектры фотопроводимости для разных поляризаций излучения монохроматора: поляризации вдоль цепочек Та — $\delta G_{||}$ и поляризации перпендикулярной цепочкам: δG_{\perp} . Образец #L3, T=40 K.

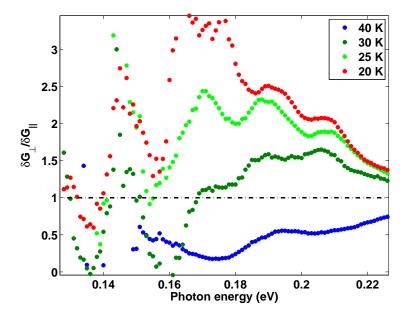


Рис. 3.20. Аномальная температурная зависимость спектров от поляризованного излучения

сунке 3.19, такое поведение наблюдалось для всех образцов при $T=40~{\rm K}.^3$ Такое поведение очень похоже на поведение спектров фотопроводимости одномерного полупроводника поливинилена [35], для которого точка пересечения спектров для разных поляризаций ε_c расположена по энергиям вблизи величины запрещенной зоны $\varepsilon_g=2\Delta_{opt}$. То есть $\varepsilon_c\approx\varepsilon_g$, где ε_g определяется по точке изменения наклона спектральной зависимости модуляции тока при освещении, $I_{photo}(\hbar\omega)$, то есть из условия: $\frac{d^2I_{photo}(\hbar\omega)}{d(\hbar\omega)^2}|_{\varepsilon_g}=0$.

В ромбическом TaS_3 величина ε_g , определяемая по точке изменения наклона спектральной зависимости, для разных образцов будет разной из-за сильного размытия спектров в зависимости от примесей и дефектов в каждом конкретном образце. Вариация ε_g по величине составляет $\delta\varepsilon_g\approx 50-100$ мэВ. При этом точка пересечения спектров, ε_c , для p- TaS_3 варьируется существенно меньше, не более чем на 30 мэВ $\varepsilon_c=0.22-0.25$ эВ. Для свежеприготовленного образца #D1 до легирования индием ε_c в точности равно $\varepsilon_g=2\Delta_{opt}=0.25$ мэВ.

Следует отметить, что такая величина щели неплохо согласуется со значением $\varepsilon_g = 2\Delta(0) = 2\Delta_{MF} \sim 0.25 - 0.3$ эВ. $2\Delta_{MF}$ определяется из соотношения $2\Delta_{MF}/k_BT_{MF} = 3.52$, где величина $T_{MF} \approx 1000$ К рассчитана по теории среднего поля [12].

С понижением температуры для большинства образцов отношение откликов на поляризацию $\frac{\delta G_{\perp}}{\delta G_{||}}$ остается таким же, как и при 40 К. Для некоторых образцов нам удалось получить спектры для температур вплоть до 4.2 К, для других мы проверили это типичное поведение до 10 или 20 К (из-за сильного ослабления излучения материалом поляризатора, КРС-5, сигнал с понижением температуры становится существенно меньше, чем при обычных измерениях). Однако в одном из пяти изученных с использованием поляризатора об-

 $^{^3}$ Все наблюдаемые пики фотопроводимости, для которых измерялась зависимость от поляризации излучения всегда проявляются только в спектрах для поляризации вдоль цепочек $\delta G_{||}$.

разцов (#L3) наблюдалась необычная зависимость отношения поляризаций от температуры — с понижением температуры вклад отклика на перпендикулярную поляризацию для $\hbar\omega < \varepsilon_c$, то есть для состояний внутри щели, стал расти и при 30 К превысил величину отклика на параллельную поляризацию. Температурная зависимость отношения поляризаций представлена на рис. 3.20. Такое явление может быть связано с образованием дислокаций электронного кристалла ВЗП или солитонных стенок при понижении температуры. По данным синхротронных рентгеноструктурных исследований вблизи 30 К наблюдается переход ВЗП в соизмеримое с решеткой состояние, который может приводить к образованию дислокаций [76].

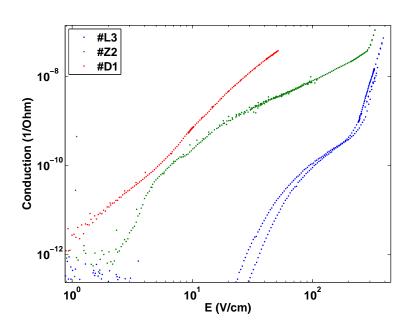


Рис. 3.21. ВАХ трех образцов при 11 К: #L3-c аномальной поляризационной зависимостью спектра (синяя линия), #Z2-c пиком, зависящим от напряжения (зеленая линия), #D1-образец, синтезированный в ИРЭ (красная линия).

У образца с аномальным откликом также наблюдались чрезвычайно высокие пороговые поля при гелиевых температурах, которые в литературе связываются с образованием дислокаций ВЗП [4]. Это можно увидеть на рисунке 3.21, где представлены вольт-амперные характеристики трех номинально чистых образцов при 11 К. Видно также, что образец с пиком, зависящим от

3.4. Дополнительные сведения об исследовавшихся образцах

В этом разделе приводятся дополнительные сведения об исследовавшихся образцах TaS₃. В таблице 3.1 приводятся геометрические размеры образцов, а также сопротивление при комнатной температуре и энергии, при которых расположены пики фотопроводимости. В последней колонке указана ростовая партия, к которой относится образец.

Таблица 3.1. Параметры номинально чистых образцов

Номер образца	Длина, мм	σ , μ m ²	$R_{300K}, k\Omega$	Энергии пиков, эВ			Ростовая
							партия:
L1	0.28	0.10	7.6		0.22)	Levy
L2	0.31	0.22	4.3			0.23	Levy
L3	0.71	0.69	3.1	0.17	7	0.23	Levy
L4	0.50	0.22	7.0	0.17	7	0.23	Levy
L5	0.16	0.06	7.6		0.20 0.2	2	Levy
L6	0.40	0.15	8.0		0.22	2	Levy
T1	1.90	0.04	156.4		0.20 0.22		Thorne
T2 ¹	0.39	0.33	3.53	0.15	0.20		Thorne
T3	0.4	0.04	26.4		0.20 0.22		Thorne
T4	1.2	0.09	37.9		0.20 0.22		Thorne
D1 ²	0.39	1	1.2	0.17	7		IRE
Z2	0.30	0.9	0.91		0.20		Thorne, 2nd

^[1] Образцы # T1 and # T2 отщеплены от одного и того же кристалла. [2] Есть небольшой пик вблизи 0.2 эВ в спектре для продольной поляризации

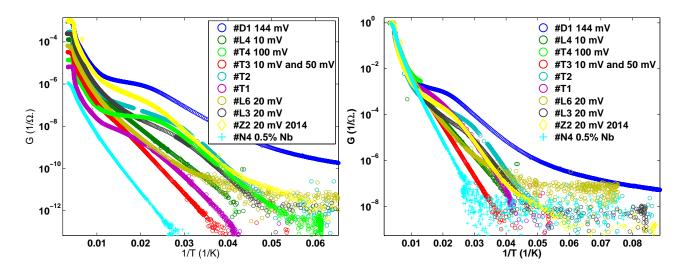


Рис. 3.22. Температурные зависимости проводимо-Рис. 3.23. Нормированные температурные зависисти для образцов из таблицы 3.1.

мости проводимости для образцов из таблицы 3.1.

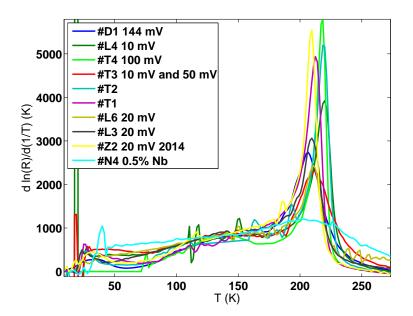


Рис. 3.24. Логарифмические производные сопротивления по обратной температуре для образцов из таблицы 3.1. T_P определяется по положению пика.

На рисунках 3.22, 3.23 и 3.24 представлены данные о температурной зависимости проводимости. Энергия активации проводимости в области температур до 100 К E_a , обычно связывается с величиной транспортной щели $E_a = \Delta_{tr}$ для уровня Ферми в середине запрещенной зоны. Это условие для пайерлсовских проводников выполняется почти всегда из-за температурной зависимости q_{DW} [64]. Определенная E_a не очень сильно отличается от об-

Таблица 3.2. Электрофизические и фотоэлектрические параметры номинально чистых образцов

Образец	T_P	D_{max}	δD	$d \sim l/R_{300K}$	$E_{t,(80K)}$	$E_{t(40-45K)}$	$2\Delta_{0\%}$	$2\Delta_{10\%}$	S_{max}
	(K)	(K)	(K)	(MKM/KOM)	(В/см)	(B/c_M)	$(B\varepsilon)$	$(\mathrm{B}\mathrm{e})$	(усл.ед.)
#D1	206	2764.6	13	3.225	6	10	0.15	0.25	130e-7
#L4	219	3894.7	6.7	0.7159		25	0.15	0.2	3e-7
#T4	218	6026.5	3.2	0.3214	1.6	8	0.16	0.2	45e-7
#T3	209	2109.6	14.7	0.1432		≈ 50	0.15	0.18	0.3e-7
#T2	219	5371.5	5.5	1,1048	1.05	87	0.15	0.18	6e-7
#T1	213	4896.4	5.5	0.1218	1.5	122	0.15	0.17	0.09e-7
#N4/Nb	206.7	1172.1	46.2	0.4545	80		0.13	0.15	0.01e-7
#L6	211	2400	16	0.52	1.6	50	0.16	0.18	0.38e-7
#L3	209	3000	9	2.63	4	20	0.15	0.16	6e-7
#Z2	210.5	5580	6	3.29	5	20	0.15	0.17	14e-7
#D1/In	203	2060	18		8		0.15	0.17	0.1e-7
$\overline{\#\mathrm{T4/3r}}$	214.3	5231.7	3.8				0.16	0.2	7e-7

разца к образцу, и среднее значение соответствует величине $2\Delta_{tr}=0.15~\mathrm{pB}$, хорошо совпадающей с началом фотопроводимости на спектрах фотопроводимости, см. значения $2\Delta_{0\%}$ в таблице 3.2.

В колонках таблицы 3.2 приведены данные о максимуме логарифмической производной по обратной температуре D_{max} , характеризующей качество образца, полуширине максимума на полувысоте δD , отношению длины образца l к сопротивлению при комнатной температуре R_{300K} , пропорциональному толщине образца, пороговым полям E_t при различных температурах, точке начала фотопроводимости $2\Delta_{0\%}$ на спектре и точке спектра, где величина фотопроводимости равна 10% от фотопроводимости⁴ в максимуме, S_{max} , со-

 $[\]overline{\ }^{4}$ нормированной на спектр излучения монохроматора, измеренный болометром

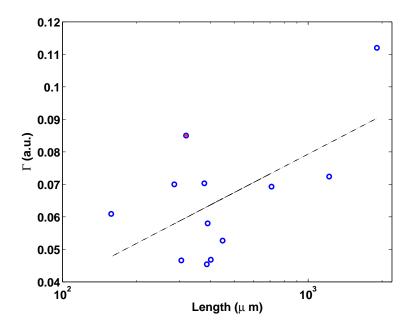


Рис. 3.25. Корреляция между длиной образца и параметром Γ — полушириной спектра при величине фотопроводимости равной половине от максимальной — характеризующим размытие. Коэффициенты прямой получены методом наименьших квадратов.

ответственно. Величины пороговых полей при 100 K не приводятся, так как в измеренных случаях мало отличались друг от друга и составляли менее 1 B/cm (за исключением образца $\#\text{D1}\ E_{t,100\ K} = 4.7 \text{ B/cm}$ и образцов с примесями Nb #N2 и #N4).

В таблице 3.3 приводятся параметры подгонки спектров с рис. 3.2 в рамках модели 3.1 из работы [39]. На рисунке 3.25 показана корреляция между длиной образца l и размытием спектра Γ . Коэффициент корреляции Пирсона r, определенный в стат.пакете R на основании данных таблицы 3.3 (вместо длины образцов использовался логарифм длины, так как распределение логарифма длины, как и параметра Γ являлось нормальным), составил 0.6 с 95% доверительным интервалом $r \in [0.04 \ 0.87]$.

Таблица 3.3. Параметры подгонки спектров с рис. 3.2 в рамках модели 3.1 из работы [39]: $\omega_{peak},\ \sigma_{peak},\ \Gamma \equiv \Gamma_{peak},\$ а также геометрические размеры образцов, использовавшиеся для поиска корреляций.

Образец	ω_{peak}	σ_{peak}	Γ	1	b	d	l/R
	(усл.ед.)	(усл.ед.)	(усл.ед.)	MKM	MKM	MKM	(мкм/кОм)
L1	4.29	1.24	0.070	285.3	0.81	0.13	0.385
L2	3.49	1.30	0.085	318.6	1.89	0.12	0.781
L3	3.91	1.35	0.069	709.8	2.16	0.32	2.63
L4	5.28	1.60	0.047	304.7	1.08	0.20	0.716
L5	4.06	1.56	0.061	157.9	0.54	0.12	0.276
Т3	3.99	0.58	0.070	378	0.5	0.086	0.143
T4	3.76	0.65	0.072	1218	0.5	0.19	0.321
T1	3.02	0.49	0.112	1905	1	0.037	0.122
T2	5.44	0.47	0.058	390	1	0.33	1.10
N2/Nb	4.95	0.99	0.053	448.7	1.35	0.18	0.90
D1	6.86	0.79	0.045	387	2	0.48	3.22
L6	5.77	1.14	0.047	401.7	0.95	0.16	0.52

3.5. Проверка наблюдавшихся эффектов

Все измерения TaS_3 проводились без маски, закрывающей контакты, что могло бы быть существенным, если бы на границе с контактами наблюдался барьер Шотки. Согласно работе [128] пространственное распределение электрического поля в p- TaS_3 при малых полях E < 2 В/см в области температур 30-50 K, то есть в условиях наших измерений, не отличается от однородного, то есть барьера Шотки не образуется. Также мы не наблюдали сигнала фотоэдс для образцов p- TaS_3 , как и в предыдущих работах [82].

Кроме того, использованный для большинства образцов метод холодной пайки индием приводит к нависанию индия над приконтактной областью образца и ее затенению. Спектры образцов с золотыми контактами качественно не отличались от спектров образцов с индиевыми контактами. Таким образом мы пришли к выводу, что наблюдаемые явления не могут быть связаны с контактными эффектами.

Наличие пиков могло бы быть связано с интерференционными эффектами. Чтобы исключить эту возможность, мы провели измерения спектра одного и того же образца при разных углах падения излучения на образец, не меняя других условий эксперимента, в результате чего менялась эффективная толщина образца. Связь коэффициента поглощения α с величиной фотопроводимости δG при повороте образца толщиной d на угол θ от нормали к падающему лучу, при условии отсутствия поверхностной рекомбинации [82], можно определить по формуле:

$$\delta G(\theta) \sim I = W \cdot S_n \cdot \exp(-\alpha \cdot d_n) = W \cdot S_0 \cos(\theta) \cdot \exp(-\alpha \cdot d_0/\cos(\theta)),$$
 (3.3)

где S — засвечиваемая площадь поверхности образца, индекс 0 указывает на размеры образца при нормальном падении излучения, n — на эффективные размеры образца при повороте. Вычисленный по формуле 3.3 коэффициент

поглощения в области 0.2 эВ совпадает с оценками, полученными в [22, 75] — он оказался порядка нескольких единиц на 10^4 см⁻¹, а в области пика 0.17 эВ возрос почти на порядок. Важно, что мы не наблюдали сдвига энергии пика 0.17 эВ при повороте образца (с точностью до разрешения прибора 4 мэВ, ожидаемый сдвиг составляет порядка 6 мэВ [75]), ожидаемого в случае интерференционного происхождения пика, что подтверждает связь наблюдаемой в области 0.17 эВ фотопроводимости с внутрищелевыми состояниями.

Все приведенные спектры нормируются на величину сигнала болометра (рис. 2.5) δG_{bolo} , чтобы не учитывать особенности, связанные с поглощением воздуха. Неудачная нормировка могла бы привести к появлению особенностей в спектрах фотопроводимости в р-ТаS₃. Особые сомнения вызывал у нас пик при 0.170 эВ. Поэтому, обрабатывая данные по фотопроводимости для образца #L4 с наиболее выраженным пиком 0.17 эВ мы использовали для нормировки (δG_{bolo}) $^{\alpha}$, где различные значения α соответствующие различной длине оптического пути, проходящего по воздуху. Результаты нормировки позволяют утверждать, что пик 0.17 эВ не связан с поглощением воздуха.

Как впервые обнаружил Вуд, дифракционные решетки по-разному отражают падающее на них излучение в зависимости от его поляризации. Это приводит к появлению особенностей в спектре излучения на выходе монохроматора, называемых особенностями Вуда [129], связанных с поверхностными резонансами при определенных длинах волн в определенной поляризации. Монохроматор, который мы использовали, оборудован дифракционными решетками для выделения определенной длины волны из падающего излучения. Для р-ТаS₃ мы использовали решетки 150 штрихов/мм, 75 штрихов/мм и 50 штрихов/мм. Мы получили и сравнили спектры поглощения поляризованного излучения болометром для двух различных поляризаций — параллельной выходной щели монохроматора и перпендикулярной ей, чтобы

выяснить, не являются ли наблюдаемые особенности в спектрах фотопроводимости р-TaS₃ особенностями Вуда. Для спектров поглощения излучения болометром мы не обнаружили особенностей в области энергий внутри щели, которые совпадали бы с наблюдаемыми в спектрах р-TaS₃. Таким образом мы смогли исключить связь наблюдаемых пиков фотопроводимости с особенностями Вуда.

Величина электрического поля, при котором меняются спектры, составляет порядка 50-100 B/см для NbS₃(I) и порядка 1-10 B/см для p-TaS₃, а энергия, приобретаемая свободным электроном в таком поле на масштабах порядка длины свободного пробега (≈ 0.1 мкм) порядка нескольких мэВ для NbS₃ и долей мэВ для p-TaS₃. Эти величины для обоих материалов на два-три порядка меньше, чем характерные энергии пиков фотопроводимости и величина щели. Следовательно, эффект влияния электрического поля на спектры, наблюдаемый в p-TaS₃ и NbS₃, не связан с явлениями типа ударной ионизации и другими одночастичными эффектами.

3.6. Сравнение результатов с предыдущими данными

В работе [77] в номинально чистых образцах ${\rm TaS_3}$ был обнаружен ЭПР-отклик при температурах 5-70 K, соответствующий концентрации примесей железа ${\rm Fe^{3+}}$ порядка $10^{-5}-10^{-3}$ на атом. Эти концентрации согласуются с вводимыми нами концентрациями примесей индия, качественно изменяющими характеристики спектров фотопроводимости.

Энергия, при которой мы наблюдаем исчезновение спектрального сигнала фотопроводимости в большинстве изученных образцов $2\Delta_{0\%}=0.15\pm0.01$ эВ, согласуется со значением $2\Delta_{tr}=1700$ К (0.14 эВ), полученным из энергии активации продольной (или поперечной) проводимости при T>100 К [4], а также, со значением $2\Delta=0.150$ эВ, определенном по началу

поглощения при изучении болометрического отклика в области низких температур [7, 36, 37].

В то же время, значение энергии 0.22-0.25 эВ, соответствующее основному спаду 2Δ , близко к максимуму туннельной проводимости при $100~\mathrm{K}$ в мезоструктурах из $\mathrm{TaS_3}$, $2\Delta_{tunn}\approx 0.18$ эВ [18] и согласуется с энергией активации линейной фотопроводимости, $2\Delta=0.22$ эВ [82], измеренной при низких температурах для образцов из Т-группы. В работе [18] туннельная проводимость начинается с 0.036 эВ, что может быть связано с особенностями метода. В случае неидеального нестинга особенность в туннельных спектрах будет наблюдаться при энергиях $\pm 2\Delta - \varepsilon_0$ и $\pm 2\Delta + \varepsilon_0$, где ε_0 — параметр, характеризующий гофрировку щели [49]. Туннельные спектры р- $\mathrm{TaS_3}$, полученные при $100~\mathrm{K}$, все еще очень сильно размыты на величину порядка величины щели, возможно, из-за несовершенства структур. Если оценивать величину ε_0 исходя из модели с модуляцией щели 3.1.2, считая, что по порядку она совпадает с параметром модели $\varepsilon_1\approx 0.03$ эВ, то величина прямой оптической щели, соответствующей максимуму туннельной проводимости $2\Delta_{tunn}\approx 0.18$ эВ, может составлять как $2\Delta=0.18+\varepsilon_0=0.21$ эВ так и $2\Delta=0.18-\varepsilon_0=0.15$ эВ.

В спектрах коэффициента отражения р-ТаS₃ при T=6 К для излучения, поляризованного вдоль цепочек [19] для широкого диапазона частот от 10^{-1} см⁻¹ до 10^{5} см⁻¹, основной спад коэффициента отражения (от 90% до 10%) наблюдается в области вблизи 100 см⁻¹ (12 мэВ). Небольшие изменения коэффициента отражения в области до 100 см⁻¹ описываются авторами как возбуждение амплитудной моды колебаний ВЗП. Вблизи $\hbar\omega=1000-1500$ см⁻¹ = 0.12-0.17 эВ наблюдается уменьшение коэффициента отражения до нуля. Эта величина очень приблизительно соответствует нашему началу фотопроводимости $2\Delta_{0\%}$. В диссертации М. Е. Иткиса [75], а также в [22] приводятся спектры коэффициента отражения R для излучения, поляризованного перпендикулярно к цепочкам в области 500-4000 см⁻¹, то есть

60-500 мэВ, для трех температур: 300 K, 80 K, 15 K. В этом случае зависимость R от энергии фотона сильно размыта уже при высоких температурах, а при 15 K размывается еще сильнее. А именно, R постепенно уменьшается с увеличением энергии: с 60% при 60 мэВ (при T=300-80 K, с 40% при T=15 K) до 18% примерно при 1800 см $^{-1}=0.22$ эВ; с дальнейшим увеличением энергии R меняется слабее. Величина 0.22 эВ согласуется с величиной 2Δ из наших измерений. Также в [75] утверждается, что коэффициент отражения для продольной поляризации (вдоль цепочек) остается большим при больших энергиях: R=60% при 3000 см $^{-1}=0.37$ эВ, что противоречит данным [19].

Спектральная зависимость коэффициента поглощения α при 15 K, приводимая в [75], имеет максимум при 0.33 эВ, что примерно соответствует максимуму в спектрах фотопроводимости наших образцов, при этом величина $\alpha=3\cdot 10^4~{\rm cm}^{-1}$ соответствует характерной глубине поглощения $d\approx 1$ мкм.

Основными данными для сравнения из-за сравнительно близкой методики являются данные по спектрам болометрического отклика (БО) p-TaS₃, полученные Бриллом и коллегами [7, 38], а также Иткисом и Надем [36, 37, 75]. Проведенный Минаковой и Зайцевым-Зотовым анализ температурной зависимости сигнала, связанного с изменением проводимости образца при его освещении [111], показывает, что преобладающий отклик ниже $T \approx 70~\mathrm{K}$ дает фотопроводимость, а соответствующие спектры [7, 36, 75], считавшиеся спектрами болометрического отклика, на самом деле являются спектрами фотопроводимости. Характерные черты низкотемпературных спектров БО, приводимых в работах [7, 36, 75], соответствуют описанным в этой главе, подтверждая наши результаты.

Спектры болометрического отклика, полученные при температурах выше 70-80 K [36–38, 75] для продольной поляризации излучения, сильно отли-

чаются от спектров фотопроводимости. Так, наблюдается существенно более сильное размытие БО спектра на величины порядка $\delta\Delta\gtrsim0.2$ эВ при 100 К по сравнению с более резким краем спектра фотопроводимости $\delta\Delta\lesssim0.05$ эВ при гелиевых температурах, трактуемое авторами [36, 37] как проявление эффектов, связанных с солитонным вкладом в проводимость и температурную зависимость величины щели. Однако же размытие может быть следствием вклада поглощения на оптических фононах в БО спектр. В то же время, для поперечной поляризации излучения край спектра болометрического отклика и при высоких температурах размыт несильно, а положение края меняется от 20 К до 100 К всего на 20 мэВ [7]. При этом, согласно работе [130], при наличии не параллельных цепочкам компонент ВЗП, спектральный отклик на излучение, поляризованное перпендикулярно к цепочкам, будет качественно подобен отклику на излучение, поляризованное вдоль цепочек. Учитывая эти аргументы, особенно невозможность устранения фононного вклада в БО спектры, требуется дополнительный анализ данных о величине пайерлсовской щели при температурах выше 100 К и связанных с ними выводов о температурной зависимости щели.

Обнаружение энергетических электронных состояний внутри пайерлсовской щели является одним из важных результатов настоящей работы и включено в положения, выносимые на защиту. Схожие максимумы можно найти в спектрах болометрического отклика [36, 37] при энергиях $\varepsilon_i = 62$, 100, 136 и 157 мэВ для поляризации вдоль цепочек и при температурах выше 70 К. При более высоких энергиях пики практически не наблюдались, за исключением небольшой особенности при 170 мэВ. По утверждению работ [36, 37] природа этих максимумов оставалась невыясненной, за исключением максимума при 62 эВ, который первоначально приписывался уровню амплитудного солитона, расположенного в центре пайерлсовской щели ($2\Delta = 125$ мэВ по утверждению работ [36, 37], определенной при T > 100 K). Тем не менее,

в диссертации [75] приведен график, представляющий наблюдавшийся сдвиг максимумов при $\hbar\omega < 0.145$ эВ на величины порядка 6 мэВ в большие энергии при изменении угла падения излучения на образец. Это означает высокую вероятность интерференционного вклада, объясняющего происхождение пиков. Особенность при 157 мэВ при этом не сдвигается. Отметим, что мы не наблюдали подобного смещения при наклонном падении излучения для наших пиков фотопроводимости (см. раздел 3.5). Заметим также, что в спектрах комбинационного рассеяния наблюдаются фононные частоты в 62 мэВ [71]. В отличие от болометрического отклика, изучение фотопроводимости позволяет отделить электронные процессы от фонноных.

В настоящей работе мы не наблюдали уровней при энергиях ε_i , за исключением пика при 0.15 эВ. Необычной особенностью обнаруженных состояний является их зависимость от электрического поля. Малая величина электрического поля $\mathcal{E} \ll \varepsilon_i/l$, где l — длина свободного пробега (для E=1 В/см $\Delta/E \sim 1$ мм), влияющего на обнаруженные энергетические уровни, доказывает участие коллективных возбуждений в их формировании. В [75] приводится спектр болометрического отклика, в котором наблюдается рост сигнала в максимуме $\varepsilon_i = 0.137$ эВ при небольшом превышении электрического поля выше порогового E_t , однако не указана температура. Насколько нам известно, этот спектр не был воспроизведен в других работах.

Степенные зависимости плотности состояний, предсказываемые для жидкости Латтинжера [30], нами обнаружены не были, ни в чистых, ни в легированных Nb образцах, в которых можно было бы ожидать появление жидкости Латтинджера, стабилизированной примесями [29].

3.7. Выводы

В данной главе мы показали, что величина прямой щели в ромбическом TaS₃ при температурах ниже 50 K составляет не менее 0.2 эВ, а особенности формы спектра связаны с количеством примесей и дефектами, образующимися при росте. Обнаружены внутрищелевые состояния, связанные с неодночастичными эффектами типа экситонных и/или солитонных, природа которых требует дополнительного выяснения. Основные выводы представлены ниже:

- 1) Величина прямой щели в ромбическом TaS_3 составляет от 0.2 до 0.25 эВ, в зависимости от качества образца, размытие щели в области описывается флуктуационной теорией [39].
- 2) Сигнал фотопроводимости наблюдается, начиная с энергий фотонов 0.15 ± 0.015 эВ, что близко к энергии активации продольной проводимости. Ведение примесей приводит к увеличению фотопроводимости в области 0.15-0.25 эВ, которое мы объясняем появлением континуума примесных состояний согласно теории [56]. При увеличении концентрации примесей номинально чистого образца на величину порядка $\delta n_0 \approx 10^{-4}$ на атом (10^{-2} ат.\%) наблюдается размытие края спектра фотопроводимости на величину порядка 50 мэВ.
- 3) В номинально чистых образцах наблюдаются пики фотопроводимости для излучения, поляризованного в направлении наибольшей проводимости (вдоль цепочек Та), амплитуда которых изменяется под действием электрического поля и дополнительной подсветки. Малая величина характерного поля, влияющего на пики означает коллективный механизм образования внутрищелевых состояний, связанных с пиками. Наблюдение пиков на крающели, амплитуда которых зависит от электрического поля, поднимают вопрос о существовании экситонных состояний в квазиодномерных неорганических проводниках, который требует отдельного исследования.

Глава 4

Другие квазиодномерные соединения, исследованные методом фотоэлектрической спектроскопии: $K_{0.3}MoO_3$ и $NbS_3(I)$

К моменту начала работы над диссертацией фотоэлектрическая спектроскопия квазиодномерных проводников являлась совершенно новым методом по отношению к этому классу соединений. В литературе были освещены только результаты фотоэлектрической спектроскопии квазиодномерных органических полупроводников [9, 35]. Поэтому нами было принято решение дополнить исследования изучением спектров фотопроводимости другого квазиодномерного проводника с ВЗП, голубой бронзы $K_{0.3}$ МоО₃, а также спектров квазиодномерного полупроводника, структурного аналога (транс)полиацетилена, NbS₃(I). Результаты излагаются в данной главе вместе с дополнительно проведенной характеризацией образцов (см. разделы 4.3 и 4.7).

4.1. Спектры фотопроводимости $K_{0.3} MoO_3$

Температурная зависимость фотопроводимости $K_{0.3}$ Мо O_3 такова, что заметный сигнал фотопроводимости детектируется лишь при температурах ниже 25-30 K [110] и уменьшается с понижением температуры. При этом при 20 K величина сигнала в максимуме спектральной зависимости составляет всего лишь порядка нескольких сотен фемтоампер. Вследствие этого все спектры фотопроводимости $K_{0.3}$ Мо O_3 были измерены при единственной температуре 20 K, оказавшейся оптимальной для спектральных измерений.

На рисунке 4.1 приведены спектры образцов #1 и #2, нормированные на

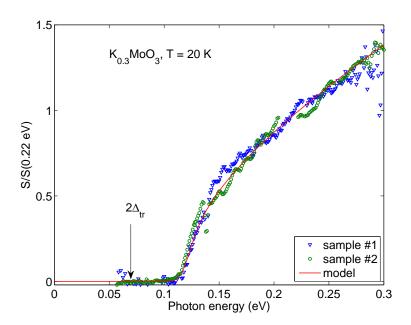


Рис. 4.1. Спектры фотопроводимости двух различных образцов $K_{0.3} \text{MoO}_3$. T=20 K. Красная линия показывает приближение основанное на модели с модуляцией величины пайерлсовской щели в обратном пространстве; см. раздел 3.1.2. Параметры модели: $2\Delta=0.119 \text{ эB}$, $\varepsilon_1=250 \text{ мэB}$ и $\varepsilon_2=350 \text{ мэB}$, $\delta\varepsilon=6 \text{ мэB}$.

величину фотосигнала при 0.2 эВ. Напряжение на образцах составляло 1 В и 18,8 мВ соответственно. Напряжение, как и в случае TaS₃, выбирается так, чтобы сигнал фотопроводимости был максимальным, но величина электрического поля не превышала порогового; то, что напряжение оказалось столь разным для двух образцов, связано с разницей в геометрических размерах образцов.

Спектры двух разных образцов практически полностью совпадают, в отличие от спектров p-TaS₃, где наблюдается значительная варьируемость в спектрах от образцов к образцу. Это хорошо согласуется с меньшим разбросом величины щели голубой бронзы, полученной различными методами в предыдущих экспериментальных исследованиях. Большинство значений укладывается в диапазон $2\Delta = 0.1 \pm 0.015$ эВ, то есть в пределах 30% от величины щели, в то время как для p-TaS₃ величина Δ , полученная различными методами отличается на 60% (см. главу 1). По всей видимости, это связано с более высоким качеством образцов голубой бронзы, а также с более двумерной кри-

сталлической структурой.

Из рис. 4.1 хорошо определяется величина щели. Как и для TaS_3 мы принимаем за значение величины щели энергию, при которой поглощение падает практически до нуля, в данном случае это 110 мэВ. Это значение хорошо совпадает с большинством экспериментальных данных, например, с работами [12, 85, 93], при учете способа выбора величины щели.

Данные, представленные на рисунке 4.1, на первый взгляд согласуются с представлением о наличии прямой щели. Тем не менее, приближение, описанное для p- TaS_3 в разделе 3.1.2 оказывается применимым и в этом случае, однако, в отличие от p-TaS₃, со значениями параметров модуляции энергетических зон $\varepsilon_1=250$ мэВ и $\varepsilon_2=350$ мэВ, в несколько раз превышающими величину оптической щели — полная амплитуда модуляции величины щели равна $2\varepsilon_1$ вдоль одной из осей, перпендикулярной к цепочкам и $2\varepsilon_2$ вдоль другой. Хотя такие значения параметров вызывают сомнения в применимости модели, они прекрасно согласуются с гофрировкой поверхности Ферми в состоянии с ВЗП, полученной в последних экспериментах по фотоэлектронной спектроскопии с угловым разрешением (ARPES) [62]. В этой работе получены изображения поверхности Ферми при 80 К, которая представляет собой четыре гофрированные плоскости, из которых можно оценить амплитуду модуляции при изменении величины вектора Ферми $k_{F||}$ с изменением перпендикулярной компоненты k_{\perp} волнового вектора. Эта модуляция составляет около 20% от величины $k_{F||}$. Такому изменению волнового вектора на дисперсионной кривой, приводимой в [62], соответствует изменение E_F на 300 мэВ. Гофрировка связана с поперечным взаимодействием между "лестницами". "Лестницей" в данном случае называется пара проводящих цепочек из кластеров МоО₆ (см. раздел введения 1.8). По теоретическим оценкам, приводимым в [62], взаимодействие между "лестницами" характеризуется интегралом перескока $t_{\perp} \approx 100$ мэВ, а поперечное взаимодействие между двумя

цепочками внутри лестницы — интегралом перескока $t_{rung} \approx 500$ мэВ.

Следует отметить отсутствие каких-либо внутрищелевых состояний на спектрах на рис. 4.1.

4.1.1. Зависимости спектров фотопроводимости от напряжения

Нами также была предпринята попытка изучить зависимость спектров фотопроводимости образца #2 K_{0.3}MoO₃ от напряжения. Как и в TaS₃, в голубой бронзе движение ВЗП приводит к возрастанию шума фотосигнала, затрудняя измерения. При этом начало нелинейности на образце #2 соответствует напряжению в 20 мВ, что сильно ограничило диапазон подаваемых напряжений. На рис. 4.2 приведены спектры фотопроводимости образца #2 при двух разных напряжениях, в 3 раза отличающихся по величине (соответствующих электрическому полю в 0.002 и 0.006 В/см). Никаких значимых изменений спектра не обнаруживается. Спектр образца, полученный в поле 0.05 В/см, приведенный на рис. 4.1, также нисколько не отличается от приведенных на рис 4.2. При дальнейшем увеличении поля шумы возрастали настолько, что измерение спектров становилось невозможным.

Таким образом, эффекты влияния поля на спектр образца, подобные наблюдаемым в TaS_3 3.3.1, где сравнительно небольшое изменение величины поля приводит к изменению величины пиков или в NbS_3 4.6, где при низких температурах с увеличением электрического поля образуются состояния при энергии, равной половине щели, в голубой бронзе нам наблюдать не удалось.

Причиной отсутствия наблюдаемых эффектов в голубой бронзе могла бы быть более двумерная структура материала, приводящая к уменьшению влияния солитонных эффектов и иному типу взаимодействия с примесями. С другой стороны, можно предположить, что приложенного поля просто не

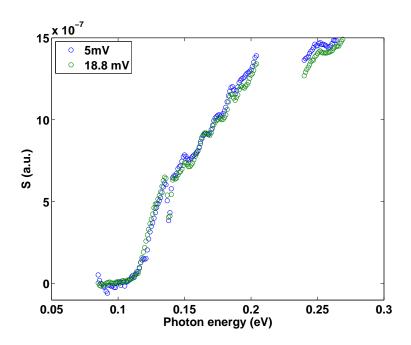


Рис. 4.2. Спектры фотопроводимости образца $\#2\ \mathrm{K}_{0.3}\mathrm{MoO}_3$ при двух разных напряжениях. $T=20\ \mathrm{K}$.

хватило для наблюдения каких-либо эффектов из-за малых пороговых полей начала движения ВЗП, затрудняющих измерения. Если считать, что энергия создания солитонных возбуждений будет примерно одного порядка в обоих материалах, так как величины пайерлсовских щелей, полученные из фотопроводимости, сравнимы (~ 0.1 эВ и ~ 0.25 эВ), температуры перехода близки $(T_P = 220 K \text{ и } T_P = 180 \text{ K})$, и что при этом волновой вектор ВЗП в обоих материалах при низких температурах близок к четырехкратной соизмеримости, то можно ожидать, что характерные масштабы полей, влияющих на динамику солитонов, также близки. Экспериментально определенные величины полей, влияющих на спектры фотопроводимости TaS₃, составляют 1-50 B/см, что на порядок-два больше полей, которые мы смогли использовать в экспериментах с образцами $K_{0.3}$ Мо O_3 . В этом случае порог создания коллективных возбуждений в спектре этого материала можно оценить как $E_{th} \gtrsim 0.1~\mathrm{B/cm}.$ Тем не менее, если бы создание возбуждений, приводящих к изменениям в спектре было связано только с изменениями в ВЗП и не зависело от совершенства структуры кристалла и пиннинга, то характерным параметром было бы

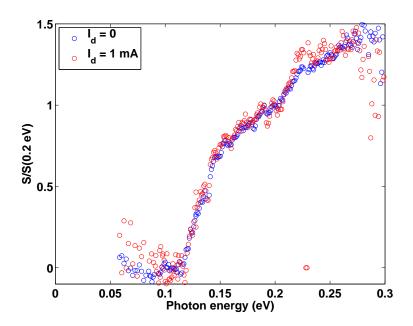


Рис. 4.3. Спектр фотопроводимости образца $\#1~K_{0.3}MoO_3$ при дополнительной подсветке светодиодом (красная кривая) и без подсветки (синяя кривая). Напряжение на образце 1 В. T=20~K

отношение приложенных полей к пороговым полям, E/E_t , при этой же температуре, которое в наших экспериментах варьировалось примерно одинаково для TaS_3 и $K_{0.3}MoO_3$: $E/E_t\sim 2-5$.

4.1.2. Зависимости спектров фотопроводимости от дополнительной подсветки

В поиске возможности возбуждения внутрищелевых состояний мы изучили также влияние дополнительной немодулированной подсветки на спектры фотопроводимости $K_{0.3}$ Мо O_3 . Для этих целей использовалось как широкополосное ИК-излучение, генерируемое сеткой из нагретых проволок, расположенной снаружи криостата, так и подсветка светодиодом, смонтированным на одном держателе с образцом, с длиной волны 940 нм (1.3 эВ). На рис. 4.3 приводятся спектры фотопроводимости образца #1 с подсветкой светодиодом и без; напряжение на образце в обоих случаях составляло 1 В. Приведенные спектры нормированы на величину сигнала фотопроводимости при 0.2 эВ; при измерениях при включении подсветки светодиодом величина фотопрово-

димости падала вследствие перехода в режим нелинейной рекомбинации ¹. Как видно из приведенных графиков, никаких изменений в спектре при подсветке светодиодом нам обнаружить не удалось. Широкополосное излучение, генерируемой сеткой из нагретых проволок, использовалось при измерении спектров в области 60-150 мэВ, в этой области также были получены спектры при двух других интенсивностях излучения светодиода (в 3 и в 10 раз превышающих интенсивность излучения, создаваемого монохроматором), никаких изменений спектра также обнаружено не было. Таким образом, нам не удалось возбудить внутрищелевые состояния при помощи подсветки.

Эти результаты согласуются с результатами работы [83], в которой проводился поиск внутрищелевых состояний в спектрах фотоиндуцированного поглощения голубой бронзы. В качестве источника излучения в таких экспериментах стандартно используется лазер. Состояний, дающих вклад в фотоиндуцированное поглощение обнаружено не было, в отличие от поливинилена, в котором наблюдалось фотоиндуцированное поглощение при энергиях вблизи середины щели.

4.2. Сравнение с предыдущими результатами

По-видимому, на самом деле первые спектры фотопроводимости голубой бронзы были получены в 2001 году N.Ogawa [10] при 7.5 K, однако авторы неправильно объяснили наблюдаемый фотосигнал динамическим фазовым переходом ВЗП. На рис. 4.4 представлен полученный в [10] спектр. Видно, что спектр количественно согласуется с полученными нами спектрами при 20 K.

 $^{^{1}}$ Интенсивность излучения, создаваемого светодиодом на образце, была на 1-2 порядка выше интенсивности излучения, создаваемого монохроматором

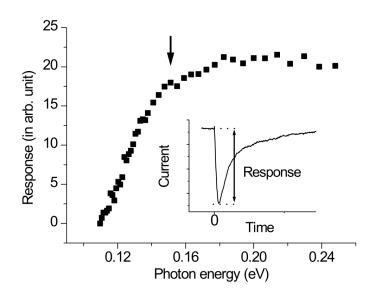


Рис. 4.4. Спектры фотоотклика при 7.5 К, опубликованные в работе [10].

4.3. Дополнительные сведения об исследовавшихся образцах

На рис. 4.5 приводится характерная температурная зависимость сопротивления $K_{0.3}$ Мо O_3 (образец #1). Из температурной зависимости проводимости легко определить энергию активации проводимости и оценить величину транспортной щели $2\Delta_{tr}$ в энергетическом спектре, которая оказывается равной примерно 800 К (70 мэВ). Эта величина меньше оптической $2\Delta_{opt} = 0.11$ мэВ, см. рис. 4.1.

В квазиодномерных проводниках несовпадение транспортной и оптической щели может быть объяснено несколькими способами, наиболее вероятным выглядит вклад в транспорт от примесных состояний [56], не проявляющийся в оптическом спектре из-за малости сигнала, или же электрон-фононное взаимодействие и франк-кондоновские процессы, не вносящие вклада в оптический спектр, однако проявляющиеся в транспорте [53]. В любом случае, отсутствие хвоста состояний в спектре фотопроводимости, подобного наблюдаемому в р-ТаS₃ интригует, хотя малость измеренного сигнала не позво-

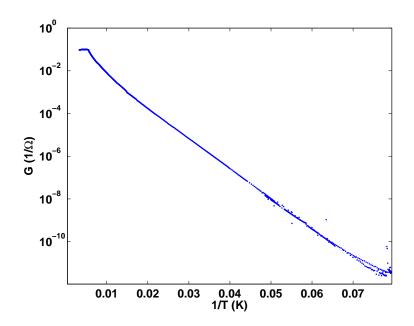


Рис. 4.5. Температурная зависимость проводимости $K_{0.3}MoO_3$, образец #2.

ляет сделать окончательный вывод.

На рис. 4.6 приведена вольтамперная характеристика образца #2 при температуре 20 K, при которой производилось измерение спектра. Видна типичная для квазиодномерного проводника нелинейность, начало которой при 20 мВ (см. вставку на рис. 4.6), соответствует пороговому полю $E_t \approx 1~\mathrm{B/cm}$, что ниже приводимых в литературе значений при этой температуре ($E_t \sim 10-20~\mathrm{B/cm}[86]$) и свидетельствует о высокой чистоте образца.

4.4. Выводы

1) Методом фотоэлектрической спектроскопии определена величина щели в голубой бронзе $K_{0.3} \text{MoO}_3$ при 20 К $2\Delta = 0.11$ мэВ. Эта величина хорошо согласуется с другими исследованиями и подтверждает применимость метода для исследования пайерлсовской щели в квазиодномерных соединениях с ВЗП. Параметры подгонки моделью с модуляцией щели, учитывающей зависимость $\Delta(k_{\perp})$, по порядку величины близки к масштабу гофрировки, полученной при исследовании поверхности Ферми с помощью ARPES.

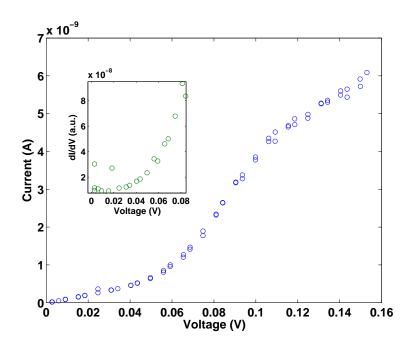


Рис. 4.6. Вольтамперная характеристика $K_{0.3}$ МоО $_3$ (образец #2), измеренная двухконтактным методом. На вставке показана зависимость дифференциальной проводимости, полученной численным дифференцированием, от напряжения.

- 2) Превосходное совпадение спектров фотопроводимости голубой бронзы для разных образцов, в отличие от р-TaS₃, говорит о более высоком качестве образцов голубой бронзы, которое может быть связано как с условиями роста, так и с меньшим влиянием примесей и дефектов на энергетический спектр и/или с большей степенью двумерности материала.
- 3) В $K_{0.3}$ Мо O_3 нам не удалось обнаружить внутрищелевых состояний при $20~\mathrm{K}$, что может быть связано как с малостью сигнала, так и отражать характерные свойства материала. Для выяснения причины отсутствия внутрищелевых состояний требуются дополнительные исследования, в том числе близких по структуре к голубой бронзе квазиодномерных и квазидвумерных материалов, что выходит за рамки данной диссертации.

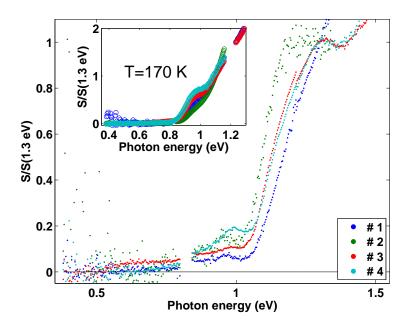


Рис. 4.7. Спектры фотопроводимости четырех образцов NbS $_3$ измеренные при $E\sim 5$ В/см при T=78 К. На вставке показаны спектры при T=170 К, $E\sim 5$ В/см, виден пик при 0.9 эВ.

4.5. Спектры фотопроводимости $NbS_3(I)$

NbS₃(I) является мало изученным соединением и основные данные по проводимости и оптическим спектрам данного материала содержатся в нескольких статьях [14, 15, 101, 109], особенно в [15, 109]. Поэтому мы будем проводить сравнение с литературными данными по ходу текста, не выделяя в отдельный подраздел, как ранее.

В работе [109] приводятся данные о коэффициенте поглощения при 300 и при 8.5 K, из которых можно определить характерную длину поглощения — порядка 10 микрон ($\alpha \approx 10^3 {\rm cm}^{-1}$ в области $\hbar \omega = 1$ эВ). 5 образцов NbS₃, для которых мы получили спектры фотопроводимости, обладают типичными размерами около 5 мкм \times 50 мкм \times 1500-3000 мкм, то есть не вполне являются оптически тонкими. Мы не учитывали отражение при обработке спектров, так как коэффициент отражения достаточно мал [109]. Для измерений мы использовали выращенные нами вискеры (см. раздел 2.5), не прибегая к расщеплению кристаллов.

На рисунке 4.7 приведены спектры фотопроводимости четырех образцов при температуре 78 К, на вставке — при температуре 170 К, а на рис. 4.8 — спектр одного из образцов и приближение спектра моделью с модуляцией величины щели щели $\Delta(k_{\perp})$ 3.1.2. Отметим наличие "хвоста состояний" в приводимых спектрах при энергиях ниже 1 эВ. Этот хвост представляет собой близкий к линейному спад фотопроводимости, напоминающий полку на фоне экспоненциального края щели при температурах ниже 100 К. При более высоких температурах спектр экспоненциально спадает вплоть до 0.6 эВ, как на рис. 4.7, однако в нормированных спектрах на фоне большого сигнала в области 0.8-1.5 эВ этого незаметно, как на вставке к рис. 4.9. Начало фотопроводимости $2\Delta_{0\%} = 0.6$ эВ совпадает с величиной транспортной щели, получаемой из температурной зависимости проводимости для изучавшихся образцов (см. раздел 4.7). При 170 К видна особенность при энергии 0.9 эВ. Мы обнаружили, что увеличение электрического поля и/или температуры значительно влияет на амплитуду фотопроводимости в области хвоста состояний, приводя к изменениям характера спектра при энергиях 0.6 эВ и 0.9 эВ (подробнее эта зависимость описана ниже). Таким образом, спектры NbS_3 состоят из спада, соответствующего краю щели, и воспроизводимых особенностей внутри щели, которые зависят от приложенного электрического поля и температуры. Величина края, определенная при 4.2 К, составляет 1.11 эВ, слабо меняется вплоть до 100 К и согласуется с данными по оптическому пропусканию [15, 109]. Спектры разных образцов совпадают с хорошей точностью, и практически все отличия связаны с разной степенью выраженности особенностей при энергиях менее 1 эВ, то есть внутри щели. Особенности при энергиях фотонов $\hbar\omega > 2\Delta$ хорошо описываются моделью с модуляцией щели 3.1.2. Увеличение $\delta\varepsilon$ соответствует уменьшению разрешения при замене решетки монохроматора. Параметры модели $3.1.2~\varepsilon_1=0.6~\mathrm{pB}$ (50% от величины щели, полная амплитуда — 100% от величины щели) и $\varepsilon_2 = 0.3$ эВ,

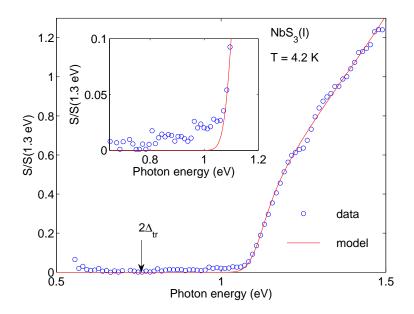


Рис. 4.8. Спектры фотопроводимости одного из образцов $NbS_3(I)$. T=4.2 К. Красная линия показывает приближение основанное на модели с модуляцией величины пайерлсовской щели в обратном пространстве; см. раздел 3.1.2. Параметры модели: $2\Delta = 1.11$ эВ, $\varepsilon_1 = 0.6$ эВ и $\varepsilon_2 = 0.3$ эВ, $\delta \varepsilon = 30$ мэВ. На вставке показан хвост состояний вблизи края щели.

означают довольно большую модуляцию $\Delta(k_{\perp})$, приводящую к большому отличию между транспортной и оптической щелью.

Несмотря на относительно небольшую транспортную щель в 0.6 эВ (или даже меньше в некоторых образцах, см. [14]), NbS₃(I) является высокоомным соединением с удельным сопротивлением порядка 100 Ом⋅см при комнатной температуре. Высокое сопротивление при малой щели может быть следствием малой подвижности носителей, причиной для которой может стать как дополнительная локализация носителей из-за электрон-электронного взаимодействия (усиленного процессами переброса в системе с половинным заполнением), так и большая эффективная масса носителей из-за электрон-фононного взаимодействия. К сожалению, данных о подвижности носителей в NbS₃(I) в литературе нам обнаружить не удалось, а непосредственные измерения оказались затруднены.

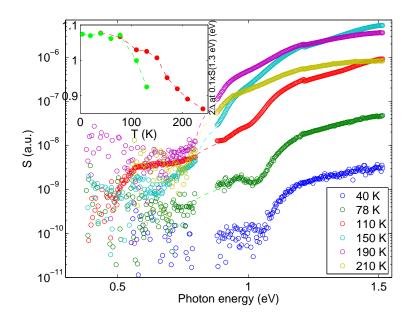


Рис. 4.9. Температурная зависимость спектра фотопроводимости образца #1, приложенное поле - $E=6~\mathrm{B/cm}$. На вставке показана температурная зависимость величины щели (определенной по энергии фотона, при которой фотопроводимость равна 10% от значения при 1.3 эВ) для $E=6~\mathrm{B/cm}$ (красный цвет) и $E=670~\mathrm{B/cm}$ (зеленый цвет) для одного и того же образца

4.5.1. Температурная зависимость спектров фотопроводимости ${ m NbS}_3({ m I})$

Величина щели (см. вставку на рис. 4.9) и форма спектра в значительной мере зависят от температуры. При этом для всех изученных образцов эволюция температурного спектра в области температур 60-250 К имеет практически одинаковый характер. Но не для всех образцов удалось измерить спектр при температурах ниже 60 К из-за очень высоких значений сопротивлений образцов — порядка ТОм при азотных температурах. Уровень шума нашей измерительной системы ограничивает измеряемые сигналы величиной 10^{-14} А при модуляции $\nu=3.125$ Гц и постоянной времени измерений $\tau=1$ с. Для образцов, сопротивление которых позволяет измерения при гелиевых температурах, такого, как на рис. 4.9, в температурной зависимости проводимости наблюдался необычный "хвост" (зеленая линия на рис. 4.17).

Охлаждение от 200 К до 120 К приводит к сдвигу края фотопроводи-

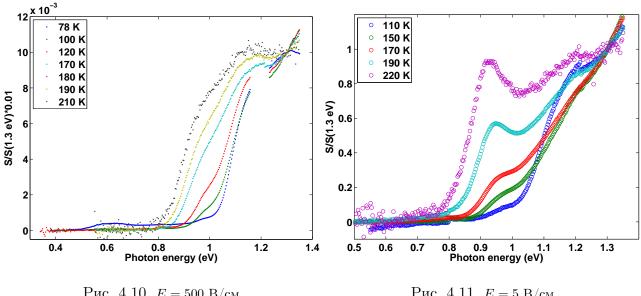


Рис. 4.10. E = 500 B/cm

Рис. 4.11. E = 5 B/cm

мости в спектрах на 0.2 эВ в сторону больших энергий (см. вставку на рис. 4.9). Дальнейшее понижение температуры вплоть до гелиевой практически не влияет на величину щели. Величина щели определенная как энергия, при которой фотопроводимость составляет 10 % от значения фотопроводимости δG при 1.3 эВ, близка к значению 1.05 эВ при 78 К и к значению 0.95 эВ при 170 К. Определить величину щели при температурах выше 150 К сложнее, чем при более низких, так как становится трудно отделить спад фотопроводимости от возрастающей амплитуды пика 0.9 эВ у края щели (см. рис. 4.11). Пики 0.9 эВ и 0.6 эВ наблюдались во всех исследованных образцах, однако выраженность пика 0.9 эВ в некоторых образцах была слабее (см. вставку на рис. 4.7). При этом приложение электрического поля $E \sim 500~\mathrm{B/cm}$ к образцу (см. рис.4.10 и вставку к рис. 4.9) сдвигает край фотопроводимости в сторону меньших энергий на величину порядка $\sim 0.1~{\rm pB}$ — эффект, подобный эффекту Франца-Келдыша. Более подробно вопрос о влиянии электрического поля разобран в следующем разделе.

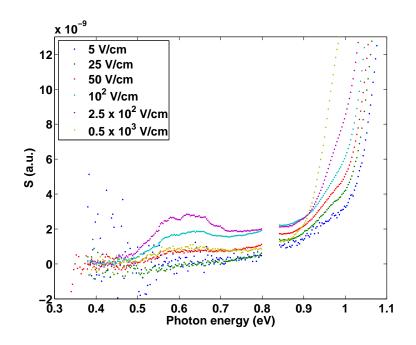


Рис. 4.12. Пик 0.6 эВ в спектре образца #2. T = 100 K.

4.6. Внутрищелевые состояния в $NbS_3(I)$ и влияние на них приложенного электрического поля, дополнительной подсветки, поляризации излучения и пластических деформаций

В NbS₃(I) внутрищелевые состояния, проявляющиеся как пики фотопроводимости, наблюдаются при одних и тех же энергиях 0.9 эВ и 0.6 эВ для всех образцов, и величина их зависит от приложенного электрического поля и дополнительной подсветки. Кроме того, наблюдается спадающий сигнал при энергии меньше $2\Delta(T)$ — "хвост состояний" или "хвост фотопроводимости", также зависящий от приложенного поля и подсветки. Наиболее интересной из спектральных особенностей, которые мы наблюдали, является пик при энергии 0.6 эВ. Этот пик находится практически в центре щели, где предсказывается существование солитонных состояний ВЗП [53]. Пик хорошо заметен на приведенных на рис. 4.16 нормированных спектрах четырех образцов при максимальных величинах приложенного электрического поля, а также

на рис. 4.12. В общем случае пик наблюдается при температурах ниже 100 К во всех образцах при величине приложенного электрического поля E больше некоторого порогового значения E_{th} . Значение E_{th} зависит от температуры (см. вставку на рис. 4.16), увеличиваясь с понижением температуры. При 78 К $E_{th} \approx 100$ В/см, а при 100 К и $E_{th} \approx 50$ В/см. Амплитуда пика 0.6 эВ при фиксированном приложенном электрическом поле возрастает в 4 раза с увеличением температуры от 40 К до 80-90 К. Только остаточные признаки пика при энергии 0.6 эВ присутствуют в спектре при T=20 К. При температуре 4.2 К при максимальном значении приложенного электрического поля (670 В/см) пик не виден, но вместо него мы наблюдали возникновение длинного хвоста фотопроводимости (т.е. практически постоянное положительное значение фотопроводимости) в области 0.5 - 1 эВ при одновременном включении дополнительной подсветки.

Мы полагаем, что при температурах ниже 40 K прикладываемых нами электрических полей (напряжение на образце не более 100 В) недостаточно для образования состояний, ответственных за пик. Таким образом, зависимость пика от температуры при фиксированном поле является немонотонной с максимумом примерно при $T=80~\mathrm{K}$. В температурном диапазоне 100-120 K зависимость амплитуды пика от электрического поля также является немонотонной (смотри вставку на рис. 4.16) и амплитуда пика при максимальном значении приложенного к образцу электрического поля (соответствующего приложенному напряжению $V=100~\mathrm{B}$) стремится упасть до нуля, т.е. происходит подавление пика.

При включении дополнительной светодиодной подсветки с интенсивностью $W \sim 1~{\rm MBT/cm^2}$ (что примерно в 100 раз больше интенсивности основного излучения монохроматора), пик 0.6 эВ появляется уже при напряжении $E_{th} \approx 5~{\rm B/cm}$ — как можно увидеть на рис. 4.13 а относительная амплитуда пика остается постоянной при дальнейшем увеличении электрического поля.

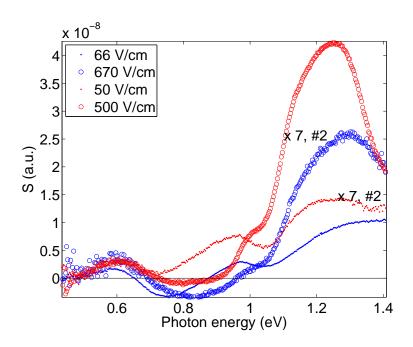


Рис. 4.13. Спектры фотопроводимости двух образцов: #1 (красный цвет) и #2 (синий) при дополнительной подсветке светодиодом, $W\sim 1~{\rm MBT/cm^2}$. Кружки соответствуют спектрам в большом электрическом поле $E>500~{\rm B/cm}$, а точками построены спектры в электрическом поле $E<100~{\rm B/cm}$

При этом в электрическом поле $100~\rm B/cm$ абсолютная амплитуда пика уменьшается вместе с увеличением интенсивности подсветки от $W\sim 0.05~\rm mBt/cm^2$ до $W\sim 1~\rm mBt/cm^2$ из-за подавления сигнала вследствие квадратичной рекомбинации носителей, в то время как относительная остается почти постоянной.

Заметим, что значения пороговых полей появления пика $E_{th} \approx 50 \; \mathrm{B/cm}$ соответствуют началу нелинейности на BAX при этой температуре, $I \propto V^{\beta}$ (см. раздел 4.7). При этом степень $\beta = 2$, наблюдающаяся при $E \lesssim 100 \; \mathrm{B}$, возникает в случае инжекции носителей в обычных полупроводниках [99]. При этом при включении подсветки нелинейные BAX становятся линейными (см. раздел 4.7 и рис. 4.18) за счет увеличения омического вклада. Мы делаем заключение, что для наблюдения состояний, связанных с пиком 0.6 эВ, необходимо создание неравновесных условий, а точнее, некой критической концентрации избыточных носителей тока (электронов или дырок), n_c . Мы предполагаем, что в NbS₃(I) избыточные долгоживущие при низких температурах носители тока, взаимодействуя с возмущениями решетки, создают автурах носители тока, взаимодействуя с возмущениями решетки, создают автурах

толокализованные состояния — солитоны, которые и наблюдаются при энергии фотона 0.6 эВ, что, как и ожидается, близко к середине энергетической щели [53].

Уменьшение относительной амплитуды пика при одновременном повышении температуры до $100~{\rm K}$ и увеличении поля до $0.5 \times 10^3~{\rm B/cm}$ предположительно может означать разрушение автолокализованных состояний вследствие ионизации носителей тока, а также быть связанным с изменением времени жизни флуктуаций решетки.

Амплитуда пика для поляризации излучения, направленной вдоль цепочек Nb (кристаллографической оси b) превышает его амплитуду для поперечной поляризации, как можно увидеть на рис. 4.14. Этот результат вполне совпадает с ожидаемым для солитонов результатом (см. [36, 75]). Наличие отклика на поляризацию, поперечную к цепочкам, в области 0.6 эВ, помимо прочего может быть связано с неполной поляризацией излучения, так как 0.6 эВ находится вблизи коротковолновой границы работы использованного нами решеточного поляризатора Edmund Optics. Для р-ТаS₃ пики фотопроводимости расположенные внутри щели, наблюдаются только для поляризации излучения вдоль цепочек Та.

Мы также обнаружили, что пластическая изгибная деформация образца приводит к изменениям в амплитуде пика при $\hbar\omega=0.6$ эВ. Пик полностью исчезает после изгиба, как можно увидеть на рисунке 4.15. Вместо пика с уменьшением энергии фотона мы наблюдаем экспоненциальный спад сигнала на протяжении более, чем двух порядков. При этом шумы, связанные с пиком при 0.6 эВ, также исчезают. Известно, что структура NbS₃(I) содержит плоскостные дефекты, так называемые дефекты упаковки [105]; мы предполагаем, что пластическая изгибная деформация образца увеличивает их число, и, как следствие, искажения решетки, необходимые для создания солитонов или солитоноподобных состояний, становятся менее энергетически выгодны-

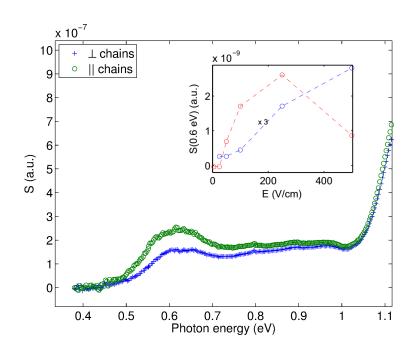


Рис. 4.14. Спектры фотопроводимости образца NbS_3 для разных поляризаций исходящего излучения. На вставке показана зависимость величины пика 0.6 9B от электрического поля при 77 К (синим цветом) и при 100 К(красным цветом).

ми.

Увеличение приложенного поля E влияет и на вторую обнаруженную внутрищелевую особенность — хвост состояний при энергиях меньших 1 эВ (см. рис 4.16). В некоторых образцах мы обнаружили относительную отрицательную фотопроводимость — подавление фотосигнала при E > 300 — 500 В/см вплоть до перемены знака фотопроводимости при E > 600 В/см. Этот факт говорит о наличии рекомбинационных состояний в области $0.7 < \hbar \omega < 1$ эВ, на которые влияет электрическое поле. На данный момент неясно, связаны ли эти состояния с глубокими примесями или же они соответствуют экситоноподобным или поляронным уровням. С одной стороны, в p-TaS₃ хвост состояний связан с примесями, однако в транс-полиацетилене, структурном аналоге NbS₃(I), вся фотопроводимость внутри щели связывалась с солитонами, при этом хвост состояний глубоко внутри щели в спектрах объяснялся размытием солитонного спектра [9, 46, 53] (см. также раздел 1.4).

В режиме отрицательной фотопроводимости мы наблюдали, что сигнал

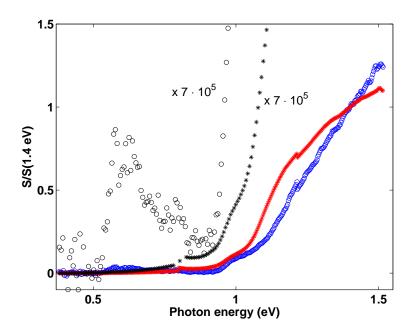


Рис. 4.15. Спектры фотопроводимости одного образца NbS_3 до (синий цвет) и после (красный) изгиба. Черным цветом обозначены масштабированные спектры (увеличенные в 7×10^5). Пик при 0.6 эВ подавляется после изгиба

фотоотклика, наблюдаемый на осциллографе и характеризующий релаксацию возбужденных носителей, становился треугольным вместо прямоугольного. Треугольная форма характерна для кривых релаксации при наличии центров рекомбинации, причем скорее для случая многократных центров прилипания или центров прилипания α -типа в [5]. Для центров α -типа время установления термического равновесия между центрами прилипания и зоной проводимости много меньше времени жизни электрона τ_n [5].

Совместное приложение большого электрического поля и дополнительной подсветки светодиодом еще сильнее изменяет форму спектра (см. рис. 4.13). В этом случае отрицательная фотопроводимость наблюдается во всех образцах. В одном из образцов со сравнительно высокой низкотемпературной проводимостью (зеленая кривая на рис. 4.17) при дополнительной подсветке наблюдалось подавление фотопроводимости ниже нуля уже в малом электрическом поле $E \sim 60~\mathrm{B/cm}$ (синяя кривая, обозначенная точками на рис. 4.13). В этом же образце отрицательная фотопроводимость наблюдалась также во-

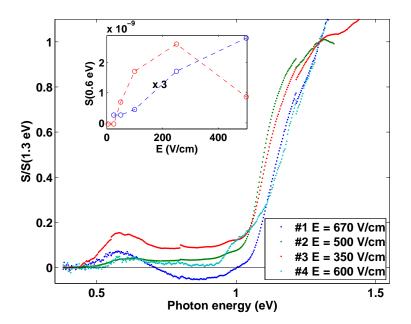


Рис. 4.16. Спектры фотопроводимости четырех образцов NbS₃ при T = 78K в высоком приложенном электрическом поле; заметен пик при 0.6 эВ. На вставке показана зависимость амплитуды пика от электрического поля для образца #2 при 78 K (синяя кривая) и при 100 K (красная кривая).

обще без подсветки только при приложении большого электрического поля (синяя кривая на рис. 4.16).

Зависимость формы спектра в области энергий меньших 1 эВ от подсветки является нетривиальной. А именно, с увеличением интенсивности подсветки обычное подавление фотопроводимости (вследствие нелинейности фотоотклика при высоких интенсивностях подсветки) становится спектрально-зависимым. Мы наблюдаем два минимума в спектрах фотопроводимости, образующихся при увеличении интенсивности подсветки от $W \sim 0.1$ до $W \sim 1 \text{ мВт/см}^2$: при 0.7 эВ, то есть внутри щели, и при 1.4 эВ, то есть за щелью. Подавление фотопроводимости в этих минимумах в два раза сильнее, чем при остальных энергия фотонов. Появление второго минимума, при 1.4 эВ при включении дополнительной подсветки можно обнаружить на рисунке 4.13, и этот эффект наблюдается во всем температурном диапазоне от 4.2 К до 190 К.

Третьей внутрищелевой особенностью, которую мы наблюдали, являет-

ся особенность, напоминающая пик, расположенная при энергии 0.9 эВ, т.е. близко к краю щели (пик виден на вставке в рис 4.7). Он появляется при температурах выше 70-80 К, и его относительная амплитуда увеличивается с ростом температуры и насыщается при 210-220 К. В большинстве образцов при температуре ниже 170 К амплитуда пика относительно мала, и пик почти сливается с крутым спадом фотопроводимости, соответствующим краю щели. При температурах ниже 150 К амплитуда пика при 0.9 эВ мала для всех образцов, что приводит к появлению ступенеобразной особенности при 0.9 эВ на фоне спада фотопроводимости. С понижением температуры пик слегка смещается в сторону больших энергий, а его амплитуда уменьшается (см. рис. 4.9) и при 78 К вместо пика наблюдается полка вблизи энергии 1 эВ. Пик подавляется, если приложить к образцу продольное электрическое поле порядка 100 В/см, подобно тому, что мы наблюдали в р-ТаЅ 3[123] (см.также раздел 3.3.1) для пика 0.2 эВ, который, по всей видимости, связан с экситоноподобными состояниями.

В образце с наиболее выраженным пиком при 0.9 эВ наблюдался ненулевой фототок при приложенном нулевом напряжении. Для других образцов с более слабыми пиками при 0.9 эВ аналогичного ненулевого сигнала обнаружено не было. В этом образце затенение одного из контактов и изменение знака приложенного напряжения влияло на амплитуду пика при температурах выше 150 К, изменяя ее в 2-3 раза. Мы заключаем, что амплитуда пика 0.9 эВ при высоких температурах зависит от контактных эффектов, таких, как появление барьера Шотки или аналогичной неоднородности, приводящей к пространственному разделению зарядов. В той же экспериментальной конфигурации (геометрии) с затененными контактами никаких изменений амплитуды пика при 0.6 эВ для этого образца не наблюдалось.

При температурах ниже 170 K дополнительная подсветка образца светодиодом приводит к значительному возрастанию амплитуды пика при 0.9 эВ, в то время как при $T=200~{
m K}$ дополнительная подсветка практически не влияет на пик.

4.7. Дополнительные сведения об исследовавшихся образцах ${\rm NbS}_3({\rm I})$

Мы пытались измерить анизотропию образцов в четырехконтактной геометрии методом Монтгомери, в том числе ниже комнатной температуры, однако измеряемые напряжения поперек слоев оказались слишком малыми для точного определения коэффициента анизотропии, поэтому мы не приводим здесь этих даннных. Тем не менее высокая слоистость кристаллов и предварительные оценки, полученные из наших измерений, говорят о высокой анизотропии проводимости, превышающей $\sigma_b/\sigma_{a+c} > 100$.

На рисунке 4.17 представлены зависимость проводимости от температуры для трех из измерявшихся образцов, полученные при напряжении 1 В, которое соответстует линейной области ВАХ (см.вставку). Ход температурных зависимостей совпадает от комнатной температуры до примерно 200 К, при этом энергия активации от комнаты до этой температуры равна примерно $E_{a1}=2500$ К (0.21 эВ), а начиная с 200 К и до 100 К составляет $E_a=3500$ К, соответствуя $2\Delta_{tr}=0.6$ эВ. При этом проводимость с 200 К до 100 К падает на 6 порядков. Для образца #3, однако, наблюдается скорее переход от E_{a1} к $E_{a3}=1900$ К с малым промежуточным участком. Мы предполагаем, что участок с энергией E_{a3} , также наблюдающийся на графике 4.17 для образца #1, связан с возрастанием нелинейности сигнала при низких температурах. Величина $E_a=3500$ К близка к приводимым в литературе данным [109] $E_a=3800$ К и совпадает с началом фотопроводимости на спектрах 4.7.

Типичные вольт-амперные характеристики для двух изучавшихся об-

разцов показаны на вставке на рисунок 4.17. Вольт-амперные характеристики нелинейны: линейная зависимость исчезает в поле $E > E_1 \sim 10~{\rm B/cm}$, при этом характерная величина E_1 спадает с понижением температуры. При температурах $T \lesssim 100~{\rm K}$ вольт-амперные характеристики демонстрируют степенные зависимости $I \sim E^\beta$ где $\beta \sim 2$ для $E_1 < E < E_2$ и $\beta \sim 4$ $E \gtrsim E_2 \approx 100~{\rm B/cm}$. В принципе, такое поведение может быть следствием движения ВЗП, а также следствием инжекции носителей тока. При этом следует отметить, что степень $\beta \approx 4$ слишком велика для известных моделей инжекции, в то время как $\beta = 2$ хорошо известна и соответствует различным случаям инжекции в обычных полупроводниках [99].

Нами также проводилось исследование зависимости сопротивления от температуры при нагреве образцов фазы I выше комнатной температуры. Некоторые образцы были изготовлены из половины кристаллов, вторая половина которых использовалась для получения дифрактограмм (см. раздел 4.7.1). Характерные размеры образца составляли 4 мм× 20 мкм × 100 мкм. Удельное сопротивление при комнатной температуре этих образцов (с контактами из серебряной пасты) оказалось очень велико: 500 Ом·см. Все измерения проводились с использованием четырехконтактной методики. Во время нагрева образец находился в гелиевой атмосфере.

Для всех образцов наблюдалось увеличение проводимости и изменение наклона зависимости R(T) при достижении 67 °C (340 K), типичная зависимость проводимости от температуры приведена на рис. 4.19. Энергия активации при этом меняется примерно в 2 раза: с 2500 K при температурах 200-340 K до 1800 K при T>340 K. Степень проявленности этого изменения варьируется от образца к образцу. Наиболее выраженное изменение наблюдалось для образца #5 и очень напоминает наблюдавшийся Вангом и другими переход в фазе II [102].

Мы также изучили химический состав поверхности образцов до и по-

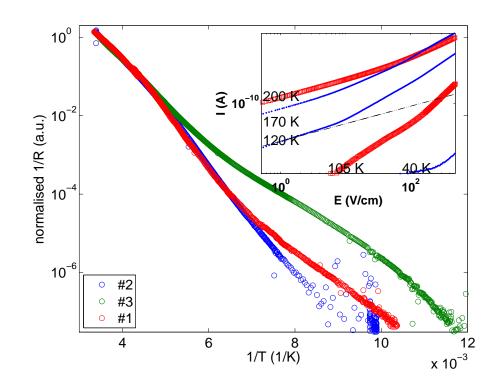


Рис. 4.17. Температурная зависимость проводимости $NbS_3(I)$ для трех образцов, нормированная при 300 К. На вставке показаны ВАХ образцов #1 и #2, пунктирная линия соответствует закону Ома.

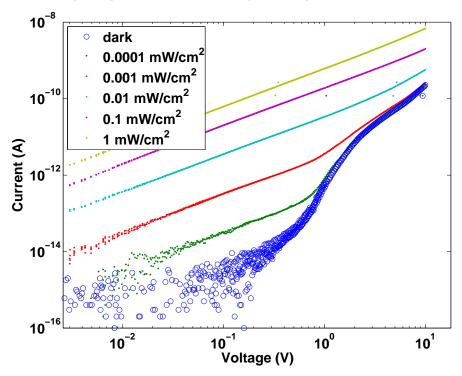


Рис. 4.18. Изменение ВАХ при увеличении интенсивности подсветки.

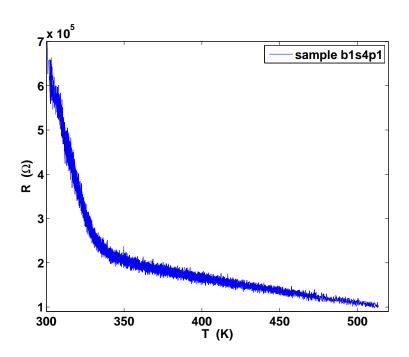


Рис. 4.19. Температурная зависимость проводимости образца #5 для температур выше комнатной

сле нагрева при помощи энергодисперсионного рентгено-спектрального микроанализа, при этом мы исследовали относительное изменение стехиометрии поверхности. Мы сравнили свежеизготовленный образец, образец, нагревавшийся до 520 К (250 °C) и до 620 К (350 °C). Мы не обнаружили никаких изменений в стехиометрии поверхности, с точностью до 1 атомного процента. Исследования на электронном микроскопе показали улучшение гладкости поверхности нагревавшихся образцов, по всей видимости связанное с испарением серных капель с поверхности или улетучиванием осажденных на поверхность примесных атомов.

4.7.1. Данные рентгеностуктурного анализа

Поскольку к моменту начала исследования не существовала единого мнения по поводу класса соединений, к которому следует отнести $NbS_3(I)$, мы проверили тестовые исследования 6 образцов NbS_3 с целью поиска возможных следов примесей фазы II или сверхструктуры, соответствующей волне зарядовой плотности, при температурах выше комнатной. Для фазы $NbS_3(II)$ в

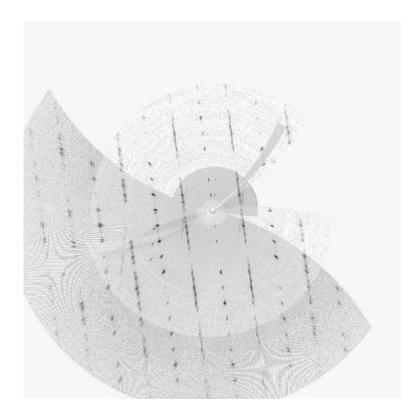


Рис. 4.20. Дифрактограмма образца bs6, плоскости дифракции $h0l, T = 375 \ K$

дифракционной рентгенограмме наблюдаются признаки несоизмеримой с решеткой сверхструктуры — дублетная структура с волновым вектором, близким к 1/3 обратной решетки [131], исчезающие при нагреве кристаллов до 350 K, как обнаружили Ванг и другие [102].

Исследование проводилось автором и О. Lenaud на диффрактометре карраССD фирмы Brucker в Институте Нееля в Гренобле под руководством Пьера Монсо. Для изготовления образца выбирался достаточно крупный кристалл фазы I с гладкой поверхностью и без видимых дефектов, который приклеивался быстросохнущим клеем типа БФ к стеклянной трубке диаметром 2-3 мм снаружи или вставлялся внутрь капилляра, если образец был слишком тонкий. Ось наибольшей проводимости кристаллов NbS₃ практически совпадала с осью трубки, отличаясь лишь на несколько градусов. Трубка вставлялась в гониометрический держатель так, чтобы конец кристалла отступал от края держателя примерно на 1 мм. Таким образом исследуемая длина образ-

цов была примерно одинакова, типичная длина кристаллов составляла около 2 мм, поперечные размеры составляли примерно 5 мкм× 30 мкм.

Изображения, получаемые на данном дифрактометре, представляют собой неискаженные изображения узлов обратной решетки, перпендикулярных выбранной оси вращения кристалла с держателем, например, при съемке вокруг произвольно выбранной оси d - плоскостей (hkn). Во время всех экспериментов образец находился в камере, через которую пропускался поток газообразного азота. Мы получили рентгенограммы при нескольких температурах - комнатной, 345 K, 375 K, 105 K.

Мы не обнаружили структуры, подобной наблюдаемой для фазы II в рентгенограммах кристаллов фазы I, однако наблюдали чередующиеся диффузные отрезки(линии) в рентгенограммах зон (h0l) и (1kl), проходящие через решеточные рефлексы в обратном пространстве и параллельны направлению **c***в обратном пространстве. Эти диффузные линии соответствуют двумерным дефектам — дефектам упаковки, а именно, сдвигу на вектор **0.46a**+**c** в плоскости, перпендикулярной оси **c*** [105]. Связь между колоннами Nb-S в плоскостях очень слабая и осуществляется за счет механизма Ван-дер-Ваальса. Похожие двумерные дефекты наблюдались и в II фазе NbS₃ [132], а также в новом квазиодномерном соединении с нелинейными BAX TiSe₃[133]. При этом в середине диффузных отрезков наблюдались дополнительные рефлексы, для некоторых из кристаллов приводившие к удвоению периода вдоль направления **c**. Такое удвоение периода решетки может означать, что дефекты сдвига организованы в структуру, подобную доменной.

При повышении температуры выше 340 K мы обнаружили сдвиг дополнительных рефлексов на величину порядка 10% от размеров элементарной ячейки вдоль оси b, c образованием "зигзагообразной структуры". Данные для 375 K представлены на рис. 4.20. При 340 K величина сдвига несколько меньше, но все еще заметна. Область температур 340-375 K близка к 350

К, при которых наблюдается увеличение проводимости и изменение наклона температурной активации для наших кристаллов (см.предыдущий раздел) и переход в металлическое состояние для кристаллов фазы (II) [102]. Таким образом, причина увеличения проводимости кристаллов NbS₃(I) может заключаться в структурном переходе квазидоменной структуры.

4.8. Выводы

- 1) Была определена величина прямой оптической щели 2Δ в NbS₃(I) и изучили ее температурную зависимость; при $4.2~\mathrm{K}~2\Delta$ составляет $1.11~\mathrm{sB}$, до 77 К практически не меняется, с дальнейшим повышением температуры до 210 К уменьшается до $0.8~\mathrm{sB}$. Величина щели при $4.2~\mathrm{K}$ хорошо согласуется с другими исследованиями, в том числе с теоретическими расчетами и подтверждает применимость метода для исследования пайерлсовской щели в квазиодномерных соединениях с ВЗП.
- 2) В NbS₃(I) обнаружены внутрищелевые состояния, зависящие от электрического поля и дополнительной подсветки, близкие по своим свойствам к наблюдавшимся в p-TaS₃. Это пики фотопроводимости при энергиях 0.6 эВ и 0.9 эВ и спадающий экспоненциально хвост фотопроводимости при энергии фотонов меньше 2Δ . Пик 0.6 эВ расположен при энергии $\hbar\omega_0 \approx \Delta$ и появляется только при приложении к образцу электрического поля $E > E_{th}(T)$, что говорит о его солитонной природе.

Заключение

В проделанной экспериментальной работе изучались спектры фотопроводимости квазиодномерных соединений с волной зарядовой плотности р- TaS_3 , $K_{0.3}MoO_3$ и квазиодномерного полупроводника $NbS_3(I)$ в широком диапазоне температур, и в зависимости от приложенного электрического поля и дополнительной подсветки. Целью работы являлось исследование спектра возбуждений квазиодномерных соединений с пайерлсовской щелью методом фотоэлектрической спектроскопии в области энергий вблизи края щели.

Основными задачами являлись:

- 1) Определение величины пайерлсовской щели в квазиодномерных соединениях с волной зарядовой плотности р- TaS_3 и $K_{0.3}MoO_3$ методом фотоэлектрической спектроскопии при температурах много меньших температуры перехода T_P .
- 2) Поиск внутрищелевых состояний, в особенности, образующихся вследствие коллективных взаимодействий, в квазиодномерных проводниках p-TaS $_3$, $K_{0.3}$ MoO $_3$ и квазиодномерного полупроводника NbS $_3$ (I).

В работе были получены следующие результаты:

- 1) Величина прямой оптической щели в ромбическом TaS_3 при температурах ниже 40 K составляет от 0.2 до 0.25 эВ, в зависимости от качества образца, размытие щели в области 0.2-0.25 эВ описывается флуктуационной теорией [39].
- 2) Сигнал фотопроводимости в p-TaS₃ наблюдается, начиная с энергий фотонов 0.15 ± 0.015 эВ, что близко к энергии активации продольной проводимости. Ведение примесей приводит к увеличению фотопроводимости в области 0.15-0.25 эВ, которое мы объясняем появлением континуума примесных состояний, согласно с теорией [56]. При увеличении концентрации примесей номинально чистого образца на величину порядка $\delta n_0 \approx 10^{-4}$ на атом

- $(10^{-2} \text{ aт.}\%)$ наблюдается размытие края фотопроводимости на величину порядка 50 мэB.
- 3) В номинально чистых образцах р-TaS₃ при поляризации излучения вдоль направления наибольшей проводимости наблюдаются пики фотопроводимости, амплитуда которых изменяется под действием малого электрического поля и дополнительной подсветки, что свидетельствует о коллективном механизме образования внутрищелевых состояний, связанных с пиками.
- 4) Методом фотоэлектрической спектроскопии определена величина щели в голубой бронзе $K_{0.3}\mathrm{MoO_3}$ при 20 К $2\Delta=0.11$ эВ. Эта величина хорошо согласуется с другими исследованиями и подтверждает применимость метода для исследования пайерлсовской щели в квазиодномерных соединениях с ВЗП. Превосходное совпадение спектров фотопроводимости голубой бронзы для разных образцов, в отличие от p-TaS₃, свидетельствует о более высоком качестве образцов $K_{0.3}\mathrm{MoO_3}$.
- 5) Методом фотоэлектрической спектроскопии определена величина прямой оптической щели 2Δ в NbS₃(I);изучена ее температурная зависимость; при $4.2 \text{ K } 2\Delta$ составляет 1.11 эВ, до 77 К практически не меняется, с дальнейшим повышением температуры до $210 \text{ K } 2\Delta$ уменьшается до 0.8 эВ. Величина щели при 4.2 K хорошо согласуется с другими исследованиями, в том числе с теоретическими расчетами [16] и подтверждает применимость метода для исследования пайерлсовской щели в квазиодномерных соединениях с ВЗП.
- 6) В спектрах фотопроводимости NbS₃(I) наблюдаются пики фотопроводимости при энергиях 0.6 эВ и 0.9 эВ и спадающий экспоненциально хвост фотопроводимости при энергии фотонов меньше 2Δ , зависящие от электрического поля и дополнительной подсветки. Пики соответствуют внутрищелевым состояниям, образованным по коллективному механизму и близким по свойствам к внутрищелевым состояниям, наблюдавшимся в р-ТаS₃. Пик 0.6 эВ расположен вблизи энергии $\hbar\omega_0 \approx \Delta$, предсказываемой для солитон-

ных уровней и наблюдается только при приложении к образцу электрического поля $E > E_{th}(T)$.

Некоторые вопросы, возникшие в ходе исследований, остаются открытыми. Так, модель с модуляцией величины щели в импульсном пространстве хорошо описывает спектры всех трех изучавшихся соединений и позволяет идентифицировать наблюдавшиеся особенности спектров при энергиях $\hbar\omega > 2\Delta$ как особенности Ван Хова. Это ставит вопрос об экспериментах, способных подтвердить модуляцию величины щели в импульсном, а следовательно, и в прямом пространстве для данных соединений и квазиодномерных проводников в целом. Физические причины модуляции величины щели связаны с разной скоростью Ферми элетронов на разных цепочках, входящих в элементарную ячейку. Подтверждение этой гипотезы позволило бы развить новые теоретические подходы к описанию исследовавшихся соединений. Вопрос о том, связаны ли наблюдаемая хорошая воспроизводимость спектров фотопроводимости $K_{0.3}{\rm MoO_3}$ и ${\rm NbS_3}(I)$ для разных образцов, а также большие значения параметров модуляции щели в поперечном направлении $\varepsilon_1 \sim \Delta$ и $\varepsilon_2 \sim \Delta$ с большей двумерностью структуры этих материалов по сравнению с ТаЅ3 также требует отдельного исследования.

Но, конечно, наиболее интересным является вопрос о происхождении внутрищелевых состояний в TaS₃ и NbS₃(I), вклад в фотопроводимость от которых зависит от приложенного поля и дополнительной подсветки нелинейным образом. Пики при энергиях ближе к середине щели по своим свойствам близки к солитонным состояниям, наблюдавшимся в органических одномерных соединениях [46], пики на краю щели поднимают вопрос о существовании экситонных состояний в квазиодномерных неорганических проводниках с ВЗП и зарядовым упорядочением. Малая величина электрического поля, приводящая к изменениям спектров, соответствует большим расстояниям порядка длины когерентности амплитуды ВЗП. Идентификация наблюдавших-

ся пиков позволила бы сделать новый шаг в понимании квазиодномерных систем с волнами зарядовой плотности.

Я глубоко признательна своему научному руководителю Сергею Владимировичу Зайцеву-Зотову за возможность реализовать себя в области фундаментальной физики, за творческий подход к постановке задачи, ценную критику и дискуссии, внесшие определяющий вклад в мое развитие как научного сотрудника, и за поддержку на всех этапах работы.

Я благодарна Леониду Артуровичу Опенову и коллективу кафедры 38 сверхпроводимости и наноструктур МИФИ за поддержку интереса к физике конденсированного состояния и силы, вложенные в мое образование в этой области. Я признательна коллегам С. Г. Зыбцеву и В. Е. Минаковой за помощь в изготовлении образцов и ценные обсуждения, С. Н. Артеменко и В. Я. Покровскому за поддержку и ценные обсуждения, R. Е. Thorne and F. Levy за предоставленные высококачественные кристаллы. Я благодарна всем коллегам, работа или обсуждение с которыми внесли непосредственный вклад в данную работу, лично Пьеру Монсо и сотрудникам института Neel в Гренобле а также Б. Якимову, Е. Дижуру, J. Marcus, О. Lenaud, К. Віljakovic, D. Dominko, D. Staresinic, D. Mihailovic, T. Mertelj, Виктору Кабанову, а особенно Наташе Кировой и Сергею Бразовскому за интерес к работе, ценные обсуждения, и предоставленные возможности поделиться своими результатами с сообществом.

Мне приятно поблагодарить своих друзей и коллег Д. Васильева, Н. Амбург, Я. Герасименко, Т. Криштоп и В. Криштоп и Я. Родионова а также А. Павлова за поддержку на всех этапах работы и ценные обсуждения. Я благодарна своим коллегам по лаборатории А. Одобеско, А. Дмитриеву, А. Майзлаху, И. Дюжикову и Н. Федорову за поддержку и превосходную творческую атмосферу в лаборатории. Я благодарна сотрудникам ИРЭ РАН и особенно О. Н. Дьячковой за помощь в решении организационных вопросов, связанных с защитой диссертации.

Литература

- R. E. Peierls Quantum Theory of Solids // Oxford University, Oxford. 1955. — P. 108.
- [2] M. Grioni et. al. Electronic Instability in a Zero-Gap Semiconductor: The Charge-Density Wave in (TaSe4)2I. // Phys. Rev. Lett. 2013. V. 110. P. 236401.
- [3] L. P. Gor'kov and G. Grüner Charge density waves in solids // Modern Problems in Condensed Matter 1989. Vol.25.
- [4] Pierre Monceau Electronic crystals: an experimental overview // Advances in Physics. -2012. Vol.61.4 P. 325-581
- [5] С. М. Рывкин Фотоэлектрические явления в полупроводниках // Издательство ФИЗМАТГИЗ, Москва. 1963.
- [6] T.S. Moss, G.J. Burrel, B. Ells Semiconductor Opto-Electronics // Buttlerworth & Co (Publishing) Ltd. — 1973.
- [7] S. L. Herr, G. Minton, and J.W. Brill Bolometric measurement of the charge-density-wave gap in TaS₃ // Phys. Rev. B. 1986. V. 33 P. 8851
- [8] С. А. Бразовский Электронные возбуждения в состоянии Пайерлса-Фрелиха // Письма в ЖЭТФ. 1978. Т. 28, Вып.10. С. 656-660.
- [9] S. Etemad, T. Mitani, M. Ozaki, T.C. Chung, A.J. Heeger and A.G. MacDiarmid Photoconductivity in polyacetylene. // Solid State Communications. — 1981. — Vol. 40 — P. 75-79.
- [10] Ogawa, N. and Shiraga, A. and Kondo, R. and Kagoshima, S. and Miyano,K. Photocontrol of Dynamic Phase Transition in the Charge-Density

- Wave Material $K_{0.3} \text{MoO}_3$ // Phys. Rev. Lett. 2001. V.87, 25. P. 256401-256403
- [11] С.В. Зайцев-Зотов, В.Е. Минакова Фотопроводимость и управляемые светом коллективные эффекты в пайерслсовском проводнике ${\rm TaS_3}$ // Письма в ЖЭТФ. 2004. Т. 79. С. 680.
- [12] G. Grüner Density Waves in Solids // Addison-Wesley 1994.
- [13] N. P. Ong et al. Microwave and Hall Studies of TaS_3 and NbS_3 // Molecular Crystals and Liquid Crystals. 1982. V.81:1. P. 41-47
- [14] A. Zettl, C.M. Jackson, A. Janossy, G. Grüner, A. Jakobsen and A.H. Thompson Charge density wave transition and nonlinear conductivity in NbS₃ // Sol. State Commun. 1982. V. 43. P. 345.
- [15] M. E. Itkis, F. Ya. Nad', S. V. Zaitsev-Zotov and F. Lévy Electrical and optical properties of quasi-one-dimensional conductor NbS₃ with two-fold commensurate superstructure // Solid state communication. — 1989. — V.71, 11. — P. 895-898
- [16] D. W. Bullett, Electronic structure and properties of NbS₃ and Nb₃S₄ // Journal of the solid state chemistry. 1980. V. 33. P. 13-16
- [17] Z. Dai, C. G. Slough and R. V. Coleman Charge-density-wave modifications in NbSe₃ produced by Fe and Co doping // Phys. Rev. B. 1992. V 48. P. 9469.
- [18] Yu. I. Latyshev, P. Monceau, S. Brazovskii et al. Subgap collective tunneling and its staircase structure in charge density waves // Phys. Rev. Lett. 2006. Mar. Vol. 96. P. 116402.

- [19] Degiorgi L., Grüner G. Pinned and bound collective-mode state in charge-density-wave condensates // Phys. Rev. B. 1991. Oct. Vol. 44. P. 7820-7827.
- [20] Nakahara, J., Taguchi, T., Araki, T., Ido, M. Effect of charge density waves on reflectance spectra of TaS3 and NbSe3 // Physical Society of Japan Journal — 1985 — Vol. 54 — P. 2741-2746
- [21] W.N Creager, P.L Richards, A Zettl Far infrared reflectance and conductivity of TaS3: Completion of the AC response spectrum // Synthetic Metals. — 1991. — Vol. 43. — P. 3867-3870.
- [22] M. E. Itkis and F.Ya. Nad' Temperature dependent form of the peierls gap edge in quasi-one-dimensional conductors. // Synthetic Metals 1989 V. 29 P. F421-F426
- [23] Comes, E. et al., Inelastic Neutron Scattering Study of the $2k_F$ Instability in $K_2Pt(CN)_4Br_{0.30} \cdot xD_2O$ (KCP) // Phys. Status Solidi B. 1975. V. 71 P. 171–178.
- [24] Jixia Dai et al. Microscopic evidence for strong periodic lattice distortion in two-dimensional charge-density wave systems // Phys. Rev. B. 2014.
 V.89:16. P. 165140
- [25] Sinchenko, A. A., Grigoriev, P. D., Lejay, P. and Monceau, P. Spontaneous Breaking of Isotropy Observed in the Electronic Transport of Rare-Earth Tritellurides // Phys. Rev. Lett. 2014. V. 112:3 P. 036601
- [26] Z.-X. Shen et. al. Fermi surface evolution across multiple charge density wave transitions in ErTe₃ // Phys. Rev. B. -2010.- V. 81-P. 073102

- [27] С.В. Зайцев-Зотов, Размерные эффекты в квазиодномерных проводниках с волной зарядовой плотности. // УФН. — 2004. — Т. 174. С. 585—608.
- [28] C. Schlenker Physics and Chemistry of Low-Dimensional Inorganic Conductors. // Springer Science aBusiness Media 1996.
- [29] S. N. Artemenko Impurity-induced stabilization of Luttinger liquid in quasi-one-dimensional conductors // Письма в ЖЭТФ 2004 Т.79:6 С. 335-339
- [30] T. Giamarchi Quantum Physics in One Dimension. // Clarendon Press, Oxford. 2003.
- [31] K. C. Ung, S. Mazumdar, and D. Toussaint Metal-Insulator and Insulator-Insulator Transitions in the Quarter-Filled Band Organic Conductors. // Phys. Rev. Lett. 1994. V. 73:19 P. 2603.
- [32] Baeriswyl D. and Maki K. Electron correlations in polyacetylene // Phys. Rev. B. 1985. —V. 31:10. P. 6633–6642
- [33] Kivelson, S. and Su, W.-P. and Schrieffer, J. R. and Heeger, A. J. Missing bond-charge repulsion in the extended Hubbard model: Effects in polyacetylene // Phys. Rev. Lett. 1987. V. 58:18 P. 1899–1902.
- [34] S. Kivelson and D. E. Heim Hubbard versus Peierls and the Su-Schrieffer-Heeger model of polyacetylene. // Phys. Rev. B. 1982. V. 26 P. 4278.
- [35] D. Moses, J. Wang, A.J. Heeger, N. Kirova, S. Brazovski Singlet Exciton Binding Energy in polyphenylene vinilene. // Proc. Natl. Acad. Sci. – 2001. — V. 98(24) — P. 13496.
- [36] F.Ya. Nad, M.E.Itkis Energy spectrum of excitations in quasi-one-dimensional conductors with a charge-density wave. // Journal of

- Experimental and Theoretical Physics Letters. 1996. V. 63(4). P. 262-266
- [37] М.Е. Иткис, Φ .Я. Надь Край фундаментального поглощения пайерлсовского диэлектрика орторомбического трисульфида тантала // Письма в ЖЭТ Φ . 1984. Т. 39 С. 373.
- [38] S. L. Herr and J.W. Brill Enhanced bolometric response of TaS_3 in the non-Ohmic regime // Phys. Rev. B. -1983. V. 27. P. 3916.
- [39] K. Kim, R.H. McKenzie and J.W. Wilkins Universal Subgap Optical Conductivity in Quasi-One-Dimensional Peierls Systems // Phys. Rev. Lett. $-1993.-V.\ 71-P.\ 4015-4018$
- [40] R.H. McKenzie and J.W. Wilkins Effect of Lattice Zero-Point Motion on Electronic Properties of the Peierls-Fröhlich State. // Phys. Rev. Lett. 1992.-V. 69.-P. 1085-1088.
- [41] M.J. Rice, S. Strässler Theory of the soft phonon mode and dielectric constant below the Peierls transition temperature. // Solid State Communications. 1973. V. 13:12. P. 1931–1933.
- [42] P.A. Lee, T.M. Rice and P.W. Anderson Fluctuation Effects at a Peierls Transition. // Phys. Rev. Lett. 1973. V. 31.7 P. 462.
- [43] D. Mihailovic et.al. Coherent dynamics of macroscopic electronic order through a symmetry breaking transition. // Nature Physics. — 2010. — V. 6. – P. 681.
- [44] S. A. Brazovskil, I. E. Dzyaloshinski, and S. P. Obukhov. The effect of umklapp processes on the dynamics of the Peierls-Frohlich state. // Zh. Eksp. Teor. Fiz. — 1976. — V. 72 — P. 1550-1558.

- [45] S. A. Brazovskii, N. N. Kirova Excitons, polarons, and bipolarons in conducting polymers.// JETP letters. 1981. V. 33. P. 4.
- [46] A. Heeger et. al. Solitons in conducting polymers. // Reviews of Modern Physics. 1988. V. 60:3. P. 781-851.
- [47] Y. Suzumura Electronic density of states for Quasi-One-Dimensional Charge
 Density Waves. // Journal of Physical Society of Japan. 1987. V. 56:7
 P. 2494.
- [48] K. Yamaji Semimetallic SDW state in Quasi One-Dimensional Conductors. // J. Phys. Soc. Jpn. 1982. , V. 51. P. 2787.
- [49] X. Huang and K. Maki Imperfect nesting and density of states in charge and spin density waves // Synth. Met. 1991. V. 41-43. P. 3827.
- [50] H. R. Zeller et al. Fluctuations and order in a one-dimensional system. A spectroscopical study of the Peierls transition in $K_2Pt(CN)_4Br_{0.3} \cdot 3(H_2O)$. // Phys. Rev. B. 1975. V. 12 P. 219.
- [51] Serguei Brazovskii and Thomas Nattermann Pinning and sliding of driven elastic systems: from domain walls to charge density waves. // Advances in Physics.— 2004.-V. 53:2.-P. 177-252
- [52] D. M. Hoffman Conversion of cis-polyacetylene to trans-polyacetylene during doping. // Phys. Rev. B. 1983. V. 27.2 P. 1453.
- [53] S.A. Brazovskii Self-localized excitations in the Peierls-Fröhlich state.// Zh. Exp. Teor. Fiz. 1980. V. 78 P. 677.
- [54] S. A. Brazovskii, S. I. Matveenko Pseudogaps in incommensurate charge density waves and one-dimensional semiconductors. // Journal of Experimental and Theoretical Physics. 2003. V. 96. P. 555-563

- [55] S. Brazovskii, C. Brun, Z.-Z. Wang, and P. Monceau Scanning-Tunneling Microscope Imaging of Single-Electron Solitons in a Material with Incommensurate Charge-Density Waves. // Phys. Rev. Lett. — 2012. — V. 108. — P. 096801
- [56] I. Tüttö and A. Zawadowski Quantum theory of local perturbation of the charge-density wave by an impurity: Friedel oscillations.// Phys. Rev. B. — 1985. V. 32 — P. 2449.
- [57] S. E. Barnes and A. Zawadowski Theory of Josephson-Type Oscillations in a Moving Charge-Density Wave. // Phys. Rev. Lett. — 1983. — V. 51. — P. 1003
- [58] R. E. Thorne Effect of crystal-growth conditions on charge-density-wave pinning in NbSe₃.// Phys. Rev. B. 1992. V. 45 P. 5804.
- [59] F. Lévy and H. Berger Single Crystals of Transition Metal Trichalcogenides. // Journal of Crystal Growth — 1983. — V. 61 p. 61–68
- [60] M. Grioni et. al. Recent ARPES experiments on quasi-1D bulk materials and artificial structures. // J. Phys.: Condens. Matter. 2009. V. 21 P. 023201.
- [61] L. Perfetti et al. Spectroscopic Indications of Polaronic Carriers in the Quasi-One-Dimensional Conductor (TaSe₄)₂I.// Phys. Rev. B. 2002. V. 66 P. 075107.
- [62] X. Zhou et al. Charge-density wave and one-dimensional electronic spectra in blue bronze: Incoherent solitons and spin-charge separation. // Phys. Rev. B. -2014. V. 89-P. 201116

- [63] Ю. И. Латышев, Я. С. Савицкая, В. В. Фролов Эффект Холла при пайерлсовском переходе в ${\rm TaS_3.}//$ Письма в ЖЭТФ. 1983. Т.38. С. 446.
- [64] S. N. Artemenko, V. Ya. Pokrovskii, and S. V. Zaitsev-Zotov Electron-hole balance and semiconductor properties of quasi-one-dimensional charge density-wave conductors. // Zh. Eksp. Teor. Fiz. 1996. V. 110 P. 1069-1080.
- [65] D. V. Borodin, S. V. Zaitsev-Zotov, and F. Ya. Nad' Coherence of a charge density wave and phase slip in small samples of a quasi-one-dimensional conductor TaS3. //Zh. Eksp. Teor. Fiz. — 1987. — V. 93 — P. 1394-1409.
- [66] A. Zettl and G. Grüner Charge-density-wave transport in orthorhombic TaS3. III. Narrow-band "noise". // Phys. Rev. B. 1983. V. 28 P. 2091
- [67] V. B. Preobrazhensky, A. N. Taldenkov, I. Ju. Kalnova The conductivity of orthorhombic TaS3 under uniaxial strain .// Charge Density Waves in Solids, Lecture Notes in Physics. — 1985. — V. 217. — P. 357-360
- [68] Bjerkelund E. and Kjekshus A. On the Properties of TaS3, TaSe3 and TaTe4. // Z. anorg. allg. Chem. — 1964. — V. 328 P. 235–242
- [69] C. Roucau et. al. Electron Diffraction and Resistivity of TaS₃. // Phys. stat. sol. (a) 1980. V. 68. P. 483.
- [70] J. Rouxel and C. Schlenker Structural Electronic Properties and Design of Quasi-One-Dimensional Inorganic Conductors. // L.P. Gor'kov and G. Grüner (Eds.) Charge Density Waves in Solids, Modern Problems in Condensed Matter Sciences. Amsterdam. — 1989. V. 25— P. 15.

- [71] S. Sugai Effect of the charge-density-wave gap on the Raman spectra in orthorhombic TaS3. // Phys. Rev. B. 1984. V. 29. P. 953
- [72] James M. Corbett Transmission Electron Microscopy of CDW-Modulated Transition Metal Chalcogenides.// Physics and Chemistry of Materials with Low-Dimensional Structures. 1999. V. 22 P. 121-151.
- [73] P. Darancet et.al. Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides. // Phys. Rev. B. -2014.-V.~90.-P.~045134.
- [74] F. Jellinek The system Tantalum-Sulphur. // Journal of Less Commun Metals. 1962. V. 4. P. 15
- [75] Иткис М. Е. Особенности энергетического спектра и электропроводность квазиодномерного проводника TaS₃ с волной зарядовой плотности: диссертация / Москва. 1989.
- [76] Field-induced discommensuration in charge density waves in o-TaS3 / Katsuhiko Inagaki, Masakatsu Tsubota, Kazuki Higashiyama et al. // Journal of the Physical Society of Japan. — 2008. — Vol. 77, no. 9. — P. 093708.
- [77] J. Dumas, J.C. Lasjaunias, K. Biljakovic, M. Miljak, H. Berger, F. Levy EPR study of the low temperature charge density wave state of o-TaS3 // Solid State Communications 2004 —V. 132 P.661–665.
- [78] В.Я. Покровский, С.Г. Зыбцев, М.В. Никитин, И.Г. Горлова, В.Ф. Насретдинова, С.В. Зайцев-Зотов. Высокочастотные, 'квантовые' и электромеханические эффекты в квазиодномерных кристаллах с волной зарядовой плотности. // Успехи физических наук. 2013. Т.183. С. 33.

- [79] A.W. Higgs and J.C. Gill Hysteresis in the electrical properties of orthorhombic tantalum trisulphide: Evidence for an incommensurate-commensurate charge-density wave transition? //Solid State Commun. 1983 V.47 P.737.
- [80] Peierls transition in TaS3 / T. Sambongi, K. Tsutsumi, Y. Shiozaki et al. // Solid State Communications. — 1977. — Vol. 22, no. 12. — P. 729 – 731.
- [81] Linear and nonlinear optical properties of one-dimensional mott insulators consisting of Nihalogen chain and CuO-chain compounds / M. Ono, K. Miura, A. Maeda et al. // Phys. Rev. B. — 2004. — Aug. — Vol. 70. — P. 085101.
- [82] Zaitsev-Zotov S. V., Minakova V. E. Evidence of collective charge transport in the ohmic regime of o-TaS3 in the charge-density-wave state by a photoconduction study // Phys. Rev. Lett. — 2006. — Dec. — Vol. 97. — P. 266404.
- [83] G. Minton, and J.W. Brill Search for photoindnced absorption in charge-density-wave materials with non-half-filled bands // Phys. Rev. B. 1992. Apr. Vol. 45. No.15 P. 8256.
- [84] Fogle W., Perlstein J. H. Semiconductor-to-metal transition in the blue potassium molybdenum bronze, $K_{0.30}MoO_3$, example of a possible excitonic insulator // Phys. Rev. B. 1972. Aug. Vol. 6. P. 1402-1412.
- [85] The blue bronze K0:3MoO3: A new one-dimensional conductor / G. Travaglini, P. Wachter, J. Marcus, C. Schlenker // Solid State Communications. — 1981. — Vol. 37, no. 7. — P. 599–603.
- [86] Claire Schlenker, Jean Dumas Charge density wave properties of

- molybdenum bronzes.// Int. Journal of Modern Physics B. — 1993. — V
. 7 — P. 4045.
- [87] M. Sato, H. Fujishita, S. Sato and S Hoshino Neutron inelastic scattering and x-ray structural study of the charge-density-wave state in K_{0.3}MoO₃. // J. Phys. C: Solid State Phys. — 1985. — V. 18 — P. 2602-2614.
- [88] J. P. Pouget, S. Kagoshima, C. Schlenker and J. Marcus Evidence for a Peierls transition in the blue bronzes $K_{0.3}MoO_3$ and $Rb_{0.3}MoO_3$. // J. Physique LETTRES. 1983. V. 44 P. L-113-L-120
- [89] M. Hauser, B. Plapp, and G. Mozurkewich Thermal expansion associated with the charge-density wave in $K_{0.3}MoO_3$. // Phys. Rev. B. 1991. V. 43 P. 8105
- [90] J.P. Pouget, C. Noguera, A.H. Moudden and R. Moret Structural study of the charge-density-wave phase transition of the blue bronze : $K_{0.3}MoO_3$. // Journal de Physique. 1985 V. 46 P. 1731.
- [91] Whangbo M. H., Schneemeyer L. F. Band electronic structure of the molybdenum blue bronze A0:30MoO3 (A = K, Rb) // Inorganic Chemistry. 1986. Vol. 25, no. 14. P. 2424-2429.
- [92] Mozos J.-L., Ordejón P., Canadell E. First-principles study of the blue bronze K0:30MoO3 // Phys. Rev. B. 2002. Jun. Vol. 65. P. 233105.
- [93] Travaglini G., Morke I., Wachter P. CDW evidence in one-dimensional K0:30MoO3 by means of raman scattering // Solid State Communications. 1983. Vol. 45, no. 3. P. 289-292.

- [94] Veuillen J. Y., Cinti R. C., Nemeh E. A. K. Direct determination of fermi wave vector in the blue bronze by means of angle-resolved photoemission spectroscopy // EPL (Europhysics Letters). 1987. Vol. 3, no. 3. P. 355.
- [95] Angle-resolved photoemission study of K0:30MoO3 : direct observation of temperature dependent fermi surface across the peierls transition / H Ando, T Yokoya, K Ishizaka et al. // Journal of Physics: Condensed Matter. — 2005. — Vol. 17, no. 32. — P. 4935.
- [96] Dardel B. et al. Temperature dependence of the spectral function through the Peierls transition in quasi-one-dimensional compounds. // Europhysics Letters. 1992. V. 19 P. 525
- [97] E. Sandre et al. Giant Molecules in Solid State Chemistry: Using Niobium Trisulfide as an Example // Journal of Chemical Education 1991. V. 68 N. 10 P. 809
- [98] P. Sengupta et. al. Bond-order-wave phase and quantum phase transitions in the one-dimensional extended Hubbard model // Phys. Rev. B 2002 V. 65 P. 155113
- [99] M.A. Lampert and P. Mark Current injection in solids // Academic Press, New York and London 1970.
- [100] A. Zwick et al Correlation between k=0 optical phonons in NbS3 and phonons in ZrS3 // Physica B+C 1981- Vol.105 P 361-365.
- [101] C. Sourrisseau, R. Cavagnat, M. Fouassier and P. Maraval the electronic, vibrational and resonance raman spectra of the layered semlconducting NbS3 compound // Journal of Molecular Structure — 1990 — Vol. 219. P. 183-188

- [102] Z. Z. Wang, P. Monceau, H. Salva, C. Roucau, L. Guemas, and A. Meerschaut Charge-density-wave transport above room temperature in a polytype of NbS3 // Phys. Rev. B 1989 V.40 P.11589
- [103] S.G.Zybtsev, V.Ya.Pokrovskii, V.F. Nasretdinova and S.V. Zaitsev-Zotov Gigahertz-range synchronization at room temperature and other features of charge-density wave transport in the quasi-one-dimensional conductor NbS3 // Applied Physics Letters — 2009 — vol. 94 —
- [104] K. R. Zhdanov et al Structural anisotropy and heat capacity of NbS3 // Phys. Stat. Sol. (a) 1984 V. 83. P. 147
- [105] T. Iwazumi et al. Stacking disorder in NbS3 and ZrX3 (X=S,Se) // Physica B+C 1986 Vol. 143 P. 255-257
- [106] П. Ю, М. Кардона Основы физики полупроводников Пер. с англ. И. И. Решиной. Под ред. Б. П. Захарчени. // М.: ФИЗМАТЛИТ 2002.
- [107] E. Dizhur, M. Il'ina, and S. Zaitzev-Zotov Assumed Peierls transition in NbS3 under pressure // Phys. Status Solidi B 2009 V. 246 No. 3 P.- 500-503.
- [108] M. Izumi et. al. Superconducting Properties in Metallic Phase of NbS3 // Molecular Crystals and Liquid Crystals - 1985 - Vol. 121 - P. 79.
- [109] M. E. Itkis and F. Ya. Nad' Energy band structure of the quasi-onedimensional conductor NbS3 // Synthetic Metals 1991 V. 41-43 P. 3969-3972
- [110] S.V. Zaitsev-Zotov, V.E. Minakova, V.F. Nasretdinova, S.G. Zybtsev Photoconduction in CDW conductors // Physica B — 2012 — V. 407 — P. 1868-1873.

- [111] S.V. Zaitsev-Zotov, V.E. Minakova, V.F. Nasretdinova Charge-density waves physics revealed by photoconduction //doi:10.1016/j.physb.2014.11.064, arXiv:1410.7002
- [112] S.V. Zaitsev-Zotov Transport properties of TaS3 and NbSe3 crystals of nanometer-scale transverse dimensions // Microelectronic Engineering 2003 Vol. 69 P. 549-554
- [113] S.G. Zybtsev, V.Ya. Pokrovskii, V.F. Nasretdinova, S.V. Zaitsev-Zotov Growth, crystal structure and transport properties of quasi one-dimensional conductors NbS3 // Physica B 2012 Vol. 407 P. 1696-1699
- [114] Edward D. Palik Handbook of Optical Constants of Solids.// Academic Press. — 1991.
- [115] J.C. Gill Dislocations and the motion of weakly pinned charge-density waves: Experiments on niobium triselenide containing mobile indium impurities // Phys. Rev. B. 1996. V. 53 P. 15586.
- [116] Минакова В. Е. Влияние света на проводимость квазиодномерного проводника с волной зарядовой плотности ромбического TaS3: диссертация / Москва. 2013.
- [117] V.F. Nasretdinova, E.B. Yakimov, S.V. Zaitsev-Zotov Indium doping-induced change in the photoconduction spectra of o-TaS3 //doi:10.1016/j.physb.2014.11.065, arXiv:1411.0253
- [118] Kogan S. M., Lifshits T. M. Photoelectric spectroscopy. A new method of analysis of impurities in semiconductors // Physica status solidi a 1977 v. 39- p. 1

- [119] I.B. Altfedr, S.V. Zaitsev-Zotov Hexagonal phase with mosaic structure of charge-density waves observed by scanning tunneling microscopy at the surface of a NbSe₃ crystal. // Phys. Rev. B. 1996. V. 54 P. 7694.
- [120] J. S. Brooks et. al. Pressure effects on the electronic structure and low-temperature states in the α -(BEDT-TTF)₂MHg(SCN)₄ organic-conductor family (M=K, Rb, Tl, NH₄) // Phys. Rev. B 1995 Vol. 52 P. 14457
- [121] S. N. Artemenko and A. F. Volkov Energy spectrum of Peierls semiconductors in the two-band model // Zh. Eksp. Teor. Fiz. 1985 V. 89 P. 1757-1764
- [122] Hidefumi Akiyama Review Article: One-dimensional excitons in GaAs quantum wires. // J. Phys.: Condens. Matter 1998. —V. 10 P. 3095-3139
- [123] Насретдинова В.Ф., Зайцев-Зотов С.В. Зависящая от электрического поля энергетическая структура квазиодномерного проводника р-ТаS3.
 // Письма в Журнал экспериментальной и теоретической физики. 2009. Т.89. №10. С. 607.
- [124] Observation of fano resonance in heavily doped p-type silicon at room temperature / A. W. Simonian, A. B. Sproul, Z. Shi, E. Gauja // Phys. Rev. B. — 1995. — Aug. — Vol. 52. — P. 5672-5674.
- [125] Филипс Дж. Оптические спектры твердых тел в области собственного поглощения // Мир, Москва. 1968 .
- [126] N.Kirova, S.Brazovskii Optical and electrooptical absorption in conducting polymers // Thin Solid Films 2002 V.403-404 P. 419-424.

- [127] Н.С. Аверкиев, Д.А. Зайцев, Г.М. Савченко, Р.П. Сейсян "Экситонная" фотопроводимость кристаллов GaAs // Физика и техника полупроводников 2014 том 48 вып. 10
- [128] M. E. Itkis et al. Metal-one-dimensional Peierls semiconductor interface phenomena // J. Phys.: Condens. Matter -1993- V. 5 P. 4631
- [129] A. Hessel and A. A. Oliner A New Theory of Wood's Anomalies on Optical Gratings // Applied Optics 1965 Vol. 4 Issue 10 P. 1275-1297
- [130] Артеменко С. Н. К теории высокочастотных свойств квазиодномерных проводников // Физика низких температур. 1988. Том 14, Выпуск 5- С. 528-531
- [131] Peierls distortion, chain polytypism, and dislocation coupling in NbS3 / T. Cornelissens, G. Van Tendeloo, J. Van Landuyt, S. Amelinckx // physica status solidi (a). — 1978. — Vol. 48, no. 1. — P. K5-K9.
- [132] Prodan et al An approach to the structure of incommensurately modulated NbS3 type II // J. Phys.C: Solid State Phys 1998 Vol. 21 p. 4171
- [133] I.G. Gorlova et al. Nonlinear conductivity of quasi-one-dimensional layered compound TiS3 // Physica B 2012 V. 407 P. 1707-1710.