ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»»

На правах рукописи

HA

ЛУУ ДУК ТХО

ГИБРИДНЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧ ИЗЛУЧЕНИЯ И РАССЕЯНИЯ ТЕЛАМИ С КУСОЧНО-АНАЛИТИЧЕСКОЙ ОБРАЗУЮЩЕЙ

Специальности

01.04.03 – «Радиофизика». 05.12.07 – «Антенны, СВЧ устройства и их технологии».

Диссертация на соискание ученой степени кандидата физико - математических наук

Научный руководитель -

доктор физико-математических наук

Калошин Вадим Анатольевич

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
ГЛАВА 1. РАССЕЯНИЕ НА ЦИЛИНДРИЧЕСКИХ ТЕЛАХ	11
1.1.РАССЕЯНИЕ ПЛОСКОЙ ВОЛНЫ НА ИДЕАЛЬНО-ПРОВОДЯЩІ	ЕЙ
ПЛАСТИНЕ СО СКРУГЛЕННЫМИ КРОМКАМИ	11
1.2.РАССЕЯНИЕ ПЛОСКОЙ ВОЛНЫ НА ЦИЛИНДРЕ С КУСОЧН	[О-
АНАЛИТИЧЕСКОЙ ФОРМОЙ СЕЧЕНИЯ	25
ГЛАВА 2 . РАССЕЯНИЕ НА ТЕЛЕ ВРАЩЕНИЯ С КУСОЧН	[O-
АНАЛИТИЧЕСКОЙ ФОРМОЙ ОБРАЗУЮЩЕЙ	39
2.1.РЕШЕНИЕ ГИБРИДНЫМ МЕТОДОМ С УЧЕТС)М
ВЗАИМОДЕЙСТВИЯ	39
2.2.РЕШЕНИЕ ГИБРИДНЫМ МЕТОДОМ БЕЗ УЧЕТ	ГА
ВЗАИМОДЕЙСТВИЯ	47
2.3. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ	51
ГЛАВА 3. ИЗЛУЧЕНИЕ ОТКРЫТОГО КОНЦА НЕРЕГУЛЯРНО	ГО
ПРЯМОУГОЛЬНОГО ВОЛНОВОДА	63
3.1.ИЗЛУЧЕНИЕ ОТКРЫТОГО КОНЦА НЕРЕГУЛЯРНОГО В	H
ПЛОСКОСТИ ПРЯМОУГОЛЬНОГО ВОЛНОВОДА	63
3.2.ИЗЛУЧЕНИЕ ОТКРЫТОГО КОНЦА НЕРЕГУЛЯРНОГО В	E
ПЛОСКОСТИ ПРЯМОУГОЛЬНОГО ВОЛНОВОДА	68
ГЛАВА 4. ИЗЛУЧЕНИЕ ОТКРЫТОГО КОНЦА НЕРЕГУЛЯРНО	ГО
КРУГЛОГО ВОЛНОВОДА	73
4.1.ИЗЛУЧЕНИЕ МОДЫ Н ₀₁ ИЗ ОТКРЫТОГО КОНІ	ЦА
НЕРЕГУЛЯРНОГО КРУГЛОГОВОЛНОВОДА	73
4.2.ИЗЛУЧЕНИЕ МОДЫ Е ₀₁ ИЗ ОТКРЫТОГО КОНІ	ЦА
НЕРЕГУЛЯРНОГО КРУГЛОГО ВОЛНОВОДА	78
4.3.ИЗЛУЧЕНИЕ МОДЫ Н ₁₁ ИЗ ОТКРЫТОГО КОНІ	ЦА
НЕРЕГУЛЯРНОГО КРУГЛОГО ВОЛНОВОДА	83
ЗАКЛЮЧЕНИЕ	90
СПИСОК ЛИТЕРАТУРЫ	91

ВВЕДЕНИЕ

АКТУАЛЬНОСТЬ ТЕМЫ ДИССЕРТАЦИОННОГО ИССЛЕДОВАНИЯ

Идеально-проводящие тела с кусочно-аналитической формой границы часто используются в качестве моделей в задачах излучения антенн и рассеяния электромагнитных волн на металлических телах. Для решения задач излучения антенн и рассеяния акустических и электромагнитных волн широко применяются прямые численные методы: моментов, конечных элементов и конечных разностей во временной области [1, 2], численно-аналитические методы: разделения переменных [3, 4], Т-матриц [5] и асимптотические методы: Гюйгенса-Френеля-Кирхгофа (ГФК) [3], геометрическая теория дифракции [6], физическая теория дифракции [7] и метод параболического уравнения [8].

В случае, когда характерные размеры задачи большие по сравнению с длиной волны, прямые численные методы требуют большого объема оперативной памяти компьютера. Численно-аналитические методы позволяют уменьшить этот объем, однако имеют ограниченные применения из-за ряда условий их использования. Для решения задачи в этом случае можно эффективно использовать асимптотические методы, в частности, метод ГФК. Если поверхность тела можно разбить на участки, каждый из которых является координатной поверхностью в одной из систем координат, в которых волновое уравнение можно решить методом разделения переменных, для вычисления интеграла Кирхгофа целесообразно применять метод функций Грина [2]. При этом поля на каждом таком участке, как и в приближении ГФК, полагаются равными падающему полю, а затем эти поля и функция Грина представляются в виде рядов по собственным функциям, что облегчает процесс вычисления интеграла Кирхгофа. Однако, если хотя бы один из характерных размеров задачи менее половины длины волны, применение асимптотических методов приводит к серьезным погрешностям. Такая ситуация, в частности, может возникать при излучении открытого конца волновода. Приближение ГФК, использующее при вычислении эквивалентных токов в апертуре поле моды регулярного волновода, дает удовлетворительное описание излучения открытого конца волновода только в узкой угловой области переднего пространства [9]. В случае плавно-нерегулярного волновода для нахождения поля волноводной моды в апертуре можно использовать метод поперечных сечений [10]. Однако при быстром изменении параметров сечения (малом радиусе кривизны стенок) такой подход неприменим.

В последнее время развиваются гибридные методы решения задач излучения и рассеяния электромагнитных волн, основанные, как правило, на разбиении всего объема задачи на ряд объектов или областей, для электродинамического моделирования которых используются различные методы [1, 11 - 19]. Однако, если объекты располагаются на небольшом расстоянии или моделируется единый объект, возникает задача сопряжения используемых методов между собой, которая в общем случае не решена.

Таким образом, развитие новых гибридных методов решения задач излучения и рассеяния электромагнитных волн на идеально-проводящих телах с кусочно-аналитической формой границы является актуальной задачей.

ЦЕЛЬ РАБОТЫ

Целью диссертационной работы является разработка нового гибридного метода решения задач излучения антенн и рассеяния электромагнитных волн на металлических телах, а также его верификация путем применения для решения конкретных задач.

ЗАДАЧИ ИССЛЕДОВАНИЯ

Достижение поставленной цели потребовало решения гибридным методом следующих задач:

1. Рассеяние плоской электромагнитной волны на идеально-проводящем

цилиндре с кусочно- аналитической формой сечения.

- 2. Рассеяние плоской электромагнитной волны на идеально-проводящем осесимметричном теле с кусочно- аналитической формой образующей.
- Излучение открытого конца нерегулярного в Е плоскости прямоугольного волновода.
- Излучение открытого конца нерегулярного в Н плоскости прямоугольного волновода.
- 5. Излучение открытого конца нерегулярного круглого волновода.

МЕТОДЫ ИССЛЕДОВАНИЯ

В работе использованы:метод собственных функций, метод последовательных дифракций и принцип эквивалентности (строгая формулировка метода ГФК), а также прямые численные методы: метод моментов (ММ) и метод конечных элементов (МКЭ).

НАУЧНАЯ НОВИЗНА

В диссертационной работе получены следующие новые научные результаты:

- Предложен и апробирован гибридный метод решения задач рассеяния электромагнитных волн на идеально-проводящих телах с цилиндрической и осевой симметрией, сочетающий метод собственных функций, метод последовательных дифракций и принцип эквивалентности.
- Разработан алгоритм и проведено исследование диаграммы рассеяния плоской электромагнитной волны на идеально-проводящем цилиндре с кусочно- аналитической образующей гибридным методом.
- Разработан алгоритм и проведено исследование диаграммы рассеяния плоской электромагнитной волны на идеально-проводящем теле с осевой симметрией и кусочно- аналитической образующей гибридным методом.

- 4. Предложен и апробирован гибридный метод решения задач излучения антенн с цилиндрической и осевой симметрией, сочетающий метод собственных функций, метод последовательных дифракций и принцип эквивалентности
- Разработан алгоритм и проведено исследование диаграмм направленности открытого конца нерегулярного в Е плоскости прямоугольного волновода гибридным методом.
- Разработан алгоритм и проведено исследование диаграмм направленности открытого конца нерегулярного в Н плоскости прямоугольного волновода гибридным методом.
- Разработан алгоритм и проведено исследование диаграммы направленности открытого конца нерегулярного круглого волновода гибридным методом.

Все основные результаты диссертации являются новыми и получены лично соискателем при научном руководстве д-ра физ.-мат. наук Калошина В.А.

ТЕОРЕТИЧЕСКАЯ И ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ РАБОТЫ

Теоретическая значимость работы заключается в том, что разработан новый гибридный метод решения задач излучения антенн и рассеяния электромагнитных волн на металлических телах, эффективный для решения задач, часть характерных размеров которых существенно больше длины волны, а часть мала или соизмерима. Метод с одной стороны расширяет область применения метода разделения переменных, а с другой стороны – позволяет уточнить асимптотические методы.

Практическая значимость работы заключается в том, что на основе предложенного гибридного метода разработаны алгоритмы и программы, позволяющие эффективно решать задачи излучения антенн и рассеяния электромагнитных волн на металлических телах.

ОСНОВНЫЕ ПОЛОЖЕНИЯ, ВЫНОСИМЫЕ НА ЗАЩИТУ

1. Гибридный метод позволяет решать задачи рассеяния плоской электромагнитной волны на идеально-проводящих телах с цилиндрической симметрией и кусочно- аналитической формой сечения для произвольных радиусов кривизны.

2. Гибридный метод позволяет решать задачи рассеяния плоской электромагнитной волны на идеально-проводящих телах с осевой симметрией и кусочно- аналитической образующей для радиусов кривизны более одной шестой длины волны.

3. Гибридный метод позволяет решать задачи излучения антенн в виде открытого конца нерегулярного прямоугольного волновода с радиусом кривизны стенок кривизны более одной двенадцатой длины волны.

4. Гибридный метод позволяет решать задачи излучения антенн в виде открытого конца нерегулярного круглого волновода с радиусом кривизны стенок кривизны более одной двенадцатой длины волны.

АПРОБАЦИЯ РАБОТЫ

Результаты диссертационной работы докладывались на Международной конференции «2019 Radiation and Scattering of Electromagnetic Waves (RSEMW)», Divnomorskoe, Krasnodar Region, Russia. 2019; Московском семинаре по электродинамике и антеннам им. Я.Н. Фельда.

ЛИЧНЫЙ ВКЛАД СОИСКАТЕЛЯ

1. Реализован и апробирован гибридный метод решения задач рассеяния электромагнитных волн на идеально-проводящих телах с цилиндрической и осевой симметрией, сочетающий метод собственных функций, метод последовательных дифракций и принцип эквивалентности.

2. Разработан алгоритм и проведено исследование диаграммы рассеяния плоской электромагнитной волны на идеально-проводящем цилиндре с кусочно- аналитической формой сечения гибридным методом.

 Разработан алгоритм и проведено исследование диаграммы рассеяния плоской электромагнитной волны на идеально-проводящем теле с осевой симметрией и кусочно- аналитической образующей гибридным методом.

4. Реализован и апробирован гибридный метод решения задач излучения антенн с цилиндрической и осевой симметрией, сочетающий метод собственных функций, метод последовательных дифракций и принцип эквивалентности.

5. Разработан алгоритм и проведено исследование диаграмм направленности открытого конца нерегулярного в Е и нерегулярного в Н плоскости прямоугольного волновода гибридным методом.

6. Разработан алгоритм и проведено исследование диаграммы направленности открытого конца нерегулярного круглого волновода гибридным методом.

СТРУКТУРА И ОБЪЕМ РАБОТЫ

Диссертация состоит из Введения, четырех глав, Заключения и Списка литературы из 24 наименования. Диссертационная работа изложена на 93 страницах, содержит 71 рисунок.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

В первой главе рассмотрены задачи рассеяния на цилиндрических телах.

В первом разделе главы рассмотрено падение плоской волны на идеально – проводящую пластину со скругленными кромками и приведены результаты расчета диаграммы рассеяния для Е и Н поляризации падающей волны с использованием двух вариантов развитого гибридного метода, ММ и ГФК.

Во втором разделе главы рассмотрено падение плоской волны на цилиндре с кусочно – аналитической формой образующей и приведены результаты расчета диаграммы рассеяния для Е и Н поляризации падающей волны с использованием двух вариантов развитого гибридного метода, ММ и ГФК.

Во второй главе рассмотрены задачи рассеяния на теле вращения с кусочно-аналитической формой образующей.

В первом разделе главы рассмотрено падение плоской волны на теле вращения с кусочно-аналитической формой образующей при Е- поляризации падающей волны и приведены результаты расчета диаграммы рассеяния в Е и Н плоскостях волны с использованием развитого гибридного метода, ММ и ГФК.

Во втором разделе главы рассмотрено падение плоской волны на теле вращения с кусочно-аналитической формой образующей при Е и Нполяризации падающей волны и приведены результаты расчета диаграммы рассеяния в Е и Н плоскостях гибридным методом без учета взаимодействия, ММ и ГФК.

В третьей главе рассмотрены задачи излучения открытого конца нерегулярного прямоугольного волновода.

В первом разделе главы рассмотрено излучение открытого конца прямоугольного волновода нерегулярногов Н плоскости и приведены результаты расчета диаграммы направленности с использованием развитого гибридного метода, МКЭ и ГФК.

Во втором разделе главы рассмотрено излучение открытого конца прямоугольного волновода нерегулярного в Е плоскости и приведены результаты расчета диаграммы направленности с использованием развитого гибридного метода, МКЭ и ГФК.

В четвертой главе рассмотрены задачи излучения открытого конца нерегулярного круглого волновода.

В первом разделе главы рассмотрено излучение моды H₀₁ из открытого конца нерегулярного круглого волновода и приведены результаты расчета

диаграммы направленности с использованием развитого гибридного метода, ММ, МКЭ и ГФК.

Во втором разделе главы рассмотрено излучение моды E₀₁ из открытого конца нерегулярного круглого волновода и приведены результаты расчета диаграммы направленности с использованием развитого гибридного метода, ММ, МКЭ и ГФК.

В третьем разделе главы рассмотрено излучение моды H₁₁ из открытого конца нерегулярного круглого волновода и приведены результаты расчета диаграммы направленности с использованием развитого гибридного метода, ММ, МКЭ и ГФК.

В Заключении приведены основные результаты диссертации и сделаны общие выводы.

ГЛАВА 1. РАССЕЯНИЕ НА ЦИЛИНДРИЧЕСКИХ ТЕЛАХ

В данной главе рассмотрено задачи рассеяния плоской волны на идеально – проводящей пластине со скругленными кромками [20] и цилиндре с кусочно – аналитической формой сечения [21].

1.1. РАССЕЯНИЕ ПЛОСКОЙ ВОЛНЫ НА ИДЕАЛЬНО-ПРОВОДЯЩЕЙ ПЛАСТИНЕ СО СКРУГЛЕННЫМИ КРОМКАМИ

Рассмотрим падение плоской электромагнитной волны под углом φ_0 на идеально-проводящую пластину с закругленными кромками (рис.1.1), где *а* - радиус закругления, h – длина плоской части. Толщина пластины равна диаметру закругления 2a, общая длина равна 2a+h.

Рис 1.1. Поперечное сечение пластины.

В силу цилиндрической симметрии пластины задача рассеяния плоской волны в общем случае сводится к двум двумерным задачам: для Е поляризации (электрическое поле параллельно образующей пластины) и Н поляризации (электрическое поле ортогонально образующей пластины).В силу наличия двух плоскостей симметрии (y=0 и x=-h/2) без ограничения общности будем рассматривать область углов падения $0 \le \varphi_0 \le \pi/2$.

Разобьем границы сечения пластины на четыре участка, где S_1 и S_3 полуокружности, а S_2 и S_4 – отрезки прямой (рис.1.1). Будем искать распределение токов на этих участках последовательно. Сначала найдем поля на линиях x=0, y>a при $\varphi_1 = \frac{\pi}{2}$ и x=0, y<-a при $\varphi_1 = \frac{-\pi}{2}$. Для этого воспользуемся решением задачи рассеяния плоской волны на цилиндре в виде ряда Рэлея [3]. Компоненты полного поля для случая Е поляризации в цилиндрических координатах (ρ_1, φ_1, z) имеют вид:

$$E_{z} = E_{0} \sum_{m=0}^{\infty} \varepsilon_{m} \left(-i\right)^{m} \cos\left[m(\varphi_{1} - \varphi_{0})\right] \left[J_{m}(k\rho_{1}) - J_{m}(ka)H_{m}^{(1)}(k\rho_{1}) / H_{m}^{(1)}(ka)\right],$$

$$H_{\rho_{1}} = \frac{-i\omega\varepsilon_{a}}{k^{2}\rho_{1}} \frac{\partial E_{z}}{\partial \varphi_{1}}, \quad H_{\varphi_{1}} = \frac{i\omega\varepsilon_{a}}{k^{2}} \frac{\partial E_{z}}{\partial \rho_{1}}, \quad (1.1)$$

где E_0 -амплитуда падающего электрического поля, $\varepsilon_0 = 1$ и $\varepsilon_m = 2$ при $m \ge 1$,

$$\omega = 2\pi \frac{3 \times 10^8}{\lambda}, \varepsilon_a = 8.85 \times 10^{-12}$$
, $\mu_a = 4\pi \times 10^{-7}$, λ - длина волны в свободном

пространстве, $k = 2\pi/\lambda$ - волновое число.

Компоненты поля для случая Н поляризации в цилиндрических координатах (ρ_1, φ_1, z) имеют вид:

$$H_{z} = H_{0} \sum_{m=0}^{\infty} \varepsilon_{m} \left(-i\right)^{m} \cos\left[m(\varphi_{1}-\varphi_{0})\right] \left[J_{m}(k\rho_{1}) - J_{m}'(ka)H_{m}^{(1)}(k\rho_{1}) / H_{m}'^{(1)}(ka)\right],$$

$$E_{\rho_{1}} = \frac{i\omega\mu_{a}}{k^{2}\rho_{1}} \frac{\partial H_{z}}{\partial \varphi_{1}}, \quad E_{\varphi_{1}} = \frac{-i\omega\mu_{a}}{k^{2}} \frac{\partial H_{z}}{\partial \rho_{1}},$$
(1.2)

где H_0 –амплитуда падающего магнитного поля.

Токи на поверхности S₁ определяется по формулам: *j* = [*H*,*n*]. Отсюда получаем для Е и Н поляризации, соответственно:

$$j_z^1 = -H_{\varphi_1}, j_{\varphi_1}^1 = H_z, \rho_1 = a.$$

Декартовые компоненты поля (1.1) и (1.2) при $\varphi_1 = \pm \pi / 2$ имеют вид:

$$H_{x} = \mp H_{\varphi_{1}} , H_{y} = \pm H_{\rho_{1}}, E_{x} = \mp E_{\varphi_{1}} , E_{y} = \pm E_{\rho_{1}}.$$
(1.3)

Далее определим векторные потенциалы в области между линиями x=0, y > a и x = -h, y < -a, а также между линиями x = 0, y < -a и x = -h, y > aс использованием принципа эквивалентности [3]. В результате, получаем:

$$A_{z_{1}}^{9} = \int_{-\infty}^{-a} -H_{y}G_{E}dy, A_{z_{1}}^{9} = \int_{a}^{\infty} -H_{y}G_{E}dy, A_{y_{1}}^{M} = \int_{-\infty}^{-a} -E_{z}G_{E}dy, A_{y_{1}}^{M} = \int_{a}^{\infty} -E_{z}G_{E}dy, \qquad (1.4)$$
$$A_{y_{1}}^{9} = \int_{-\infty}^{-a} H_{z}G_{H}dy, A_{y_{1}}^{9} = \int_{a}^{\infty} H_{z}G_{H}dy, A_{z_{1}}^{M} = \int_{-\infty}^{-a} E_{y}G_{H}dy, A_{z_{1}}^{M} = \int_{a}^{\infty} E_{y}G_{H}dy.$$

Функции Грина на плоскости для Е и Н поляризации, соответственно, равны:

$$G_E = \frac{i}{4} [H_0^{(1)}(k\tilde{\delta}) - H_0^{(1)}(k\tilde{\rho})], G_H = \frac{i}{4} [H_0^{(1)}(k\tilde{\delta}) + H_0^{(1)}(k\tilde{\rho})],$$
(1.5)

$$\tilde{\delta} = \sqrt{(y - y_1)^2 + x^2}, \tilde{\rho} = \sqrt{(y + y_1 \mp 2a)^2 + x^2}.$$

Электромагнитные поля выражаются через векторные потенциалы по формулам:

$$E_{z_{1}} = \frac{-k^{2}A_{z_{1}}^{3}}{i\omega\varepsilon_{a}} - \frac{\partial A_{y_{1}}^{M}}{\partial x}, H_{z_{1}} = \frac{-k^{2}A_{z_{1}}^{M}}{i\omega\mu_{a}} + \frac{\partial A_{y_{1}}^{3}}{\partial x},$$

$$H_{y_{1}} = \frac{-1}{i\omega\mu_{a}} \left[k^{2}A_{y_{1}}^{M} + \frac{\partial^{2}\left(A_{y_{1}}^{M}\right)}{\partial y_{1}\partial y_{1}} \right] - \frac{\partial A_{z_{1}}^{3}}{\partial x},$$
(1.6)

$$\begin{split} E_{y_1} &= \frac{-1}{i\omega\varepsilon_a} \Biggl[k^2 A_{y_1}^{\vartheta} + \frac{\partial^2 \left(A_{y_1}^{\vartheta} \right)}{\partial y_1 \partial y_1} \Biggr] + \frac{\partial A_{z_1}^{\mathscr{M}}}{\partial x}, \\ H_{x_1} &= \frac{-1}{i\omega\mu_a} \frac{\partial^2 \left(A_{y_1}^{\mathscr{M}} \right)}{\partial x \partial y_1} + \frac{\partial A_{z_1}^{\vartheta}}{\partial y_1}. \end{split}$$

Подставляя в формулу (1.6) значения $y_1 = \pm a$ при $-h \le x \le 0$, находим токи на линиях S_2 и S_4 :

$$j_{z_1}^{2,4} = H_{x_1}, j_{x_1}^{2,4} = -H_{z_1}, y_1 = \pm a.$$

Подставляя в формулу (1.6) значения x = -h, находим компоненты полного поля на прямых $x_1 = 0$, $y_1 > a$ и $x_1 = 0$, $y_1 < -a$.

Далее находим токи на полуокружности S_3 . Векторные потенциалы попрежнему определяются формулами (1.4), где функции Грина (круга) в полярной системе координат (ρ_2, φ_2, z_1) с центром в точке O_1 имеют вид [4]:

$$P_{E,H} = \frac{i}{4} \sum_{m=-\infty}^{\infty} \exp\left[im\left(\varphi_{2} \mp \frac{\pi}{2}\right)\right] \left[J_{m}(k\rho_{<}) - \Omega J_{m}(ka)H_{m}^{(1)}(k\rho_{<}) / \Omega H_{m}^{(1)}(ka)\right] \times H_{m}^{(1)}(k\rho_{>})$$

$$\times H_{m}^{(1)}(k\rho_{>})$$
(1.7)

Для электрической поляризации $\Omega = 1$, а для магнитной $\Omega = \partial / \partial a$, $\rho_< = y_1, \ \rho_> = \rho_2$ при $\rho_2 > y_1$ и $\rho_< = \rho_2$, $\rho_> = y_1$ при $\rho_2 < y_1$.

В результате, для токов на полуокружности S_3 получаем:

$$j_{z_{1}}^{3} = \frac{1}{i\omega\mu_{a}} \left[k^{2}A_{\varphi_{2}}^{M} + \frac{1}{\rho_{2}} \left[\frac{\partial}{\partial\varphi_{2}} \left(\frac{1}{\rho_{2}} \frac{\partial(\rho_{2}A_{\rho_{2}}^{M})}{\partial\rho_{2}} + \frac{1}{\rho_{2}} \frac{\partial A_{\varphi_{2}}^{M}}{\partial\varphi_{2}} \right) \right] \right] - \frac{\partial A_{z_{1}}^{3}}{\partial\rho_{2}},$$

$$j_{\varphi_{2}}^{3} = \frac{-k^{2}A_{z_{1}}^{M}}{i\omega\mu_{a}} + \frac{1}{\rho_{2}} \left[\frac{\partial(\rho_{2}A_{\varphi_{2}}^{3})}{\partial\rho_{2}} - \frac{\partial A_{\rho_{2}}^{3}}{\partial\varphi_{2}} \right],$$
(1.8)

$$\begin{split} A_{z_{1}}^{9} &= -\left[\int_{-\infty}^{-a} H_{y_{1}} P_{E} dy_{1} + \int_{a}^{\infty} H_{y_{1}} P_{E} dy_{1}\right], A_{z_{1}}^{M} &= \int_{-\infty}^{-a} E_{y_{1}} P_{H} dy_{1} + \int_{a}^{\infty} E_{y_{1}} P_{H} dy_{1}, \\ A_{\rho_{2}}^{M} &= -\sin(\varphi_{2}) \left[\int_{-\infty}^{-a} E_{z_{1}} P_{H} dy_{1} + \int_{a}^{\infty} E_{z_{1}} P_{H} dy_{1}\right], \\ A_{\varphi_{2}}^{M} &= -\cos(\varphi_{2}) \left[\int_{-\infty}^{-a} E_{z_{1}} P_{H} dy_{1} + \int_{a}^{\infty} E_{z_{1}} P_{H} dy_{1}\right], \\ A_{\rho_{2}}^{9} &= \sin(\varphi_{2}) \left[\int_{-\infty}^{-a} H_{z_{1}} P_{E} dy_{1} + \int_{a}^{\infty} H_{z_{1}} P_{E} dy_{1}\right], \\ A_{\varphi_{2}}^{9} &= \cos(\varphi_{2}) \left[\int_{-\infty}^{-a} H_{z_{1}} P_{E} dy_{1} + \int_{a}^{\infty} H_{z_{1}} P_{E} dy_{1}\right]. \end{split}$$

Таким образом, мы нашли токи. Далее находим диаграмму рассеяния по формулам [3]:

$$E = \frac{-1}{i\omega\varepsilon_a} \left[k^2 A^3 + \operatorname{grad} \operatorname{div} A^3 \right] - \operatorname{rot} A^M .$$
(1.9)

$$H = \frac{-1}{i\omega\mu_a} \left[k^2 A^{\mathcal{M}} + \operatorname{grad} \operatorname{div} A^{\mathcal{M}} \right] + \operatorname{rot} A^{\mathfrak{I}} .$$
 (1.10)

где
$$A^{\mathfrak{I}} = \oint_{S} j^{\mathfrak{I}} G_0 ds$$
, $A^{\mathfrak{M}} = \oint_{S} j^{\mathfrak{M}} G_0 ds$.

Функция Грина свободного пространства в цилиндрической системы координат:

$$G_{0} = \frac{i}{4} \sqrt{\frac{2}{\pi k}} \frac{\exp(ik\rho^{(P)})}{\sqrt{\rho^{(P)}}} \exp(-i\pi/4) \exp\left[-ik\rho^{(S)}\cos(\varphi^{(P)} - \varphi^{(S)})\right],$$
(1.11)

S – точка интегрирования на поверхностях S_1 , S_2 , S_3 , S_4 и P – точка наблюдения, имеющая полярные координаты (ρ, ϕ) с центром в точке O.

При интегрировании по S_1 и S_3 используем полярные координаты с центрами в точках O и O_1 соответственно, а при интегрировании по линиям S_2 и S_4 используем декартовые координаты центром в точке O. В результате, получаем:

$$E_{z} = \frac{-k^{2}}{i\omega\varepsilon_{a}} \begin{bmatrix} \int_{3\pi/2}^{\pi/2} j_{z}^{1}G_{0}d\varphi_{1} + \int_{0}^{-h} j_{z_{1}}^{2}G_{0}dx + \exp[-ikh\cos(\pi - \varphi)]a \int_{\pi/2}^{\pi} j_{z_{1}}^{3}G_{0}d\varphi_{2} + \\ + \int_{-h}^{0} j_{z_{1}}^{4}G_{0}dx + \exp[-ikh\cos(\pi + \varphi)]a \int_{\pi}^{3\pi/2} j_{z_{1}}^{3}G_{0}d\varphi_{2} \end{bmatrix}. \quad (1.12)$$

$$H_{z} = ik \begin{bmatrix} a \int_{3\pi/2}^{\pi/2} j_{\varphi_{1}}^{1}G_{0}\cos(\varphi - \varphi_{1})d\varphi_{1} - \sin\varphi \left(\int_{-h}^{0} j_{x}^{4}G_{0}dx + \int_{0}^{-h} j_{x}^{2}G_{0}dx \right) + \\ + \exp[-ikh\cos(\pi - \varphi)]a \int_{\pi/2}^{\pi} j_{\varphi_{2}}^{3}G_{0}\cos(\varphi - \varphi_{2})d\varphi_{2} + \\ + \exp[-ikh\cos(\pi + \varphi)]a \int_{\pi}^{3\pi/2} j_{\varphi_{2}}^{3}G_{0}\cos(\varphi - \varphi_{2})d\varphi_{2} \end{bmatrix}. \quad (1.13)$$

При падении плоской волны под большими углами φ_0 взаимодействием токов на разных участках образующей пластины в рамках гибридного метода можно пренебречь. В этом случае токи на обеих полуокружностях S_1 и S_3 полагаются равным токам на полных окружностях при рассеянии плоской волны, ток на освещенной прямой (S_2) находится по формуле: $J^3 = 2[H^{\text{пад}}, n]$, а ток на прямой S_4 - равным нулю. В результате ток на S_2 имеет вид:

$$J_{z}^{2} = -2E_{0}\frac{\omega\varepsilon_{a}}{k}\sin(\varphi_{0})\exp\left[-ik\sqrt{x^{2}+a^{2}}\cos\left(\pi-\arctan\left(\frac{a}{|x|}\right)-\varphi_{0}\right)\right],$$

$$J_{x}^{2} = -2H_{0}\exp\left[-ik\sqrt{x^{2}+a^{2}}\cos\left(\pi-\arctan\left(\frac{a}{|x|}\right)-\varphi_{0}\right)\right].$$
(1.14)

Токи на полуокружности S_3 в цилиндрической системе координат (ρ_2, φ_2, z_1) с центром в точке O_1 имеют вид:

$$j_{z_{1}}^{3} = -\exp[ikh\cos(\varphi_{0})]H_{\varphi_{2}}, j_{\varphi_{2}}^{3} = \exp[ikh\cos(\varphi_{0})]H_{z_{1}}, \qquad (1.15)$$

$$H_{\varphi_{2}} = \frac{i\omega\varepsilon_{a}}{k^{2}}E_{0}\sum_{m=0}^{\infty}\varepsilon_{m}(-i)^{m}\cos[m(\varphi_{2}-\varphi_{0})][J'_{m}(ka) - J_{m}(ka)H'^{(1)}_{m}(ka) / H^{(1)}_{m}(ka)],$$

$$H_{z_{1}} = H_{0}\sum_{m=0}^{\infty}\varepsilon_{m}(-i)^{m}\cos[m(\varphi_{2}-\varphi_{0})][J_{m}(ka) - J'_{m}(ka)H^{(1)}_{m}(ka) / H'^{(1)}_{m}(ka)].$$

В результате, для рассеянного поля получаем:

$$E_{z} = \frac{-k^{2}}{i\omega\varepsilon_{a}} \begin{bmatrix} a \int_{3\pi/2}^{\pi/2} j_{z}^{1}G_{0}d\varphi_{1} + \exp[-ikh\cos(\pi-\varphi)]a \int_{\pi/2}^{\pi} j_{z_{1}}^{2}G_{0}d\varphi_{2} + \\ -h \\ + \int_{0}^{-h} J_{z}^{2}G_{0}dx + \exp[-ikh\cos(\pi+\varphi)]a \int_{\pi}^{3\pi/2} j_{z_{1}}^{3}G_{0}d\varphi_{2} \end{bmatrix}.$$

$$(1.16)$$

$$H_{z} = ik \begin{bmatrix} a \int_{3\pi/2}^{\pi/2} j_{\varphi_{1}}^{1}G_{0}\cos(\varphi-\varphi_{1})d\varphi_{1} - \sin\varphi \int_{0}^{-h} J_{x}^{2}G_{0}dx + \\ + \exp[-ikh\cos(\pi-\varphi)]a \int_{\pi/2}^{\pi} j_{\varphi_{2}}^{3}G_{0}\cos(\varphi-\varphi_{2})d\varphi_{2} \\ + \exp[-ikh\cos(\pi+\varphi)]a \int_{\pi}^{3\pi/2} j_{\varphi_{2}}^{3}G_{0}\cos(\varphi-\varphi_{2})d\varphi_{2} \end{bmatrix}.$$

$$(1.17)$$

На рис. 1.2–1.11 приведены результаты расчета диаграмм рассеяния для Е поляризации (а) и Н-поляризации (б) на пластине с kh = 5, разной величиной параметра ka и различных углах падения плоской волны φ_0 .Кривая 1 показывает результаты расчета ММ, 2 – гибридным методом с учетом взаимодействия, 3 – гибридным методом без учета взаимодействия, 4 – методом ГФК.

Рис 1.2. Диаграммы рассеяния при $\varphi_0 = 0$, ka = 3.

Рис 1.3. Диаграммы рассеяния при $\varphi_0 = 0$, ka = 2.

Рис 1.4. Диаграммы рассеяния при $\varphi_0 = 0$, ka = 1.

Рис 1.5. Диаграммы рассеяния при $\varphi_0 = 10^0$, ka = 3.

Рис 1.6. Диаграммы рассеяния при $\varphi_0 = 10^0$, ka = 2.

Рис 1.7. Диаграммы рассеяния при $\varphi_0 = 10^0$, ka = 1.

Рис 1.8. Диаграммы рассеяния при $\varphi_0 = 20^0$, ka = 3.

Рис 1.9. Диаграммы рассеяния при $\varphi_0 = 20^0$, ka = 2.

Рис 1.10. Диаграммы рассеяния при $\varphi_0 = 20^0$, ka = 1.

Рис 1.11. Диаграммы рассеяния при $\varphi_0 = 30^0$, ka = 3.

Рис 1.12. Диаграммы рассеяния при $\varphi_0 = 30^0$, ka = 2.

Рис 1.13. Диаграммы рассеяния при $\varphi_0 = 30^0$, ka = 1.

Рис 1.14. Диаграммы рассеяния при $\varphi_0 = 45^0$, ka = 3.

Рис 1.15. Диаграммы рассеяния при $\varphi_0 = 45^0$, ka = 2.

Рис 1.16. Диаграммы рассеяния при $\varphi_0 = 45^0$, ka = 1.

На рис. 1.2-1.16 видно, что результаты расчета диаграмм рассеяния методом моментов и гибридным методом с учетом взаимодействия хорошо совпадают. Результаты расчета гибридным методом без учета взаимодействия

совпадают с ними только при достаточно больших значениях угла падения (более 30⁰). Расчет методом ГФК дает только качественное совпадение и только для больших углов падения.

1.2. РАССЕЯНИЕ ПЛОСКОЙ ВОЛНЫ НА ЦИЛИНДРЕ С КУСОЧНО-АНАЛИТИЧЕСКОЙ ФОРМОЙ СЕЧЕНИЯ

Рассмотрим рассеяние плоской электромагнитной волны, падающей под углом φ_0 на идеально-проводящий бесконечный цилиндр, поперечное сечение которого образовано прямыми и дугами окружностей (рис.1.17), где a_1 , a_2 - радиусы окружностей, h- расстояние между центрами окружностей, l- длина прямых ($l = h \sin(-\beta + \pi/2)$, $\beta = \pi/2 - \arccos[(a_1 - a_2)/h]$).

Рис 1.17. Поперечное сечение цилиндра.

В силу цилиндрической симметрии задача рассеяния в общем случае сводится к двум двумерным задачам: для Е – поляризации (электрическое поле параллельно образующей цилиндра) и Н – поляризации (электрическое поле ортогонально образующей цилиндра). Будем искать решение этих задач в форме диаграммы рассеяния.

В силу наличия плоскости симметрии (y = 0) без ограничения общности будем рассматривать область углов падения $0 \le \varphi_0 \le \pi$.

Разобьем границу поперечного сечения цилиндра S на четыре участка: S₁ и S₃ – дуги окружности, S₂ и S₄ – отрезки прямых (рис.1.17).

Рассмотрим случай падения плоской волны под углом $\varphi_0 < \pi/2$. Будем искать распределение токов на S_1 , S_2 , S_3 , S_4 последовательно. Сначала найдем поля на линиях x' = 0, $y' > a_1$ при $\varphi_1 = \frac{\pi}{2} + \beta$ и x'' = 0, $y'' < -a_1$ при $\varphi_1 = -\left(\frac{\pi}{2} + \beta\right)$. Для этого воспользуемся решением задачи рассеяния плоской

волны на идеально-проводящем цилиндре в виде ряда Рэлея [3].

Токи на дуге S₁ для случая Е и Н поляризации, соответственно:

 $j_z^1 = -H_{\varphi_1}, j_{\varphi_1}^1 = H_z$, а компоненты полного поля H_{φ_1}, H_z определяются формулами (1.1) и (1.2).

Запишем компоненты полного поля в повернутых на угол β прямоугольных системах координат x'Oy' и x''Oy'' (рис.1.17). В результате, получаем:

$$E_{z'} = E_{z_1}, H_{x'} = -H_{\varphi_1}, H_{y'} = H_{\rho_1}, H_{z'} = H_{z_1}, E_{x'} = -E_{\varphi_1}, E_{y'} = E_{\rho_1},$$
(1.18)
$$E_{z''} = E_{z_1}, H_{x''} = H_{\varphi_1}, H_{y''} = -H_{\rho_1}, H_{z''} = H_{z_1}, E_{x''} = E_{\varphi_1}, E_{y''} = -E_{\rho_1}.$$

Далее определим векторные потенциалы в области между прямыми x' = 0, $y' > a_1$ и x'' = -l, $y''_1 < -a_1$, а также между прямыми x'' = 0, $y'' < -a_1$ и x' = -l, $y'_1 > a_1$. В результате, получаем:

Здесь G_E и G_H – функции Грина на плоскости определяются в формуле (1.5), где $\tilde{\delta} = \sqrt{(y'-y_1')^2 + {x'}^2}$, $\tilde{\rho} = \sqrt{(y'+y_1'-2a_1)^2 + {x'}^2}$, $\tilde{\delta} = \sqrt{(y''-y_1'')^2 + {x''}^2}$, $\tilde{\rho} = \sqrt{(y''+y_1''+2a_1)^2 + {x''}^2}$.

Компоненты полного поля выражаются через векторные потенциалы по формулам:

$$\begin{split} E_{z_{1}^{\prime}} &= \frac{-k^{2}A_{z_{1}^{\prime}}^{\vartheta}}{i\omega\varepsilon_{a}} - \frac{\partial A_{y_{1}^{\prime}}^{w}}{\partial x^{\prime}}, H_{x^{\prime}} = \frac{-1}{i\omega\mu_{a}} \frac{\partial^{2}\left(A_{y_{1}^{\prime}}^{w}\right)}{\partial x^{\prime}\partial y_{1}^{\prime}} + \frac{\partial A_{z_{1}^{\prime}}^{\vartheta}}{\partial y_{1}^{\prime}}, \\ H_{y_{1}^{\prime}} &= \frac{-1}{i\omega\mu_{a}} \left[k^{2}A_{y_{1}^{\prime}}^{w} + \frac{\partial^{2}\left(A_{y_{1}^{\prime}}^{w}\right)}{\partial y_{1}^{\prime}\partial y_{1}^{\prime}} \right] - \frac{\partial A_{z_{1}^{\prime}}^{\vartheta}}{\partial x_{1}^{\prime}}, \\ E_{y_{1}^{\prime}} &= \frac{-1}{i\omega\varepsilon_{a}} \left[k^{2}A_{y_{1}^{\prime}}^{\vartheta} + \frac{\partial^{2}\left(A_{y_{1}^{\prime}}^{\vartheta}\right)}{\partial y_{1}^{\prime}\partial y_{1}^{\prime}} \right] + \frac{\partial A_{z_{1}^{\prime}}^{w}}{\partial x^{\prime}}, \end{split}$$

(1.20)

$$\begin{split} E_{z_1''} &= \frac{-k^2 A_{z_1''}^3}{i\omega\varepsilon_a} - \frac{\partial A_{y_1''}^m}{\partial x''}, H_{x_1''} = \frac{-1}{i\omega\mu_a} \frac{\partial^2 \left(A_{y_1''}^m\right)}{\partial x'' \partial y_1''} + \frac{\partial A_{z_1''}^3}{\partial y_1''}, \\ H_{y_1''} &= \frac{-1}{i\omega\mu_a} \left[k^2 A_{y_1''}^m + \frac{\partial^2 \left(A_{y_1''}^m\right)}{\partial y_1'' \partial y_1''} \right] - \frac{\partial A_{z_1''}^3}{\partial x'''}, \\ E_{y_1''} &= \frac{-1}{i\omega\varepsilon_a} \left[k^2 A_{y_1''}^3 + \frac{\partial^2 \left(A_{y_1''}^3\right)}{\partial y_1'' \partial y_1''} \right] + \frac{\partial A_{z_1''}^m}{\partial x''}, \end{split}$$

$$H_{z_1''} = \frac{-k^2 A_{z_1''}^{\mathcal{M}}}{i\omega\mu_a} + \frac{\partial A_{y_1''}^{\mathcal{H}}}{\partial x''}, H_{z_1'} = \frac{-k^2 A_{z_1'}^{\mathcal{M}}}{i\omega\mu_a} + \frac{\partial A_{y_1'}^{\mathcal{H}}}{\partial x'}.$$

Подставляя в формулу (1.20) значения $y'_1 = a_1$ при $-h\sin(-\beta + \pi/2) \le x' \le 0$ и $y''_1 = -a_1$ при $-h\sin(-\beta + \pi/2) \le x'' \le 0$, находим поля и компоненты тока на S_2 и S_4 .

$$j_{z_1'}^2 = H_{x'}, j_{x'}^2 = -H_{z_1'}, j_{z_1''}^4 = H_{x''}, j_{x''}^4 = -H_{z_1''}.$$
(1.21)

Подставляя в формулу (1.20) значения $x' = -h\sin(-\beta + \pi/2)$ и $x'' = -h\sin(-\beta + \pi/2)$ находим компоненты полного поля на прямых $x'_1 = 0$, $y'_1 > a_2$ и $x''_1 = 0$, $y''_1 < -a_2$.

Далее находим токи на дуге S_3 . Векторные потенциалы при этом попрежнему определяются формулами (1.4), а функции Грина окружности в полярной системе координат (ρ_2, φ_2, z_1) с центром в точке O_1 определяется в формуле (1.7),где $\rho_{<} = y'_1, y''_1, \ \rho_{>} = \rho_2$ при $\rho_2 > y'_1, y''_1$ и $\rho_{<} = \rho_2$, $\rho_{>} = y'_1, y''_1$ при $\rho_2 < y'_1, y''_1$.

В результате, для компонентов тока на дуге S_3 получаем:

$$j_{z_{1}}^{3} = \frac{1}{i\omega\mu_{a}} \left[k^{2}A_{\varphi_{2}}^{M} + \frac{1}{\rho_{2}} \left[\frac{\partial}{\partial\varphi_{2}} \left(\frac{1}{\rho_{2}} \frac{\partial(\rho_{2}A_{r_{2}}^{M})}{\partial\rho_{2}} + \frac{1}{\rho_{2}} \frac{\partial A_{\varphi_{2}}^{M}}{\partial\varphi_{2}} \right) \right] \right] - \frac{\partial A_{z_{1}}^{3}}{\partial\rho_{2}},$$

$$j_{\varphi_{2}}^{3} = \frac{-k^{2}A_{z_{1}}^{M}}{i\omega\mu_{a}} + \frac{1}{\rho_{2}} \left[\frac{\partial(\rho_{2}A_{\varphi_{2}}^{3})}{\partial\rho_{2}} - \frac{\partial A_{\rho_{2}}^{3}}{\partial\varphi_{2}} \right],$$
(1.22)
$$r_{\text{T}} e A_{z_{1}}^{3} = -\int_{-\infty}^{-a_{2}} H_{y_{1}''} P_{E} dy_{1}'' - \int_{a_{2}}^{\infty} H_{y_{1}'} P_{E} dy_{1}',$$

$$A_{z_{1}}^{M} = \int_{-\infty}^{-a_{2}} E_{y_{1}''} P_{H} dy_{1}'' + \int_{a_{2}}^{\infty} E_{y_{1}'} P_{H} dy_{1}',$$

$$\begin{split} A_{\rho_{2}}^{M} &= -\sin(\varphi_{2}) \Biggl[\int_{-\infty}^{-a_{2}} E_{z_{1}''} P_{H} dy_{1}'' + \int_{a_{2}}^{\infty} E_{z_{1}'} P_{H} dy_{1}' \Biggr], \\ A_{\varphi_{2}}^{M} &= -\cos(\varphi_{2}) \Biggl[\int_{-\infty}^{-a_{2}} E_{z_{1}''} P_{H} dy_{1}'' + \int_{a_{2}}^{\infty} E_{z_{1}'} P_{H} dy_{1}' \Biggr], \\ A_{\rho_{2}}^{9} &= \sin(\varphi_{2}) \Biggl[\int_{-\infty}^{-a_{2}} H_{z_{1}''} P_{E} dy_{1}'' + \int_{a_{2}}^{\infty} H_{z_{1}'} P_{E} dy_{1}' \Biggr], \\ A_{\varphi_{2}}^{9} &= \cos(\varphi_{2}) \Biggl[\int_{-\infty}^{-a_{2}} H_{z_{1}''} P_{E} dy_{1}'' + \int_{a_{2}}^{\infty} H_{z_{1}'} P_{E} dy_{1}' \Biggr]. \end{split}$$

Таким образом, мы нашли токи на *S*. В результате, для диаграммы рассеяния в случае Е и Н поляризации получаем, соответственно:

$$E_{z} = \frac{-k^{2}}{i\omega\varepsilon_{a}} \begin{bmatrix} a_{1} \int_{-\beta+3\pi/2}^{\beta+\pi/2} j_{z}^{1}G_{0}d\varphi_{1} + \int_{0}^{-l} j_{z_{1}^{\prime}}^{2}G_{0}dx' + \exp[-ikh\cos(\pi-\varphi)]a_{2} \int_{\beta+\pi/2}^{\pi} j_{z_{1}}^{3}G_{0}d\varphi_{2} + \\ + \int_{-l}^{0} j_{z_{1}^{\prime}}^{4}G_{0}dx'' + \exp[-ikh\cos(\pi+\varphi)]a_{2} \int_{\pi}^{-\beta+3\pi/2} j_{z_{1}}^{3}G_{0}d\varphi_{2} \end{bmatrix} . (1.23)$$

$$H_{z} = ik \begin{bmatrix} a_{1} \int_{-\beta+3\pi/2}^{\beta+\pi/2} j_{\varphi_{1}}^{1}G_{0}\cos(\varphi-\varphi_{1})d\varphi_{1} - \sin(\varphi-\beta) \int_{0}^{-l} j_{x}^{2}G_{0}dx' - \sin(\varphi+\beta) \int_{-l}^{0} j_{x}^{4}G_{0}dx'' + \\ + \exp[-ikh\cos(\pi-\varphi)]a_{2} \int_{\beta+\pi/2}^{\pi} j_{\varphi_{2}}^{3}G_{0}\cos(\varphi-\varphi_{2})d\varphi_{2} + \\ + \exp[-ikh\cos(\pi+\varphi)]a_{2} \int_{\pi}^{-\beta+3\pi/2} j_{\varphi_{2}}^{3}G_{0}\cos(\varphi-\varphi_{2})d\varphi_{2} \end{bmatrix} . (1.24)$$

Построение решения при падении плоской волны под углами $\varphi_0 \ge \pi/2$ проводится по аналогичной схеме.

При падении плоской волны под углом φ_0 , лежащем в пределах $\beta < \varphi_0 \le \pi - \beta$, как будет показано далее, взаимодействием токов на разных участках образующей пластины в рамках гибридного метода можно пренебречь. В этом случае токи на обеих дугах S_1 и S_3 полагаются равным токам на полных окружностях при рассеянии плоской волны, ток на

освещенной прямой S₂ находится по формуле: $J^3 = 2[H^{\text{пад}}, n]$, а ток на S₄ полагается равным нулю. В результате компоненты тока на прямой S₂ в повернутой на угол β системе декартовых координат x'Oy' с центром в точке O (рис.1.17) имеют вид:

$$J_{z'}^{2} = -2E_{0}\frac{\omega\varepsilon_{a}}{k}\sin(\varphi_{0})\exp\left[-ik\sqrt{(x')^{2} + (a_{1})^{2}}\cos\left(\pi - \arctan\left(\frac{a_{1}}{|x'|}\right) + \beta - \varphi_{0}\right)\right], \quad (1.25)$$
$$J_{x'}^{2} = -2H_{0}\exp\left[-ik\sqrt{(x')^{2} + (a_{1})^{2}}\cos\left(\pi - \arctan\left(\frac{a_{1}}{|x'|}\right) + \beta - \varphi_{0}\right)\right].$$

Компоненты тока на дуге S_3 в цилиндрической системе координат (ρ_2, φ_2, z_1) с центром в точке O_1 имеют вид:

$$j_{z_1}^3 = -\exp[ikh\cos(\varphi_0)]H_{\varphi_2}, j_{\varphi_2}^3 = \exp[ikh\cos(\varphi_0)]H_{z_1}, \qquad (1.26)$$

где

$$H_{\varphi_{2}} = \frac{i\omega\varepsilon_{a}}{k^{2}}E_{0}\sum_{m=0}^{\infty}\varepsilon_{m}(-i)^{m}\cos[m(\varphi_{2}-\varphi_{0})]\Big[J'_{m}(ka_{2}) - J_{m}(ka_{2})H'^{(1)}_{m}(ka_{2}) / H^{(1)}_{m}(ka_{2})\Big],$$

$$H_{z_{1}} = H_{0}\sum_{m=0}^{\infty}\varepsilon_{m}(-i)^{m}\cos[m(\varphi_{2}-\varphi_{0})]\Big[J_{m}(ka_{2}) - J'_{m}(ka_{2})H^{(1)}_{m}(ka_{2}) / H'^{(1)}_{m}(ka_{2})\Big].$$

При интегрировании по дугам S_1 и S_3 используем полярные координаты (ρ_1, φ_1, z) и (ρ_2, φ_2, z_1) , соответственно, а при интегрировании по прямой S_2 – в декартовой системе координат x'Oy'.

В результате, для диаграммы рассеяния в случае Е и Н поляризации получаем:

$$E_{z} = \frac{-k^{2}}{i\omega\varepsilon_{a}} \begin{bmatrix} a_{1} \int_{-\beta+3\pi/2}^{\beta+\pi/2} j_{z}^{1}G_{0}d\varphi_{1} + \exp\left[-ikh\cos(\pi-\varphi)\right]a_{2} \int_{\beta+\pi/2}^{\pi} j_{z_{1}}^{3}G_{0}d\varphi_{2} + \\ -\beta+3\pi/2 \\ -\beta+3\pi/2 \\ + \int_{0}^{-l} J_{z'}^{2}G_{0}dx' + \exp\left[-ikh\cos(\pi+\varphi)\right]a_{2} \int_{\pi}^{-\beta+3\pi/2} j_{z_{1}}^{3}G_{0}d\varphi_{2} \end{bmatrix}.$$
 (1.27)

$$H_{z} = ik \begin{bmatrix} a_{1} \int_{-\beta+3\pi/2}^{\beta+\pi/2} j_{\varphi_{1}}^{1}G_{0}\cos(\varphi-\varphi_{1})d\varphi_{1} - \sin(\varphi-\beta)\int_{0}^{-l}J_{x'}^{2}G_{0}dx' + \\ +\exp[-ikh\cos(\pi+\varphi)]a_{2} \int_{\pi}^{-\beta+3\pi/2} j_{\varphi_{2}}^{3}G_{0}\cos(\varphi-\varphi_{2})d\varphi_{2} + \\ +\exp[-ikh\cos(\pi-\varphi)]a_{2} \int_{\beta+\pi/2}^{\pi} j_{\varphi_{2}}^{3}G_{0}\cos(\varphi-\varphi_{2})d\varphi_{2} \end{bmatrix}.$$
(1.28)

При падении плоской волны под малыми углами $\varphi_0 \leq \beta$ компоненты тока на поверхности S_2 , S_3 , S_4 полагаются равными нулю. В результате, для диаграммы рассеяния в случае Е и Н поляризации получаем:

$$E_{z} = \frac{-k^{2}a_{1}}{i\omega\varepsilon_{a}} \int_{-\beta+3\pi/2}^{\beta+\pi/2} j_{z_{1}}^{1}G_{0}d\varphi_{1}.$$
(1.29)

$$H_{z} = ika_{1} \int_{-\beta+3\pi/2}^{\beta+\pi/2} j_{\varphi_{1}}^{1} G_{0} \cos(\varphi - \varphi_{1}) d\varphi_{1}.$$
(1.30)

При падении плоской волны при $\pi - \beta < \varphi_0$ компоненты тока на прямой S_4 в повернутой на угол β декартовой системе координат x''Oy'' (рис.1.17) имеют вид:

$$J_{z''}^{4} = -2E_{0}\frac{\omega\varepsilon_{a}}{k}\sin(\varphi_{0})\exp\left[-ik\sqrt{(x'')^{2} + (a_{1})^{2}}\cos\left(\pi + \arctan\left(\frac{a_{1}}{|x''|}\right) - \beta - \varphi_{0}\right)\right], (1.31)$$
$$J_{x''}^{4} = -2H_{0}\exp\left[-ik\sqrt{(x'')^{2} + (a_{1})^{2}}\cos\left(\pi + \arctan\left(\frac{a_{1}}{|x''|}\right) - \beta - \varphi_{0}\right)\right].$$

При интегрировании по прямой S_4 используем систему декартовых координат x''Oy'' центром в точке O.

В результате, для диаграммы рассеяния в случае Е и Н поляризации получаем, соответственно:

$$E_{z} = \frac{-k^{2}}{i\omega\varepsilon_{a}} \begin{bmatrix} a_{1} \int_{-\beta+3\pi/2}^{\beta+\pi/2} j_{z}^{1}G_{0}d\varphi_{1} + \exp[-ikh\cos(\pi-\varphi)]a_{2} \int_{\beta+\pi/2}^{\pi} j_{z_{1}}^{3}G_{0}d\varphi_{2} + \\ -\beta+3\pi/2 \int_{-\beta+3\pi/2}^{-l} j_{z'}^{2}G_{0}dx' + \int_{-l}^{0} J_{z''}^{4}G_{0}dx'' + \exp[-ikh\cos(\pi+\varphi)]a_{2} \int_{\pi}^{-\beta+3\pi/2} j_{z_{1}}^{3}G_{0}d\varphi_{2} \end{bmatrix} . (1.32)$$

$$H_{z} = ik \begin{bmatrix} a_{1} \int_{-\beta+3\pi/2}^{\beta+\pi/2} j_{\varphi_{1}}^{1}G_{0}\cos(\varphi-\varphi_{1})d\varphi_{1} - \sin(\varphi-\beta)\int_{0}^{-l} J_{x'}^{2}G_{0}dx' - \sin(\varphi+\beta)\int_{-l}^{0} J_{x'}^{4}G_{0}dx'' + \\ +\exp[-ikh\cos(\pi+\varphi)]a_{2} \int_{\pi}^{-\beta+3\pi/2} j_{\varphi_{2}}^{3}G_{0}\cos(\varphi-\varphi_{2})d\varphi_{2} + \\ +\exp[-ikh\cos(\pi-\varphi)]a_{2} \int_{\beta+\pi/2}^{\pi} j_{\varphi_{2}}^{3}G_{0}\cos(\varphi-\varphi_{2})d\varphi_{2} \end{bmatrix} . (1.33)$$

На рис. 1.18–1.27 приведены результаты расчета диаграмм рассеяния для Е поляризации (а) и Н-поляризации (б) на пластине с величиной kh = 5, разной величиной параметра ka и различных углах падения плоской волны φ_0 . Кривая 1 показывает результаты расчета ММ, 2 – гибридным методом с учетом взаимодействия, 3 – гибридным методом без учета взаимодействия, 4 – методом ГФК.

Рис 1.18. Диаграммы рассеяния при $\varphi_0 = 0$, $ka_1 = 3$, $ka_2 = 1$.

Рис 1.19. Диаграммы рассеяния при $\varphi_0 = 0$, $ka_1 = 3$, $ka_2 = 0.1$.

Рис 1.20. Диаграммы рассеяния при $\varphi_0 = 20^0$, $ka_1 = 3$, $ka_2 = 1$.

Рис 1.21. Диаграммы рассеяния при $\varphi_0 = 20^0$, $ka_1 = 3$, $ka_2 = 0.1$.

Рис 1.22. Диаграммы рассеяния при $\varphi_0 = 45^0$, $ka_1 = 3$, $ka_2 = 1$.

Рис 1.23. Диаграммы рассеяния при $\varphi_0 = 45^0$, $ka_1 = 3$, $ka_2 = 0.1$.

Рис 1.24. Диаграммы рассеяния при $\varphi_0 = 160^0$, $ka_1 = 3$, $ka_2 = 1$.

Рис 1.25. Диаграммы рассеяния при $\varphi_0 = 160^0$, $ka_1 = 3$, $ka_2 = 0.1$.

Рис 1.26. Диаграммы рассеяния при $\varphi_0 = 180^0$, $ka_1 = 3$, $ka_2 = 1$.

Рис 1.27. Диаграммы рассеяния при $\varphi_0 = 180^{\circ}$, $ka_1 = 3$, $ka_2 = 0.1$.

На рис. 1.18-1.27 видно, что результаты расчета диаграмм рассеяния методом моментов и гибридным методом с учетом взаимодействия хорошо совпадают для всех углов падения и всех значениях параметра ka_2 . Результаты расчета гибридным методом без учета взаимодействия совпадают с ними только при значениях угла φ_0 , лежащих в пределах $\beta < \varphi_0 < \pi - \beta$. Результаты точного расчета и методом ГФК близки только для угла падения $\varphi_0 = \pi/4$, Е поляризации падающей волны и только в области главного лепестка диаграммы рассеяния.

На основании полученных в главе результатов можно сделать следующие выводы:

1. Предложенный гибридный метод с учетом взаимодействия позволяет решать задачи рассеяния плоской электромагнитной волны на цилиндрических телах с кусочно-аналитической формой поперечного сечения с произвольными характерными электрическими размерами при любых углах падения.

2. Гибридный метод без учета взаимодействия позволяет решать задачи рассеяния плоской электромагнитной волны на цилиндрических телах с

кусочно-аналитической формой поперечного сечения с произвольными характерными электрическими размерами для углов падения не близких к скользящим.

3. Метод ГФК даже качественно не описывает диаграмму рассеяния плоской волны на цилиндре при радиусах кривизны границы поперечного сечения цилиндра менее половины длины волны.

ГЛАВА 2. РАССЕЯНИЕ НА ТЕЛЕ ВРАЩЕНИЯ С КУСОЧНО-АНАЛИТИЧЕСКОЙ ФОРМОЙ ОБРАЗУЮЩЕЙ

В данной главе рассмотрены задачи рассеяния плоской волны на теле вращения с гладкой кусочно-аналитической формой образующей в виде круглого цилиндра ограниченного по торцам полусферами [22].

2.1. РЕШЕНИЕ ГИБРИДНЫМ МЕТОДОМ С УЧЕТОМ ВЗАИМОДЕЙСТВИЯ

Пусть на идеально-проводящее тело в виде круглого цилиндра, ограниченного по торцам полусферами (рис.2.1), падает плоская электромагнитная волна, волновой вектор и вектор электрического поля которой лежат в плоскости XZ. Обозначим длину цилиндра h, а радиус ограничивающих цилиндр полусфер a.

Рис 2.1. Геометрия задачи.

Решение задачи рассеяния плоской волны сводится к задаче нахождения тока на поверхности тела *S*. Будем искать решение этой задачи в системе декартовых координат (x, y, z) и связанной с ней системе сферических координат (r, θ, φ) .

Разобьем поверхность *S* на три участка: *S*₁ и *S*₃ (поверхности полусфер) и *S*₂ (поверхность цилиндра), и рассмотрим последовательное рассеяние плоской волны на этих поверхностях.

Решение задачи рассеяния на поверхности S_1 будем искать в виде ряда по собственным функциям (ряда Ми [3]) для полной сферы. При падении плоской электромагнитной волны под углом θ_0 к оси симметрии Z удобно ввести повернутую на этот угол систему декартовых координат (x', y', z') и связанную с ней систему сферических координат (r', θ', ϕ') (рис.2.2).

Рис 2.2. Поворот системы координат.

Компоненты полей в декартовой системе координат (x', y', z') имеют вид: $E_{x'} = \sin \theta' \cos \varphi' E_{r'} + \cos \theta' \cos \varphi' E_{\theta'} - \sin \varphi' E_{\varphi'},$ $E_{v'} = \sin \theta' \sin \varphi' E_{r'} + \cos \theta' \sin \varphi' E_{\theta'} + \cos \varphi' E_{\phi'},$ $E_{z'} = \cos\theta' E_r - \sin\theta' E_{\theta'},$ (2.1) $H_{x'} = \sin\theta' \cos\varphi' H_{r'} + \cos\theta' \cos\varphi' H_{\theta'} - \sin\varphi' H_{\omega'},$ $H_{v'} = \sin\theta' \sin\varphi' H_{r'} + \cos\theta' \sin\varphi' H_{\theta'} + \cos\varphi' H_{\phi'}$ $H_{z'} = \cos\theta' H_{r'} - \sin\theta' H_{\theta'},$ где $E_{r'} = \frac{1}{r'} \sum_{n=1}^{\infty} m(m+1)U_m^3,$ $E_{\theta'} = \frac{1}{r'} \sum_{m=0}^{\infty} \frac{\partial^2 (r' U_m^{\mathfrak{I}})}{\partial \theta' \partial r'} + \frac{i \omega \mu_a}{\sin(\theta')} \sum_{m=0}^{\infty} \frac{\partial U_m^{\mathfrak{M}}}{\partial \varphi'},$ $H_{\varphi'} = i\omega\varepsilon_a \sum_{n=0}^{\infty} \frac{\partial U_m^3}{\partial \theta'} + \frac{1}{r'\sin(\theta')} \sum_{m=0}^{\infty} \frac{\partial^2(r'U_m^M)}{\partial \varphi' \partial r'},$ $H_{r'} = \frac{1}{r'} \sum_{n=0}^{\infty} m(m+1) U_m^{\rm M},$ $H_{\theta'} = \frac{-i\omega\varepsilon_a}{\sin(\theta')} \sum_{m=0}^{\infty} \frac{\partial U_m^3}{\partial \theta'} + \frac{1}{r'} \sum_{m=0}^{\infty} \frac{\partial^2 (r'U_m^M)}{\partial \theta' \partial r'},$ $E_{\varphi'} = \frac{1}{r'\sin(\theta')} \sum_{n=0}^{\infty} \frac{\partial^2 (r'U_m^{\mathfrak{H}})}{\partial \varphi' \partial r'} - i\omega\mu_a \sum_{n=0}^{\infty} \frac{\partial U_m^{\mathfrak{H}}}{\partial \theta'},$ $U_m^{\mathfrak{I}} = \frac{2m+1}{m(m+1)} \frac{\left(-i\right)^{m-1}}{k} \left| \psi_m(kr') - \xi_m^{(1)}(kr') \frac{\frac{\partial(a\psi_m(ka))}{\partial a}}{\frac{\partial(a\xi_m^{(1)}(ka))}{\partial a}} \right| P_m^1(\cos(\theta')) \cos(\varphi'),$ $U_{m}^{M} = -\frac{2m+1}{m(m+1)} \frac{(-i)^{m-1} \omega \varepsilon_{a}}{k^{2}} \bigg[\psi_{m}(kr') - \xi_{m}^{(1)}(kr') \frac{\psi_{m}(ka)}{\xi^{(1)}(ka)} \bigg] P_{m}^{1}(\cos(\theta')) \sin(\varphi'),$

 ψ_m – сферические функции Бесселя, ξ_m^1 – сферические функции Ханкеля, P_m^1 – функция Лежандра.

Компоненты полей в декартвой системе координат (*x*, *y*, *z*) можно представить в виде:

$$E_{x} = E_{x'} \cos \theta_{0} + E_{z'} \sin \theta_{0}, E_{y} = E_{y'}, E_{z} = E_{z'} \cos \theta_{0} - E_{x'} \sin \theta_{0},$$

$$H_{x} = H_{x'} \cos \theta_{0} + H_{z'} \sin \theta_{0}, H_{y} = H_{y'}, H_{z} = H_{z'} \cos \theta_{0} - H_{x'} \sin \theta_{0}.$$
(2.2)

В сферической системе координат (r_1, θ_1, φ_1) компоненты полей имеют вид:

$$E_{r_{1}} = \sin \theta_{1} \cos \varphi_{1} E_{x} + \sin \theta_{1} \sin \varphi_{1} E_{y} + \cos \theta_{1} E_{z},$$

$$E_{\theta_{1}} = \cos \theta_{1} \cos \varphi_{1} E_{x} + \cos \theta_{1} \sin \varphi_{1} E_{y} - \sin \theta_{1} E_{z}, E_{\varphi_{1}} = -\sin \varphi_{1} E_{x} + \cos \varphi_{1} E_{y},$$

$$H_{r_{1}} = \sin \theta_{1} \cos \varphi_{1} H_{x} + \sin \theta_{1} \sin \varphi_{1} H_{y} + \cos \theta_{1} H_{z},$$

$$H_{\theta_{1}} = \cos \theta_{1} \cos \varphi_{1} H_{x} + \cos \theta_{1} \sin \varphi_{1} H_{y} - \sin \theta_{1} H_{z},$$

$$H_{\varphi_{1}} = -\sin \varphi_{1} H_{x} + \cos \varphi_{1} H_{y},$$
EVEL
$$\theta_{1}' = \operatorname{preces}(\cos \theta_{1} \cos \varphi_{1} - \sin \theta_{1} \cos \varphi_{1} - \sin \theta_{1})$$

$$\int e^{-i\theta} = \arccos(\cos\theta_1 \cos\theta_0 + \sin\theta_1 \cos\phi_1 \sin\theta_0),$$

$$\varphi' = \arccos\left[\frac{-\cos\theta_1\sin\theta_0 + \sin\theta_1\cos\varphi_1\cos\theta_0}{\sqrt{1 - (\cos\theta_1\cos\theta_0 + \sin\theta_1\cos\varphi_1\sin\theta_0)^2}}\right].$$

Токи на полусфере S_1 определяется по формулам:

$$j_{\theta_1} = H_{\phi_1}, j_{\phi_1} = -H_{\theta_1}, r_1 = a.$$
(2.4)

В цилиндрической системе координат (ρ_1, ϕ_1, z) эквивалентные токи на плоскости XY имеют вид:

$$J_{\varphi_{1}}^{\mathfrak{I}} = -H_{\rho_{1}}, J_{\rho_{1}}^{\mathfrak{M}} = -E_{\varphi_{1}}, J_{\rho_{1}}^{\mathfrak{I}} = H_{\varphi_{1}}, J_{\varphi_{1}}^{\mathfrak{M}} = E_{\rho_{1}}.$$
(2.5)

Далее, используя принцип эквивалентности и интегрируя эквивалентные токи, определим векторные потенциалы в области между плоскостями XY и X_1Y_1 по формулам:

$$A_{\varphi_{2}}^{\mathfrak{I}} = \int_{a}^{\infty} \int_{0}^{2\pi} \rho_{1} \Big[J_{\varphi_{1}}^{\mathfrak{I}} \cos(\varphi_{2} - \varphi_{1}) - J_{\rho_{1}}^{\mathfrak{I}} \sin(\varphi_{2} - \varphi_{1}) \Big] G_{1} d\varphi_{1} d\rho_{1},$$

$$A_{\varphi_{2}}^{M} = \int_{a}^{\infty} \int_{0}^{2\pi} \rho_{1} \Big[J_{\varphi_{1}}^{M} \cos(\varphi_{2} - \varphi_{1}) - J_{\rho_{1}}^{M} \sin(\varphi_{2} - \varphi_{1}) \Big] G_{1} d\varphi_{1} d\rho_{1}, \qquad (2.6)$$

$$A_{\rho_{2}}^{3} = \int_{a}^{\infty} \int_{0}^{2\pi} \rho_{1} \Big[J_{\rho_{1}}^{3} \cos(\varphi_{2} - \varphi_{1}) + J_{\varphi_{1}}^{3} \sin(\varphi_{2} - \varphi_{1}) \Big] G_{1} d\varphi_{1} d\rho_{1}, \qquad (2.6)$$

$$A_{\rho_{2}}^{M} = \int_{a}^{\infty} \int_{0}^{2\pi} \rho_{1} \Big[J_{\rho_{1}}^{M} \cos(\varphi_{2} - \varphi_{1}) + J_{\varphi_{1}}^{M} \sin(\varphi_{2} - \varphi_{1}) \Big] G_{1} d\varphi_{1} d\rho_{1}.$$

где G₁- функция Грина задачи рассеяния на круглом цилиндре [4].

$$G_{1} = \frac{-1}{8\pi i} \sum_{m=-\infty}^{\infty} \exp\left[im(\varphi_{2} - \varphi_{1})\right] \int_{\eta=-\infty}^{\infty} \left[J_{m}(\eta\rho_{<}) - \frac{\Omega J_{m}(\eta a)}{\Omega H_{m}^{(1)}(\eta a)} H_{m}^{(1)}(\eta\rho_{<})\right] \times H_{m}^{(1)}(\eta\rho_{>}) \frac{\exp\left[i\sqrt{k^{2} - \eta^{2}}|z|\right]}{\sqrt{k^{2} - \eta^{2}}} \eta \, d\eta$$
(2.7)

 $\Omega = 1$ — для нахождения компонент поля E_{φ_2} и H_{ρ_2} , $\Omega = \partial / \partial a$ — для нахождения компоненты поля H_{φ_2} , E_{ρ_2} и H_z . $\rho_< = \rho_1$, $\rho_> = \rho_2$ при $\rho_2 > \rho_1$ и $\rho_< = \rho_2$, $\rho_> = \rho_1$ при $\rho_2 < \rho_1$.

Компоненты полного поля в области между плоскостями *XY* и *X*₁*Y*₁ можно представить в виде:

$$\begin{split} E_{\varphi_{2}} &= \frac{-1}{i\omega\varepsilon_{a}} \left[k^{2}A_{\varphi_{2}}^{3} + \frac{1}{\rho_{2}} \frac{\partial}{\partial\varphi_{2}} \left[\frac{1}{\rho_{2}} \frac{\partial}{\partial\rho_{2}} \left(\rho_{2}A_{\rho_{2}}^{3} \right) + \frac{1}{\rho_{2}} \frac{\partial}{\partial\varphi_{2}} A_{\varphi_{2}}^{3} \right] \right] - \frac{\partial}{\partial z} A_{\rho_{2}}^{M}, \\ H_{\rho_{2}} &= \frac{-1}{i\omega\mu_{a}} \left[k^{2}A_{\rho_{2}}^{M} + \frac{\partial}{\partial\rho_{2}} \left[\frac{1}{\rho_{2}} \frac{\partial}{\partial\rho_{2}} \left(\rho_{2}A_{\rho_{2}}^{M} \right) + \frac{1}{\rho_{2}} \frac{\partial}{\partial\varphi_{2}} A_{\varphi_{2}}^{M} \right] \right] - \frac{\partial}{\partial z} A_{\varphi_{2}}^{3}, \end{split}$$
(2.8)
$$H_{z} &= \frac{-1}{i\omega\mu_{a}} \frac{\partial}{\partial z} \left[\frac{1}{\rho_{2}} \frac{\partial}{\partial\rho_{2}} \left(\rho_{2}A_{\rho_{2}}^{M} \right) + \frac{1}{\rho_{2}} \frac{\partial}{\partial\varphi_{2}} A_{\varphi_{2}}^{M} \right] + \frac{1}{\rho_{2}} \left[\frac{\partial}{\partial\rho_{2}} \left(\rho_{2}A_{\varphi_{2}}^{3} \right) - \frac{\partial}{\partial\varphi_{2}} A_{\rho_{2}}^{3} \right], \\E_{\rho_{2}} &= \frac{-1}{i\omega\varepsilon_{a}} \left[k^{2}A_{\rho_{2}}^{3} + \frac{\partial}{\partial\rho_{2}} \left[\frac{1}{\rho_{2}} \frac{\partial}{\partial\rho_{2}} \left(\rho_{2}A_{\rho_{2}}^{3} \right) + \frac{1}{\rho_{2}} \frac{\partial}{\partial\varphi_{2}} A_{\varphi_{2}}^{3} \right] \right] + \frac{\partial}{\partial z} A_{\varphi_{2}}^{M}, \\H_{\varphi_{2}} &= \frac{-1}{i\omega\mu_{a}} \left[k^{2}A_{\varphi_{2}}^{M} + \frac{1}{\rho_{2}} \frac{\partial}{\partial\varphi_{2}} \left[\frac{1}{\rho_{2}} \frac{\partial}{\partial\rho_{2}} \left(\rho_{2}A_{\rho_{2}}^{M} \right) + \frac{1}{\rho_{2}} \frac{\partial}{\partial\varphi_{2}} A_{\varphi_{2}}^{M} \right] \right] + \frac{\partial}{\partial z} A_{\varphi_{2}}^{M}. \end{split}$$

Подставляя в формулу (2.8) значение $\rho_2 = a$, находим компоненты магнитного поля и тока на поверхности S_2 по формулам:

$$j_{\varphi_2} = H_z, \, j_z = -H_{\varphi_2}.$$
(2.9)

Найдем токи на полусфере S₃ с использованием токового варианта гибридного метода:

$$j_{\theta_3} = \frac{1}{r_3} \left[\frac{\partial}{\partial r_3} (r_3 A_{\theta_3}^{\mathfrak{s}}) - \frac{\partial}{\partial \theta_3} A_{r_3}^{\mathfrak{s}} \right] + \exp(ikh\cos\theta_0) H_{\varphi_3}, \quad \text{при } r_3 = a ,$$

$$j_{\varphi_3} = \frac{-1}{r_3} \left[\frac{1}{\sin\theta_3} \frac{\partial}{\partial \varphi_3} (A_{r_3}^{\mathfrak{s}}) - \frac{\partial}{\partial r_3} (r_3 A_{\varphi_3}^{\mathfrak{s}}) \right] - \exp(ikh\cos\theta_0) H_{\theta_3}, \quad (2.10)$$

а компоненты полного поля H_{φ_3} , H_{θ_3} определены формулам (2.3),

$$\begin{aligned} A_{\gamma_3}^3 &= \sin\theta_3 \int_0^{-h2\pi} a \ j_{\varphi_2} \sin(\varphi_3 - \varphi_2) G_2 dz d\varphi_2 + \cos\theta_3 \int_0^{-h2\pi} a \ j_z G_2 dz d\varphi_2, \\ A_{\theta_3}^3 &= \cos\theta_3 \int_0^{-h2\pi} a \ j_{\varphi_2} \sin(\varphi_3 - \varphi_2) G_2 dz d\varphi_2 - \sin\theta_3 \int_0^{-h2\pi} a \ j_z G_2 dz d\varphi_2, \\ A_{\varphi_3}^3 &= \int_0^{-h2\pi} \int_0^{2\pi} a \ j_{\varphi_2} \cos(\varphi_3 - \varphi_2) G_2 dz d\varphi_2, \end{aligned}$$

G₂ – функция Грина в задаче рассеяния на сфере [4].

$$G_{2} = \frac{-k}{4\pi i} \sum_{m=0}^{\infty} \sum_{n=m}^{\infty} \varepsilon_{m} \frac{(2n+1)(n-m)!}{(n+m)!} \left[\psi_{n}(kr_{3}) - \frac{\partial(a\psi_{n}(ka))/\partial a}{\partial(a\xi_{n}^{(1)}(ka))/\partial a} \xi_{n}^{(1)}(kr_{3}) \right] \times , \qquad (2.11)$$

$$\times \xi_{n}^{(1)}(kr_{3}') \cos m(\varphi_{3} - \varphi_{2}) P_{n}^{m}(\cos\theta_{3}) P_{n}^{m}(\cos\theta_{3}')$$

$$\text{где, } r_{3}' = \sqrt{a^{2} + z^{2}}, \ \theta_{3}' = \pi - \arctan(a/|z|).$$

Найдем токи на полусфере S_3 с использованием апертурного варианта гибридного метода. Подставляя в формулу (2.8) значения z = -h, находим эквивалентные токи в плоскости X_1Y_1 по формулам:

$$J_{\varphi_2}^{\mathfrak{I}} = -H_{\rho_2}, \ J_{\rho_2}^{\mathfrak{M}} = -E_{\varphi_2}, \ J_{\rho_2}^{\mathfrak{I}} = H_{\varphi_2}, \ J_{\varphi_2}^{\mathfrak{M}} = E_{\rho_2}.$$
(2.12)

Векторные потенциалы в сферических координатах имеют вид:

$$\begin{aligned} A_{\varphi_{3}}^{3} &= \int_{a}^{\infty} \int_{0}^{2\pi} \rho_{2} \Big[J_{\varphi_{2}}^{3} \cos(\varphi_{3} - \varphi_{2}) - J_{\rho_{2}}^{3} \sin(\varphi_{3} - \varphi_{2}) \Big] G_{2} d\varphi_{2} d\rho_{2}, \\ A_{\varphi_{3}}^{M} &= \int_{a}^{\infty} \int_{0}^{2\pi} \rho_{2} \Big[J_{\varphi_{2}}^{M} \cos(\varphi_{3} - \varphi_{2}) - J_{\rho_{2}}^{M} \sin(\varphi_{3} - \varphi_{2}) \Big] G_{2} d\varphi_{2} d\rho_{2}, \end{aligned}$$

$$\begin{aligned} A_{\varphi_{3}}^{N} &= \sin \theta_{3} \int_{a}^{\infty} \int_{0}^{2\pi} \rho_{2} \Big[J_{\rho_{2}}^{3} \cos(\varphi_{3} - \varphi_{2}) + J_{\varphi_{2}}^{3} \sin(\varphi_{3} - \varphi_{2}) \Big] G_{2} d\varphi_{2} d\rho_{2}, \\ A_{\rho_{3}}^{M} &= \sin \theta_{3} \int_{a}^{\infty} \int_{0}^{2\pi} \rho_{2} \Big[J_{\rho_{2}}^{M} \cos(\varphi_{3} - \varphi_{2}) + J_{\varphi_{2}}^{M} \sin(\varphi_{3} - \varphi_{2}) \Big] G_{2} d\varphi_{2} d\rho_{2}, \\ A_{\theta_{3}}^{3} &= \cos \theta_{3} \int_{a}^{\infty} \int_{0}^{2\pi} \rho_{2} \Big[J_{\rho_{2}}^{3} \cos(\varphi_{3} - \varphi_{2}) + J_{\varphi_{2}}^{3} \sin(\varphi_{3} - \varphi_{2}) \Big] G_{2} d\varphi_{2} d\rho_{2}, \\ A_{\theta_{3}}^{M} &= \cos \theta_{3} \int_{a}^{\infty} \int_{0}^{2\pi} \rho_{2} \Big[J_{\rho_{2}}^{M} \cos(\varphi_{3} - \varphi_{2}) + J_{\varphi_{2}}^{M} \sin(\varphi_{3} - \varphi_{2}) \Big] G_{2} d\varphi_{2} d\rho_{2}, \\ A_{\theta_{3}}^{M} &= \cos \theta_{3} \int_{a}^{\infty} \int_{0}^{2\pi} \rho_{2} \Big[J_{\rho_{2}}^{M} \cos(\varphi_{3} - \varphi_{2}) + J_{\varphi_{2}}^{M} \sin(\varphi_{3} - \varphi_{2}) \Big] G_{2} d\varphi_{2} d\rho_{2}, \end{aligned}$$

 G_2 определяется в формуле (2.11), где $r'_3 = |\rho_2|, \ \theta'_3 = \pi/2.$

В результате, для тока на поверхности S_3 ($r_3 = a$) получаем:

$$\begin{split} j_{\theta_{3}} &= \frac{-1}{i\omega\mu_{a}} \Biggl[k^{2}A_{\varphi_{3}}^{M} + \frac{1}{r_{3}\sin\theta_{3}} \frac{\partial}{\partial\varphi_{3}} \Biggl(\frac{1}{r_{3}^{2}} \frac{\partial(r_{3}^{2}A_{r_{3}}^{M})}{\partial r_{3}} + \frac{1}{r_{3}\sin\theta_{3}} \frac{\partial(\sin\theta_{3}A_{\theta_{3}}^{M})}{\partial\theta_{3}} + \frac{1}{r_{3}\sin\theta_{3}} \frac{\partial A_{\varphi_{3}}^{M}}{\partial\varphi_{3}} \Biggr) \Biggr] + \\ &+ \frac{1}{r_{3}} \Biggl[\frac{\partial}{\partial r_{3}} \Bigl(r_{3}A_{\theta_{3}}^{3} \Bigr) - \frac{\partial}{\partial\theta_{3}} A_{r_{3}}^{3} \Biggr] \\ j_{\varphi_{3}} &= \frac{1}{i\omega\mu_{a}} \Biggl[k^{2}A_{\theta_{3}}^{M} + \frac{1}{r_{3}} \frac{\partial}{\partial\theta_{3}} \Biggl(\frac{1}{r_{3}^{2}} \frac{\partial(r_{3}^{2}A_{r_{3}}^{M})}{\partial r_{3}} + \frac{1}{r_{3}\sin\theta_{3}} \frac{\partial(\sin\theta_{3}A_{\theta_{3}}^{M})}{\partial\theta_{3}} + \frac{1}{r_{3}\sin\theta_{3}} \frac{\partial A_{\varphi_{3}}^{M}}{\partial\theta_{3}} \Biggr) \Biggr] + \\ &+ \frac{1}{r_{3}} \Biggl[\frac{1}{\sin\theta_{3}} \Bigl(r_{3}A_{\theta_{3}}^{3} \Bigr) - \frac{\partial}{\partial\theta_{3}} A_{r_{3}}^{3} \Biggr] \end{split}$$

Таким образом, мы нашли токи на всей поверхности тела с использованием двух вариантов гибридного метода с учетом взаимодействия. Далее с использованием принципа эквивалентности найдем диаграмму рассеяния. При интегрировании по S₁ и S₃ будем использовать сферические

координаты $(r_1, \theta_1, \varphi_1)$ и $(r_3, \theta_3, \varphi_3)$ с центрами в точке O и O_1 , соответственно, а при интегрировании по S_2 – цилиндрическую систему координат.

В результате, для диаграммы рассеяния при интегрировании токов на S₁ получаем:

$$E_{\varphi}^{1} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\varphi}^{9}.$$
(2.15)

$$E^{1}_{\theta} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A^{3}_{\theta}.$$
(2.16)

где
$$A_{\theta}^{3} = a^{2} \int_{0}^{\pi/2} \int_{0}^{2\pi} \sin(\theta_{1}) \frac{\partial}{\partial \theta} \left[j_{\theta_{1}} \frac{\partial \cos \beta}{\partial \theta_{1}} + j_{\varphi_{1}} \frac{1}{\sin(\theta_{1})} \frac{\partial \cos \beta}{\partial \varphi_{1}} \right] P_{0} d\varphi_{1} d\theta_{1} ,$$

 $A_{\varphi}^{3} = \frac{a^{2}}{\sin(\theta)} \int_{0}^{\pi/2} \int_{0}^{2\pi} \sin(\theta_{1}) \frac{\partial}{\partial \varphi} \left[j_{\theta_{1}} \frac{\partial \cos \beta}{\partial \theta_{1}} + j_{\varphi_{1}} \frac{1}{\sin(\theta_{1})} \frac{\partial \cos \beta}{\partial \varphi_{1}} \right] P_{0} d\varphi_{1} d\theta_{1} ,$

 $\cos \beta = \cos(\theta) \cos(\theta_1) + \sin(\theta) \sin(\theta_1) \cos(\varphi - \varphi_1)$, а компоненты тока определены формулами (2.4).

Функция Грина свободного пространства в сферической системы координат:

$$P_{0} = \frac{1}{4\pi} \frac{\exp(ikr^{(P)})}{r^{(P)}} \exp\left[-ikr^{(S)} \left(\cos\theta^{(P)}\cos\theta^{(S)} + \sin\theta^{(P)}\sin\theta^{(S)}\cos(\varphi^{(P)} - \varphi^{(S)})\right)\right], (2.17)$$

S – точка интегрирования и P – точка наблюдения.

Вклад токов на поверхности S_2 в диаграмму рассеяния:

$$E_{\varphi}^{2} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\varphi}^{3}.$$
(2.18)

$$E_{\theta}^{2} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\theta}^{3}.$$
(2.19)

где,
$$A_{\theta}^{3} = a \left(\cos \theta \int_{0}^{-h} \int_{0}^{2\pi} j_{\varphi_{2}} \sin(\varphi - \varphi_{2}) P_{0} d\varphi_{2} dz - \sin \theta \int_{0}^{-h} \int_{0}^{2\pi} j_{z} P_{0} d\varphi_{2} dz \right),$$

 $A_{\varphi}^{3} = a \int_{0}^{-h} \int_{0}^{2\pi} \cos(\varphi - \varphi_{2}) j_{\varphi_{2}} P_{0} d\varphi_{2} dz, \text{ а компоненты тока определены формулами}$
(2.9).

Вклад токов на поверхности S_3 в диаграмму рассеяния:

$$E_{\varphi}^{3} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\varphi}^{3}.$$
(2.20)

$$E_{\theta}^{3} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\theta}^{3}.$$
(2.21)

THE
$$A_{\theta}^{3} = a^{2} \int_{\pi/2}^{\pi} \int_{0}^{2\pi} \sin(\theta_{3}) \frac{\partial}{\partial \theta} \left[j_{\theta_{3}} \frac{\partial \cos \beta}{\partial \theta_{3}} + j_{\varphi_{3}} \frac{1}{\sin(\theta_{3})} \frac{\partial \cos \beta}{\partial \varphi_{3}} \right] P_{0} d\varphi_{3} d\theta_{3} ,$$

 $A_{\varphi}^{3} = \frac{a^{2}}{\sin(\theta)} \int_{\pi/2}^{\pi} \int_{0}^{2\pi} \sin(\theta_{3}) \frac{\partial}{\partial \varphi} \left[j_{\theta_{3}} \frac{\partial \cos \beta}{\partial \theta_{3}} + j_{\varphi_{3}} \frac{1}{\sin(\theta_{3})} \frac{\partial \cos \beta}{\partial \varphi_{3}} \right] P_{0} d\varphi_{3} d\theta_{3} ,$

 $\cos \beta = \cos(\theta)\cos(\theta_3) + \sin(\theta)\sin(\theta_3)\cos(\varphi - \varphi_3)$, а компоненты тока определены формулами (2.10) и (2.14).

В результате, суммируя вклады всех токов для диаграммы рассеяния получаем:

$$E_{\varphi} = E_{\varphi}^{1} + E_{\varphi}^{2} + \exp\left[ikh\cos(\theta)\right] E_{\varphi}^{3}.$$
(2.22)

$$E_{\theta} = E_{\theta}^{1} + E_{\theta}^{2} + \exp[ikh\cos(\theta)]E_{\theta}^{3}.$$
(2.23)

2.2. РЕШЕНИЕ ГИБРИДНЫМ МЕТОДОМ БЕЗ УЧЕТА ВЗАИМОДЕЙСТВИЯ

При осевом падении плоской электромагнитной волны токи на полусфере S_1 будем, как и ранее, полагать равным токам на полной сфере при рассеянии плоской волны. Токи на полусферах S_2 , S_3 полагаются равными нулю. В результате диаграмма рассеяния выражается только через токи на поверхности S_1 .

При падении плоской электромагнитной волны под углом θ_0 , токи на полусферах S_1 , S_3 полагаются равными токам на полных сферах при рассеянии плоской волны. Токи на S_2 полагаются равным токам на цилиндре при рассеянии плоской волны в виде ряда Рэлея.

Для случая Е- поляризации падающей плоской волны:

Токи на поверхности цилиндра S₂:

$$j_{z} = \frac{i\omega\varepsilon_{a}}{k^{2}\sin\theta_{0}}\exp(-ikz\cos\theta_{0})\sum_{m=0}^{\infty}\varepsilon_{m}(-i)^{m}\cos m\varphi_{2}\begin{bmatrix}J'_{m}(ka\sin\theta_{0}) - \frac{J_{m}(ka\sin\theta_{0})}{H_{m}^{(1)}(ka\sin\theta_{0})} \times \\ \times H'_{m}^{(1)}(ka\sin\theta_{0}) \end{bmatrix},$$

$$j_{\varphi_{2}} = 0.$$
(2.24)

Вклад токов на поверхности цилиндра S_2 в диаграмму рассеяния:

$$E_{\varphi}^2 = 0.$$
 (2.25)

$$E_{\theta}^{2} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\theta}^{3}.$$
(2.26)

где
$$A_{\theta}^{\vartheta} = -a \sin \theta \int_{0}^{-h} \int_{0}^{2\pi} j_z P_0 d\varphi_2 dz$$

Токи на полусфере S₃:

$$j_{\theta_3} = \exp(ikh\cos\theta_0)H_{\varphi_3}, \ j_{\varphi_3} = -\exp(ikh\cos\theta_0)H_{\theta_3},$$
(2.27)

а компоненты полного поля H_{φ_3} , H_{θ_3} определены формулам (2.3).

Для рассеянного поля получаем:

$$E_{\varphi}^{3} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\varphi}^{3}.$$
(2.28)

$$E_{\theta}^{3} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\theta}^{3}.$$
(2.29)

где
$$A_{\theta}^{3} = a^{2} \int_{\pi/2}^{\pi} \int_{0}^{2\pi} \sin(\theta_{3}) \frac{\partial}{\partial \theta} \left[j_{\theta_{3}} \frac{\partial \cos \beta}{\partial \theta_{3}} + j_{\varphi_{3}} \frac{1}{\sin(\theta_{3})} \frac{\partial \cos \beta}{\partial \varphi_{3}} \right] P_{0} d\varphi_{3} d\theta_{3}$$
,

$$A_{\varphi}^{\mathfrak{H}} = \frac{a^2}{\sin(\theta)} \int_{\pi/2}^{\pi} \int_{0}^{2\pi} \sin(\theta_3) \frac{\partial}{\partial \varphi} \left[j_{\theta_3} \frac{\partial \cos \beta}{\partial \theta_3} + j_{\varphi_3} \frac{1}{\sin(\theta_3)} \frac{\partial \cos \beta}{\partial \varphi_3} \right] P_0 \, d\varphi_3 d\theta_3 \,,$$

 $\cos\beta = \cos(\theta)\cos(\theta_3) + \sin(\theta)\sin(\theta_3)\cos(\varphi - \varphi_3) .$

В результате для диаграммы рассеяния в Е и Н плоскостях получаем:

$$E_{\varphi} = E_{\varphi}^{1} + \exp[ikh\cos(\theta)]E_{\varphi}^{3}.$$
(2.30)

$$E_{\theta} = E_{\theta}^{1} + E_{\theta}^{2} + \exp[ikh\cos(\theta)]E_{\theta}^{3}.$$
(2.31)

Для случая Н-поляризации падающей плоской волны:

Компоненты полного поля на поверхности S₁ определяются по формулам (2.1), (2.2) и (2.3), где

$$U_m^{\mathsf{M}} = \frac{2m+1}{m(m+1)} \frac{\left(-i\right)^{m-1} \omega \varepsilon_a}{k^2} \left[\psi_m(kr') - \xi_m^{(1)}(kr') \frac{\psi_m(ka)}{\xi_m^{(1)}(ka)} \right] P_m^1(\cos(\theta')) \cos(\varphi') ,$$
$$U_m^{\mathfrak{d}} = \frac{2m+1}{m(m+1)} \frac{\left(-i\right)^{m-1}}{k} \left[\psi_m(kr') - \xi_m^{(1)}(kr') \frac{\frac{\partial(a\psi_m(ka))}{\partial a}}{\frac{\partial(a\xi_m^{(1)}(ka))}{\partial a}} \right] P_m^1(\cos(\theta')) \sin(\varphi') .$$

Токи на полусфере S_1 определяются по формуле (2.4).

Вклад токов на поверхности S_1 в диаграмму рассеяния:

$$E_{\varphi}^{1} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\varphi}^{\vartheta}.$$
(2.32)

$$E^{1}_{\theta} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A^{\vartheta}_{\theta}.$$
(2.33)

где,
$$A_{\theta}^{3} = a^{2} \int_{0}^{\pi/2} \int_{0}^{2\pi} \sin(\theta_{1}) \frac{\partial}{\partial \theta} \left[j_{\theta_{1}} \frac{\partial \cos \beta}{\partial \theta_{1}} + j_{\varphi_{1}} \frac{1}{\sin(\theta_{1})} \frac{\partial \cos \beta}{\partial \varphi_{1}} \right] P_{0} d\varphi_{1} d\theta_{1},$$

 $A_{\varphi}^{3} = \frac{a^{2}}{\sin(\theta)} \int_{0}^{\pi/2} \int_{0}^{2\pi} \sin(\theta_{1}) \frac{\partial}{\partial \varphi} \left[j_{\theta_{1}} \frac{\partial \cos \beta}{\partial \theta_{1}} + j_{\varphi_{1}} \frac{1}{\sin(\theta_{1})} \frac{\partial \cos \beta}{\partial \varphi_{1}} \right] P_{0} d\varphi_{1} d\theta_{1},$

 $\cos\beta = \cos(\theta)\cos(\theta_1) + \sin(\theta)\sin(\theta_1)\cos(\varphi - \varphi_1).$

Токи на поверхности S₂:

$$j_{\varphi_{2}} = -\sqrt{\frac{\varepsilon_{a}}{\mu_{a}}}\sin\theta_{0}\exp(-ikz\cos\theta_{0})\sum_{m=0}^{\infty}\varepsilon_{m}(-i)^{m}\cos m\varphi_{2}\begin{bmatrix}J_{m}(ka\sin\theta_{0}) - \frac{J_{m}'(ka\sin\theta_{0})}{H_{m}'^{(1)}(ka\sin\theta_{0})} \times\\ \times H_{m}^{(1)}(ka\sin\theta_{0})\end{bmatrix},\\ j_{z} = \frac{-i\cos\theta_{0}}{ka\sin\theta_{0}}\sqrt{\frac{\varepsilon_{a}}{\mu_{a}}}\exp(-ikz\cos\theta_{0})\sum_{m=0}^{\infty}m\,\varepsilon_{m}(-i)^{m}\sin m\varphi_{2}\begin{bmatrix}J_{m}(ka\sin\theta_{0}) - \frac{J_{m}'(ka\sin\theta_{0})}{H_{m}'^{(1)}(ka\sin\theta_{0})} \times\\ \times H_{m}^{(1)}(ka\sin\theta_{0})\end{bmatrix},\\ (2.34)$$

Вклад токов на поверхности $S_2\,$ в диаграмму рассеяния:

$$E_{\varphi}^{2} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\varphi}^{3}.$$
(2.35)

$$E_{\theta}^{2} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\theta}^{3}.$$
(2.36)

где,
$$A_{\varphi}^{\mathfrak{d}} = a \int_{0}^{-h} \int_{0}^{2\pi} \cos(\varphi - \varphi_2) j_{\varphi_2} P_0 d\varphi_2 dz$$
,
 $A_{\theta}^{\mathfrak{d}} = a \left[\cos \theta \int_{0}^{-h} \int_{0}^{2\pi} j_{\varphi_2} \sin(\varphi - \varphi_2) P_0 d\varphi_2 dz - \sin \theta \int_{0}^{-h} \int_{0}^{2\pi} j_z P_0 d\varphi_2 dz \right].$

Токи на полусфере S_3 определяются по формуле (2.27).

Вклад токов на поверхности $S_3\,$ в диаграмму рассеяния

$$E_{\varphi}^{3} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\varphi}^{3}.$$
(2.37)

$$E_{\theta}^{3} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\theta}^{3}.$$
(2.38)

где,
$$A_{\theta}^{3} = a^{2} \int_{\pi/2}^{\pi} \int_{0}^{2\pi} \sin(\theta_{3}) \frac{\partial}{\partial \theta} \left[j_{\theta_{3}} \frac{\partial \cos \beta}{\partial \theta_{3}} + j_{\varphi_{3}} \frac{1}{\sin(\theta_{3})} \frac{\partial \cos \beta}{\partial \varphi_{3}} \right] P_{0} d\varphi_{3} d\theta_{3},$$

 $A_{\varphi}^{3} = \frac{a^{2}}{\sin(\theta)} \int_{\pi/2}^{\pi} \int_{0}^{2\pi} \sin(\theta_{3}) \frac{\partial}{\partial \varphi} \left[j_{\theta_{3}} \frac{\partial \cos \beta}{\partial \theta_{3}} + j_{\varphi_{3}} \frac{1}{\sin(\theta_{3})} \frac{\partial \cos \beta}{\partial \varphi_{3}} \right] P_{0} d\varphi_{3} d\theta_{3},$

 $\cos\beta = \cos(\theta)\cos(\theta_3) + \sin(\theta)\sin(\theta_3)\cos(\varphi - \varphi_3).$

В результате для диаграммы рассеяния в Е и Н плоскостях получаем:

$$E_{\varphi} = E_{\varphi}^{1} + E_{\varphi}^{2} + \exp[ikh\cos(\theta)]E_{\varphi}^{3}.$$

$$E_{\theta} = E_{\theta}^{1} + E_{\theta}^{2} + \exp[ikh\cos(\theta)]E_{\theta}^{3}.$$
(2.39)
(2.40)

2.3. РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

На рис. 2.3–2.23 приведены результаты моделирования диаграммы рассеяния в Е-плоскости (а) и Н- плоскости (б) для Е и Н поляризаций падающей волны плоской волны под различными углами на цилиндр электрической длиной kh = 5 с различными электрическими размерами радиуса ограничивающих сфер ka. Кривая 1 на рисунках показывает результаты расчета ММ, 2 – гибридным методом с учетом взаимодействия (апертурный вариант), 3 – гибридным методом с учетом взаимодействия (токовый вариант), 4 – гибридным методом без учета взаимодействия, 5 – методом ГФК.

Рис 2.3. Диаграммы рассеяния для Е поляризации

при $\theta_0 = 0$, ka = 3.

Рис 2.5. Диаграммы рассеяния для Е поляризации

при $\theta_0 = 0$, ka = 1.

при $\theta_0 = 10^0$, ka = 2.

Рис 2.8. Диаграммы рассеяния для Е поляризации

Рис 2.9. Диаграммы рассеяния для Е поляризации при $\theta_0 = 30^0, ka = 3$.

Рис 2.11. Диаграммы рассеяния для Е поляризации

при $\theta_0 = 30^0$, ka = 1.

Рис 2.12. Диаграммы рассеяния для Е поляризации

Рис 2.13. Диаграммы рассеяния для Е поляризации

при $\theta_0 = 45^0$, ka = 2.

Рис 2.15. Диаграммы рассеяния для Е поляризации

при $\theta_0 = 90^0$, ka = 3.

при $\theta_0 = 45^0$, ka = 1.

Рис 2.16. Диаграммы рассеяния для Е поляризации

при $\theta_0 = 90^0$, ka = 2.

Рис 2.17. Диаграммы рассеяниядля Е поляризации

при $\theta_0 = 90^0$, ka = 1.

Рис 2.18. Диаграммы рассеяния для Н поляризации

Рис 2.19. Диаграммы рассеяния для Н поляризации

при $\theta_0 = 30^0$, ka = 2.

Рис 2.20. Диаграммы рассеяния для Н поляризации

Рис 2.21. Диаграммы рассеяния для Н поляризации

при $\theta_0 = 45^0$, ka = 3.

Рис 2.22. Диаграммы рассеяния для Н поляризации

при $\theta_0 = 45^0, ka = 2.$

Рис 2.23. Диаграммы рассеяния для Н поляризации

при $\theta_0 = 45^0, ka = 1.$

На основании полученных результатов можно сделать следующие выводы:

При падении плоской волны под малыми углами 1. гибридный метод с взаимодействия позволяет обеспечить хорошее совпадение учетом с результатами методом расчета диаграммы рассеяния моментов при соотношении радиуса тела вращения к длине волны более одной шестой, а для диаграммы рассеяния в Н плоскости и для меньших значений.

2. При падении плоской волны под большими углами все варианты гибридного метода обеспечивают близкие результаты.

3. Метод ГФК обеспечивает только качественное совпадение с результатами строгого расчета.

ГЛАВА 3. ИЗЛУЧЕНИЕ ОТКРЫТОГО КОНЦА НЕРЕГУЛЯРНОГО ПРЯМОУГОЛЬНОГО ВОЛНОВОДА

В данной главе рассмотрено задачи излучения основной моды H_{10} из открытого конца нерегулярного прямоугольного волновода, образующие стенок которого являются дугами окружности [23].

3.1. ИЗЛУЧЕНИЕ ОТКРЫТОГО КОНЦА НЕРЕГУЛЯРНОГО В Н-ПЛОСКОСТИ ПРЯМОУГОЛЬНОГО ВОЛНОВОДА

Рассмотрим излучение моды H_{10} из открытого конца нерегулярного прямоугольного волновода. Начнем с волновода нерегулярного в Н-плоскости, продольное сечение которого показано на рис.3.1, где a – радиус кривизны узких стенок волновода в Н плоскости, 2b– размер регулярной части волновода в Н плоскости, 2b– размер регулярной части волновода в Н плоскости, 2d – размер волновода в Е плоскости, h– длина регулярной части волновода, L = h + a – длина широких стенок. Будем искать решение задачи в виде диаграммы направленности (ДН) в Н– плоскости. Исследование ДН в ортогональной плоскости проводиться не будет, поскольку она в данном приближении совпадает с ДН открытого конца регулярного волновода.

Рис 3.1. Геометрия задачи.

Тангенциальные компоненты поля моды H₁₀ прямоугольного металлического волновода в поперечном сечении S (рис.3.1) имеют вид [24]:

$$E_{y} = -2\cos\left(\frac{\pi x}{2b}\right), \quad H_{x} = \frac{2}{\omega\mu_{a}}k_{v}\cos\left(\frac{\pi x}{2b}\right), \quad (3.1)$$

где $k_v = \sqrt{k^2 - \left(\frac{\pi}{2b}\right)^2}$ - волновое число в волноводе.

Используя принцип эквивалентности [3], находим вклад в ДН в Hплоскости от эквивалентных токов $J_y^{\,9} = -2H_x$ и $J_x^{\,M} = -2E_y$ на поверхности S:

$$E^{\nu}_{\varphi} = \frac{-k^2}{i\omega\varepsilon_a} A^{\vartheta}_{\varphi} - ikA^{\mathcal{M}}_{\theta}, \qquad (3.2)$$

$$A_{\varphi}^{\mathfrak{I}} = \int_{-d-b}^{d} \int_{y}^{b} P_{0} dx dy, A_{\theta}^{\mathfrak{M}} = \cos \theta \int_{-d-b}^{d} \int_{x}^{b} J_{x}^{\mathfrak{M}} P_{0} dx dy$$

где компоненты поля E_y и H_x определены в (3.1), P_0 - функция Грина свободного пространства в сферической системы координат (2.17), точка наблюдения ($r \rightarrow \infty, \theta = 0...\pi, \varphi = 0$) и точка интегрирования ($r' = |x|, \theta' = \pi/2, \varphi' = 0, \pi$).

Интегрируя, получаем выражение для ДН в H- плоскости ($\phi = 0$) в сферической системе координат:

$$E_{\varphi}^{\nu} = \frac{i}{b} \frac{\cos(kb\sin\theta)}{k\cos\theta - k_{\nu}}.$$
(3.3)

Выражение (3.3) совпадает с известным выражением ДН открытого конца прямоугольного волновода в Н–плоскости в приближении ГФК [9].

Далее, интегрируя эквивалентные токи на поверхности S, находим токи на участках поверхности круговых цилиндров S₁, S₂:

$$j_{y} = \frac{1}{i\omega\mu_{a}} \left[k^{2}A_{\varphi_{1,2}}^{\mathcal{M}} + \frac{1}{\rho_{1,2}} \frac{\partial}{\partial\varphi_{1,2}} \left[\frac{1}{\rho_{1,2}} \frac{\partial}{\partial\rho_{1,2}} \left(\rho_{1,2}A_{\rho_{1,2}}^{\mathcal{M}} \right) + \frac{1}{\rho_{1,2}} \frac{\partial}{\partial\varphi_{1,2}} A_{\varphi_{1,2}}^{\mathcal{M}} \right] \right] - \frac{\partial}{\partial\rho_{1,2}} A_{y}^{\mathcal{H}}, \quad (3.4)$$

$$A_{y}^{9} = \int_{-d-b}^{d} \int_{y}^{b} G_{3} dx dy, A_{\rho_{1,2}}^{M} = \sin \varphi_{1,2} \int_{-d-b}^{d} \int_{x}^{b} J_{x}^{M} G_{3} dx dy \quad , A_{\varphi_{1,2}}^{M} = \cos \varphi_{1,2} \int_{-d-b}^{d} \int_{x}^{b} J_{x}^{M} G_{3} dx dy$$

где

$$G_{3} = \frac{i}{4} \sum_{m=-\infty}^{\infty} \exp\left[im(\varphi_{1,2} - \varphi_{1,2}')\right] \left[J_{m}(k\rho_{1,2}) - J_{m}(ka)H_{m}^{(1)}(k\rho_{1,2}) / H_{m}^{(1)}(ka)\right] \times H_{m}^{(1)}(k\rho_{1,2}')$$

- функция Грина круглого идеально-проводящего цилиндра [4] для электрической поляризации, зависящая от полярных координат точек наблюдения ($\rho_{1,2}, \varphi_{1,2}$) на S_1 и S_2 , соответственно, а также точек интегрирования на поверхности S, $\rho'_1 = |x - (a+b)|$, $\varphi'_1 = \pi/2$ и $\rho'_2 = |x + (a+b)|$, $\varphi'_2 = 3\pi/2$,

$$\varphi_{1,2} = \pm \arccos\left(\frac{\sqrt{a^2 - [x - (a + b)]^2}}{a}\right), \rho_{1,2} = a$$

Таким образом, мы нашли токи на *S*₁, *S*₂. Далее находим вклад этих токов в ДН в Н–плоскости:

$$E_{\varphi}^{1} = \frac{-k^{2}}{i\omega\varepsilon_{a}} \int_{-d-(b+a)}^{d} \int_{y}^{-b} j_{y} P_{0} dx dy , \qquad (3.5)$$
$$E_{\varphi}^{2} = \frac{-k^{2}}{i\omega\varepsilon_{a}} \int_{-d-b}^{d} \int_{b}^{b+a} j_{y} P_{0} dx dy .$$

Суммируя все вклады, получаем:

$$E_{\varphi} = E_{\varphi}^{1} + E_{\varphi}^{\nu} + E_{\varphi}^{2}.$$
(3.6)

На рис. 3.2 - 3.5 приведены результаты расчета ДН в Н-плоскости в переднем полупространстве для разных значений *ka* и *kb*. Электрическая длина регулярной части волновода *kh* = 10 здесь и далее. Кривая 1 показывает результаты расчета методом конечных элементов (МКЭ), 2 – гибридным методом по формуле (3.6), 3 – методом ГФК по формуле (3.3).

,

Рис 3.2. Диаграммы направленности в Н плоскости при

 $ka = 1, kb = 0.72\pi, kd = 0.36\pi.$

Рис 3.3. Диаграммы направленности в Н плоскости при $ka = 0.5, kb = 0.72\pi, kd = 0.36\pi.$

Рис 3.4. Диаграммы направленности в Н плоскости при

 $ka = 1, kb = 1.08\pi, kd = 0.54\pi.$

Рис 3.5. Диаграммы направленности в Н плоскости при $ka = 0.5, kb = 1.08\pi, kd = 0.54\pi$.

На рисунках видно, что результаты расчета ДН гибридным методом и с использованием МКЭ близки (разница менее 1 дБ) за исключением небольшой области вблизи краев преднего полупространства, где она достигает 2дБ. Ошибка результата расчета ДН методом ГФК на краю переднего полупространства достигает 13 дБ.

3.2. ИЗЛУЧЕНИЕ ОТКРЫТОГО КОНЦА НЕРЕГУЛЯРНОГО В Е ПЛОСКОСТИ ПРЯМОУГОЛЬНОГО ВОЛНОВОДА

Перейдем к анализу излучения открытого конца волновода, нерегулярного в Е–плоскости. Рассмотрим ДН в Е– плоскости ($\varphi = 90^{0}$), поскольку ДН в ортогональной плоскости совпадает в данном приближении с ДН открытого конца регулярного волновода.

Используя принцип эквивалентности, находим вклад в ДН в Е плоскости от эквивалентных токов $J_y^{\mathfrak{I}} = -2H_x$, $J_x^{\mathfrak{M}} = -2E_y$ на поверхности S:

$$E_{\theta}^{\nu} = \frac{-k^2}{i\omega\varepsilon_a} A_{\theta}^{\vartheta} + ikA_{\varphi}^{M}, \qquad (3.7)$$
$$A_{\theta}^{\vartheta} = \cos\theta \int_{-d-b}^{d} \int_{y}^{b} J_{y}^{\vartheta} P_0 dx dy , \quad A_{\varphi}^{M} = -\int_{-d-b}^{d} \int_{x}^{b} J_{x}^{M} P_0 dx dy,$$

где *P*₀ - функция Грина свободного пространства в сферической системы координат (2.17).

Интегрируя, получаем выражение для ДН в Е-плоскости:

$$E_{\theta}^{\nu} = \frac{-i\omega\mu_a}{\pi k} ctg\left(\frac{\theta}{2}\right) \sin\left(kd\sin\theta\right).$$
(3.8)

Выражение (3.8) совпадает с известным выражением ДН открытого конца прямоугольного волновода в Е–плоскости в приближении ГФК [9].

Далее, интегрируя эквивалентные токи на поверхности S , находим токи на участках поверхности круговых цилиндров S₁, S₂:

$$j_{z} = -\sin \varphi_{1,2} \left[\frac{k_{v}^{2}}{-i\omega\mu_{a}} A_{x}^{M} + \frac{1}{\rho_{1,2}} \left[\frac{\partial}{\partial\rho_{1,2}} \left(\rho_{1,2} A_{\varphi_{1,2}}^{\vartheta} \right) - \frac{\partial}{\partial\varphi_{1,2}} A_{\rho_{1,2}}^{\vartheta} \right] \right],$$

$$j_{x} = \cos \varphi_{1,2} \left[\frac{k_{v}^{2}}{-i\omega\mu_{a}} A_{x}^{M} + \frac{1}{\rho_{1,2}} \left[\frac{\partial}{\partial\rho_{1,2}} \left(\rho_{1,2} A_{\varphi_{1,2}}^{\vartheta} \right) - \frac{\partial}{\partial\varphi_{1,2}} A_{\rho_{1,2}}^{\vartheta} \right] \right],$$
(3.9)

$$A_{x}^{M} = \int_{-d-b}^{d} \int_{x}^{b} J_{x}^{M} G_{4} dx dy, A_{\rho_{1,2}}^{\vartheta} = \sin \varphi_{1,2} \int_{-d-b}^{d} \int_{y}^{b} J_{y}^{\vartheta} G_{4} dx dy \qquad , A_{\varphi_{1,2}}^{\vartheta} = \cos \varphi_{1,2} \int_{-d-b}^{d} \int_{y}^{b} J_{y}^{\vartheta} G_{4} dx dy,$$

где

$$G_{4} = \frac{i}{4} \sum_{m=-\infty}^{\infty} \exp\left[im(\varphi_{1,2} - \varphi_{1,2}')\right] \left[J_{m}(k_{\nu}\rho_{1,2}) - J_{m}'(k_{\nu}a)H_{m}^{(1)}(k_{\nu}\rho_{1,2}) / H_{m}'^{(1)}(k_{\nu}a)\right] \times H_{m}^{(1)}(k_{\nu}\rho_{1,2}')$$

функция Грина идеально-проводящего круглого цилиндра [4] для магнитной поляризации, зависящая полярных координат точек наблюдения ($\rho_{1,2}, \phi_{1,2}$) на S_1 и S_2 , соответственно, а также точек интегрирования на поверхности S, $\rho'_1 = |x - (a+b)|$, $\phi'_1 = \pi/2$ и $\rho'_2 = |x + (a+b)|$, $\phi'_2 = 3\pi/2$, k_v - волновое число в волноводе,

$$\varphi_{1,2} = \pm \arccos\left(\frac{\sqrt{a^2 - [y - (a+b)]^2}}{a}\right) , \rho_{1,2} = a .$$

Таким образом, мы нашли токи на S₁, S₂. Добавляя вклад этих токов в диаграмму направленности в Е–плоскости, получаем:

$$E_{\theta}^{1} = \frac{-k^{2}}{i\omega\varepsilon_{a}} \left[\cos\theta \int_{-(d+a)-b}^{-d} \int_{x}^{b} j_{x}P_{0}dxdy - \sin\theta \int_{-(d+a)-b}^{-d} \int_{z}^{b} j_{z}P_{0}dxdy \right],$$
(3.10)
$$E_{\theta}^{2} = \frac{-k^{2}}{i\omega\varepsilon_{a}} \left[\cos\theta \int_{d}^{d+a} \int_{-b}^{b} j_{x}P_{0}dxdy - \sin\theta \int_{d}^{d+a} \int_{-b}^{b} j_{z}P_{0}dxdy \right].$$

Суммируя все вклады, получаем:

$$E_{\theta} = E_{\theta}^1 + E_{\theta}^{\nu} + E_{\theta}^2. \tag{3.11}$$

На рис. 3.6 – 3.9 приведены результаты расчета ДН в Е- плоскости в переднем полупространстве для разных значений *ka*, *kb* и *kd*. Кривая 1 показывает результаты расчета с использованием МКЭ, 2 – гибридным методом по формуле (3.11), 3 – методом ГФК по формуле (3.8).

Рис 3.7. Диаграммы направленности в Е плоскости при $ka = 0.5, kb = 0.72\pi, kd = 0.36\pi$.

 $ka = 1, kb = 1.08\pi, kd = 0.54\pi.$ 0 50 60 70 80 10 90 40 -2 -4 -6 B -8 -10 1 -12 3 -14 θ, градусы

Рис 3.9. Диаграммы направленности в Е плоскости при $ka = 0.5, kb = 1.08\pi, kd = 0.54\pi$.

На рисунках видно, что результаты, полученных гибридным методом и МКЭ близки между собой и, как в предыдущем случае, разница между ними

почти везде менее 1 дБ. Отличие результата расчета ДН методом ГФК на краях переднего полупространства достигает 4 дБ.

На основании полученных в главе результатов можно сделать следующие выводы:

- При излучении моды H₁₀ из открытого конца нерегулярного в Е и Н плоскости прямоугольного волновода, погрешность вычисления диаграммы направленности в переднем полупространстве гибридным методом не превышает 2 дБ.
- Погрешность метода ГФК при вычислении излучения из открытого конца нерегулярного волновода в переднем полупространстве может превышать 10 дБ.
ГЛАВА 4. ИЗЛУЧЕНИЕ ОТКРЫТОГО КОНЦА НЕРЕГУЛЯРНОГО КРУГЛОГО ВОЛНОВОДА

В данной главе рассмотрены задачи излучения основной моды H_{11} и двух первых скалярных мод E_{01} и H_{01} из открытого конца нерегулярного круглого волновода с образующей стенок в виде дуги окружности [23].

4.1. ИЗЛУЧЕНИЕ МОДЫ Н₀₁ ИЗ ОТКРЫТОГО КОНЦА НЕРЕГУЛЯРНОГО КРУГЛОГО ВОЛНОВОДА

Рассмотрим излучение моды H_{01} из открытого конца круглого волновода. Продольное сечение круглого волновода имеет такой же вид, как и прямоугольного волновода (рис.3.1), где *a* – радиус нерегулярной части круглого волновода (торроидальной поверхности), *b* - радиус круглого волновода.

Введем цилиндрическую систему координат (ρ', ϕ', z'), связанную с декартовой системой (x, y, z) по формулам: $\rho' = \sqrt{x^2 + y^2}$, $\phi' = \arctan(y/x)$, z' = z.

Компоненты поля моды H_{01} круглого волновода на плоскости *S* в цилиндрической системе координат (ρ', ϕ', z') можно представить в виде [24]:

$$H_{z'} = J_0 \left(\frac{\varepsilon_{01}}{b}\rho'\right), H_{\rho'} = -iv_1 \left(\frac{b}{\varepsilon_{01}}\right)^2 J_0' \left(\frac{\varepsilon_{01}}{b}\rho'\right),$$

$$E_{\varphi'} = i\omega\mu_a \left(\frac{b}{\varepsilon_{01}}\right)^2 J_0' \left(\frac{\varepsilon_{01}}{b}\rho'\right),$$
(4.1)
The $\varepsilon_{01} = 3.832, v_1 = \sqrt{k^2 - \left(\frac{\varepsilon_{01}}{b}\right)^2}.$

Используя принцип эквивалентности, находим вклад в ДН от эквивалентных токов $J_{\varphi'}^{\mathfrak{I}} = -2H_{\rho'}, J_{\rho'}^{\mathfrak{M}} = -2E_{\varphi'}$ на плоскости S:

$$E_{\varphi}^{1} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\varphi}^{\vartheta} - ikA_{\theta}^{\mathscr{M}}, \qquad (4.2)$$
$$A_{\theta}^{\mathscr{M}} = \cos\theta \int_{0}^{b} \int_{0}^{2\pi} \rho' \cos(\varphi - \varphi')J_{\rho'}^{\mathscr{M}}P_{0}d\varphi'd\rho', A_{\varphi}^{\vartheta} = \int_{0}^{b} \int_{0}^{2\pi} \rho' \cos(\varphi - \varphi')J_{\varphi'}^{\vartheta}P_{0}d\varphi'd\rho',$$

где *P*₀- функция Грина свободного пространства в сферической системы координат (2.17).

Интегрируя, получаем выражение для ДН в сферической системе координат:

$$E_{\varphi}^{1} = -i\omega\mu_{a}bJ_{0}(\varepsilon_{01})\frac{J_{1}(kb\sin\theta)}{k\cos\theta - v_{1}}.$$
(4.3)

Выражение (4.3) совпадает с известным выражением ДН моды H_{01} из открытого конца круглого волновода в приближении ГФК [9].

Далее найдем токи на участке торродиальной поверхности S₁. Компоненты поля (4.1) в декартовой системе координат (*x*, *y*, *z*) имеют вид:

$$H_{x} = -\cos\left[\arctan\left(\frac{y}{x}\right)\right] iv_{1}\left(\frac{b}{\varepsilon_{01}}\right)^{2} J_{0}'\left(\frac{\varepsilon_{01}}{b}\sqrt{x^{2}+y^{2}}\right),$$

$$H_{y} = -\sin\left[\arctan\left(\frac{y}{x}\right)\right] iv_{1}\left(\frac{b}{\varepsilon_{01}}\right)^{2} J_{0}'\left(\frac{\varepsilon_{01}}{b}\sqrt{x^{2}+y^{2}}\right),$$

$$E_{x} = -\sin\left[\arctan\left(\frac{y}{x}\right)\right] i\omega\mu_{a}\left(\frac{b}{\varepsilon_{01}}\right)^{2} J_{0}'\left(\frac{\varepsilon_{01}}{b}\sqrt{x^{2}+y^{2}}\right),$$

$$E_{y} = \cos\left[\arctan\left(\frac{y}{x}\right)\right] i\omega\mu_{a}\left(\frac{b}{\varepsilon_{01}}\right)^{2} J_{0}'\left(\frac{\varepsilon_{01}}{b}\sqrt{x^{2}+y^{2}}\right).$$
(4.4)

Ток на S_1 в цилиндрической системе координат (ρ', ϕ', z') имеет вид:

$$j_{\varphi'} = \frac{1}{i\omega\mu_a} \left[k^2 A_{\varphi_1}^{\scriptscriptstyle M} + \frac{1}{\rho_1} \frac{\partial}{\partial \varphi_1} \left[\frac{1}{\rho_1} \frac{\partial}{\partial \rho_1} (\rho_1 A_{\rho_1}^{\scriptscriptstyle M}) + \frac{1}{\rho_1} \frac{\partial}{\partial \varphi_1} A_{\varphi_1}^{\scriptscriptstyle M} + \frac{\partial}{\partial y} A_{y}^{\scriptscriptstyle M} \right] \right] + \left[\frac{\partial}{\partial y} A_{\rho_1}^{\scriptscriptstyle P} - \frac{\partial}{\partial \rho_1} A_{y}^{\scriptscriptstyle P} \right]$$

$$(4.5)$$

$$\begin{aligned} A_{\rho_{1}}^{9} &= \sin \varphi_{1} \int_{-b-b}^{b} \int_{x}^{9} G_{5} dx dy , \quad A_{\varphi_{1}}^{9} &= \cos \varphi_{1} \int_{-b-b}^{b} \int_{x}^{9} G_{5} dx dy , \quad A_{\rho_{1}}^{M} &= \sin \varphi_{1} \int_{-b-b}^{b} \int_{x}^{M} G_{5} dx dy , \\ A_{\varphi_{1}}^{M} &= \cos \varphi_{1} \int_{-b-b}^{b} \int_{x}^{M} G_{5} dx dy , \quad A_{y}^{9} &= \int_{-b-b}^{b} \int_{y}^{9} G_{5} dx dy , \quad A_{y}^{M} &= \int_{-b-b}^{b} \int_{y}^{M} G_{5} dx dy , \end{aligned}$$

где $J_y^{\mathfrak{I}} = -2H_x$, $J_x^{\mathfrak{M}} = -2E_y$, $J_x^{\mathfrak{I}} = 2H_y$, $J_y^{\mathfrak{M}} = 2E_x$ – эквивалентные токи на поверхности *S*, а компоненты поля E_x , E_y , H_x и H_y определены в (4.4), функция Грина на цилиндре [4] для электрической поляризации:

$$G_{5} = \frac{-1}{8\pi i} \sum_{m=-\infty}^{\infty} \exp\left[im(\varphi_{1} - \varphi_{1}')\right] \int_{\eta=-\infty}^{\infty} \left[J_{m}(\eta\rho_{1}) - \frac{J_{m}(\eta a)}{H_{m}^{(1)}(\eta a)} H_{m}^{(1)}(\eta\rho_{1})\right] H_{m}^{(1)}(\eta\rho_{1}') \times \\ \times \frac{\exp\left[i\sqrt{k^{2} - \eta^{2}}|z_{1} - z_{1}'|\right]}{\sqrt{k^{2} - \eta^{2}}} \eta \, d\eta$$

$$(4.6)$$

 (ρ_1, φ_1, z_1) – полярные координаты точек на S_1 , а $\varphi'_1 = \frac{\pi}{2}, \rho'_1 = |\mathbf{x} - (\mathbf{a} + \mathbf{b})|, z'_1 = y$ полярные координаты точек интегрирования на поверхности *S*, при этом полярные координаты связаны с системой координат (ρ', φ', z') формулой:

$$\varphi_1 = \arccos\left(\frac{\sqrt{a^2 - \left[\rho' - (a+b)\right]^2}}{a}\right), \rho_1 = a.$$

Вклад токов на S₁ в диаграмму направленности:

$$E_{\varphi}^{2} = \frac{-k^{2}}{i\omega\varepsilon_{a}} \left(\int_{0}^{2\pi b+a} \int_{b}^{b+a} \rho' \sqrt{1 + \left(\frac{b-\rho'}{\sqrt{a^{2} - \left[\rho' - (a+b)\right]^{2}}}\right)^{2}} j_{\varphi'} \cos(\varphi - \varphi') P_{0} d\rho' d\varphi' \right).$$
(4.7)

Суммируя все вклады, получаем:

$$E_{\varphi} = E_{\varphi}^{1} + E_{\varphi}^{2}. \tag{4.8}$$

На рис. 4.1 – 4.4 приведены результаты расчета ДН моды H_{01} в переднем полупространстве для разных значений *ka* и *kb*. Кривая 1 показывает

результаты расчета методом моментов, 2– МКЭ, 3 – гибридным методом по формуле (4.8),4 – методом ГФК по формуле (4.3).

Рис 4.1. Диаграммы направленности моды H_{01}

при ka = 1, kb = 4.

Рис 4.2 Диаграммы направленности моды H_{01}

```
при ka = 0.5, kb = 4.
```


Рис 4.4. Диаграммы направленности моды *H*₀₁

при *ka* = 0.5, *kb* = 4.4.

На рисунках видно, что разница между результатами расчета гибридным методом и МКЭ не превышает 2 дБ и уменьшается с уменьшением *ka*.Отличие результата расчета ДН методом ГФК на краю переднего полупространства достигает 5 дБ.

4.2. ИЗЛУЧЕНИЕ МОДЫ Е₀₁ ИЗ ОТКРЫТОГО КОНЦА НЕРЕГУЛЯРНОГО КРУГЛОГО ВОЛНОВОДА

Компоненты поля моды E_{01} круглого волновода на плоскости S в цилиндрической системе координат (ρ', ϕ', z') можно представить в виде [24]:

$$E_{z'} = J_0 \left(\frac{\beta_{01}}{b}\rho'\right), \ E_{\rho'} = -iv_2 \left(\frac{b}{\beta_{01}}\right)^2 J_0' \left(\frac{\beta_{01}}{b}\rho'\right),$$

$$H_{\varphi'} = -i\omega\varepsilon_a \left(\frac{b}{\beta_{01}}\right)^2 J_0' \left(\frac{\beta_{01}}{b}\rho'\right),$$
(4.9)
$$\Gamma \mu e \quad \beta_{01} = 2.405, \ v_2 = \sqrt{k^2 - \left(\frac{\beta_{01}}{b}\right)^2}.$$

Используя принцип эквивалентности, находим вклад в ДН от эквивалентных токов $J^{\mathfrak{I}}_{\rho'} = 2H_{\phi'}$, $J^{\mathfrak{M}}_{\phi'} = 2E_{\rho'}$ на плоскости S:

$$E_{\theta}^{1} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\theta}^{3} + ikA_{\varphi}^{M}, \qquad (4.10)$$

$$A_{\theta}^{3} = \cos\theta \int_{0}^{b} \int_{0}^{2\pi} \rho' \cos(\varphi - \varphi')J_{\rho'}^{3}P_{0}d\varphi'd\rho', \qquad (4.10)$$

$$A_{\varphi}^{M} = \int_{0}^{b} \int_{0}^{2\pi} \rho' \cos(\varphi - \varphi')J_{\varphi'}^{M}P_{0}d\varphi'd\rho', \quad \text{где} \quad P_{0} - \phi \text{ункция Грина} \quad \text{свободного}$$

пространства в сферической системы координат (2.17).

Интегрируя, получаем выражение для ДН в сферической системе координат:

$$E_{\theta}^{1} = ik^{2} \frac{b^{2}}{\beta_{01}} J_{1}(\beta_{01}) \frac{\sin \theta J_{0}(kb\sin \theta)}{k\cos \theta - v_{2}}.$$
(4.11)

Выражение (4.11) совпадает с известным выражением ДН моды *E*₀₁ изоткрытого конца круглого волновода в приближении ГФК [9].

Компоненты поля (4.9) в декартовой системе координат (*x*, *y*, *z*) имеют вид:

$$E_{x} = -\cos\left[\arctan\left(\frac{y}{x}\right)\right]iv_{2}\left(\frac{b}{\beta_{01}}\right)^{2}J_{0}'\left(\frac{\beta_{01}}{b}\sqrt{x^{2}+y^{2}}\right),$$

$$E_{y} = -\sin\left[\arctan\left(\frac{y}{x}\right)\right]iv_{2}\left(\frac{b}{\beta_{01}}\right)^{2}J_{0}'\left(\frac{\beta_{01}}{b}\sqrt{x^{2}+y^{2}}\right),$$

$$H_{x} = \sin\left[\arctan\left(\frac{y}{x}\right)\right]i\omega\varepsilon_{a}\left(\frac{b}{\beta_{01}}\right)^{2}J_{0}'\left(\frac{\beta_{01}}{b}\sqrt{x^{2}+y^{2}}\right),$$

$$H_{y} = -\cos\left[\arctan\left(\frac{y}{x}\right)\right]i\omega\varepsilon_{a}\left(\frac{b}{\beta_{01}}\right)^{2}J_{0}'\left(\frac{\beta_{01}}{b}\sqrt{x^{2}+y^{2}}\right).$$
(4.12)

Ток на S_1 в цилиндрической системе координат (ρ', ϕ', z') имеет вид:

$$j_{z'} = \sin \varphi_{l} \begin{bmatrix} \frac{1}{i\omega\mu_{a}} \left[k^{2}A_{y}^{\mu} + \frac{\partial}{\partial y} \left[\frac{1}{\rho_{l}} \frac{\partial}{\partial \rho_{l}} (\rho_{l}A_{\rho_{l}}^{\mu}) + \frac{1}{\rho_{l}} \frac{\partial}{\partial \varphi_{l}} A_{\varphi_{l}}^{\mu} + \frac{\partial}{\partial y} A_{y}^{\mu} \right] \right] + \\ + \frac{1}{\rho_{l}} \left[\frac{\partial}{\partial \rho_{l}} (\rho_{l}A_{\varphi_{l}}^{\eta}) - \frac{\partial}{\partial \varphi_{l}} A_{\rho_{l}}^{\eta} \right] \\ j_{\rho'} = \cos \varphi_{l} \begin{bmatrix} \frac{1}{i\omega\mu_{a}} \left[k^{2}A_{y}^{\mu} + \frac{\partial}{\partial y} \left[\frac{1}{\rho_{l}} \frac{\partial}{\partial \rho_{l}} (\rho_{l}A_{\rho_{l}}^{\mu}) + \frac{1}{\rho_{l}} \frac{\partial}{\partial \varphi_{l}} A_{\varphi_{l}}^{\mu} + \frac{\partial}{\partial y} A_{y}^{\mu} \right] \right] + \\ + \frac{1}{\rho_{l}} \left[\frac{\partial}{\partial \rho_{l}} (\rho_{l}A_{\varphi_{l}}^{\eta}) - \frac{\partial}{\partial \varphi_{l}} A_{\rho_{l}}^{\eta} \right] \\ A_{\rho_{l}}^{\eta} = \sin \varphi_{l} \int_{-b-b}^{b} J_{x}^{\eta} G_{5} dx dy, \quad A_{\varphi_{l}}^{\eta} = \cos \varphi_{l} \int_{-b-b}^{b} J_{x}^{\eta} G_{5} dx dy, \quad A_{\rho_{l}}^{\mu} = \sin \varphi_{l} \int_{-b-b}^{b} J_{x}^{\mu} G_{6} dx dy \quad , \\ A_{\varphi_{l}}^{\mu} = \cos \varphi_{l} \int_{-b-b}^{b} J_{x}^{\mu} G_{6} dx dy \quad , \quad A_{y}^{\eta} = \int_{-b-b}^{b} J_{y}^{\eta} G_{5} dx dy, \quad A_{y}^{\mu} = \int_{-b-b}^{b} J_{y}^{\mu} G_{6} dx dy \quad , \\ a_{\varphi_{l}}^{\mu} = 2E \quad A^{2} - 2H \quad A^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of } a_{\varphi_{l}}^{\mu} = 2E \quad \text{argumentation to the set of }$$

где $J_y^{\mathfrak{I}} = -2H_x, J_x^{\mathfrak{M}} = -2E_y, J_x^{\mathfrak{I}} = 2H_y, J_y^{\mathfrak{M}} = 2E_x$ – эквивалентные токи на поверхности *S*, а компоненты поля E_x, E_y, H_x и H_y определены в (4.12),

функция Грина цилиндра [4] для магнитной поляризации:

$$G_{6} = \frac{-1}{8\pi i} \sum_{m=-\infty}^{\infty} \exp\left[im(\varphi_{1} - \varphi_{1}')\right] \int_{\eta=-\infty}^{\infty} \left[J_{m}(\eta\rho_{1}) - \frac{J_{m}'(\eta a)}{H_{m}'^{(1)}(\eta a)} H_{m}^{(1)}(\eta\rho_{1})\right] H_{m}^{(1)}(\eta\rho_{1}') \times$$

$$\times \frac{\exp\left[i\sqrt{k^{2} - \eta^{2}} |z_{1} - z_{1}'|\right]}{\sqrt{k^{2} - \eta^{2}}} \eta \, d\eta$$
(4.14)

Вклад токов на S_1 в ДН:

$$E_{\theta}^{2} = \frac{-k^{2}}{i\omega\varepsilon_{a}} \Big(\cos\theta A_{\rho} - \sin\theta A_{z}\Big), \tag{4.15}$$

где

$$\begin{split} A_{\rho} &= \int_{0}^{2\pi} \int_{b}^{b+a} \rho' \sqrt{1 + \left(\frac{b - \rho'}{\sqrt{a^2 - [\rho' - (a+b)]^2}}\right)^2} j_{\rho'} \cos(\varphi - \varphi') P_0 d\rho' d\varphi' \,, \\ A_z &= \int_{0}^{2\pi} \int_{b}^{b+a} \rho' \sqrt{1 + \left(\frac{b - \rho'}{\sqrt{a^2 - [\rho' - (a+b)]^2}}\right)^2} j_{z'} P_0 d\rho' d\varphi' \,. \end{split}$$

Суммируя все вклады, получаем:

$$E_{\theta} = E_{\theta}^1 + E_{\theta}^2. \tag{4.16}$$

На рис. 4.5 – 4.8 приведены результаты расчета ДН моды E_{01} в переднем полупространстве для разных значений ka, kb. Кривая 1 показывает результаты расчета методом моментов, 2–МКЭ, 3 – гибридным методом по формуле (4.16), 4 – методом ГФК по формуле (4.11).

при *ka* = 0.5, *kb* = 4.

при *ka* = 1, *kb* = 4.4.

Рис 4.8. Диаграммы направленности моды Е01

при *ka* = 0.5, *kb* = 4.4.

На рисунках видно, что различие результатов расчета ДН гибридным методом и с использованием метода МКЭ менее 2 дБ, а между методом моментов и ГФК – достигает 4 дБ.

4.3. ИЗЛУЧЕНИЕ МОДЫ Н₁₁ ИЗ ОТКРЫТОГО КОНЦА НЕРЕГУЛЯРНОГО КРУГЛОГО ВОЛНОВОДА

Компоненты поля моды H_{11} круглого волновода на плоскости S в цилиндрической системе координат (ρ', ϕ', z') можно представить в виде [24]:

$$\begin{split} H_{z'} &= J_{1} \left(\frac{\varepsilon_{11}}{b} \rho' \right) \cos \varphi', \ E_{\rho'} = i \omega \mu_{a} \frac{1}{\rho'} \left(\frac{b}{\varepsilon_{11}} \right)^{2} J_{1} \left(\frac{\varepsilon_{11}}{b} \rho' \right) \sin \varphi' , \\ E_{\varphi'} &= i \omega \mu_{a} \left(\frac{b}{\varepsilon_{11}} \right)^{2} J_{1}' \left(\frac{\varepsilon_{11}}{b} \rho' \right) \cos \varphi' , \\ H_{\varphi'} &= i v_{3} \frac{1}{\rho'} \left(\frac{b}{\varepsilon_{11}} \right)^{2} J_{1} \left(\frac{\varepsilon_{11}}{b} \rho' \right) \sin \varphi' , \\ H_{\rho'} &= -i v_{3} \left(\frac{b}{\varepsilon_{11}} \right)^{2} J_{1}' \left(\frac{\varepsilon_{11}}{b} \rho' \right) \cos \varphi' , \end{split}$$

$$(4.17)$$

$$H_{\varphi'} = i v_{3} \frac{1}{\rho'} \left(\frac{b}{\varepsilon_{11}} \right)^{2} J_{1} \left(\frac{\varepsilon_{11}}{b} \rho' \right) \sin \varphi' , \\ H_{\rho'} &= -i v_{3} \left(\frac{b}{\varepsilon_{11}} \right)^{2} J_{1}' \left(\frac{\varepsilon_{11}}{b} \rho' \right) \cos \varphi' , \end{cases}$$

$$(4.17)$$

$$H_{\varphi'} = i v_{3} \frac{1}{\rho'} \left(\frac{b}{\varepsilon_{11}} \right)^{2} J_{1} \left(\frac{\varepsilon_{11}}{b} \rho' \right) \sin \varphi' , \\ H_{\rho'} &= -i v_{3} \left(\frac{b}{\varepsilon_{11}} \right)^{2} J_{1}' \left(\frac{\varepsilon_{11}}{b} \rho' \right) \cos \varphi' ,$$

Интегрируя эквивалентные токи $J_{\rho'}^{\mathfrak{I}} = 2H_{\phi'}, J_{\phi'}^{\mathfrak{M}} = 2E_{\rho'}, J_{\phi'}^{\mathfrak{I}} = -2H_{\rho'},$ $J_{\rho'}^{\mathfrak{M}} = -2E_{\phi'}$ на плоскости *S*, находим ДН в приближении ГФК:

$$E_{\theta}^{1} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\theta}^{3} + ikA_{\varphi}^{M}, \qquad (4.18)$$

$$E_{\varphi}^{1} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\varphi}^{3} - ikA_{\theta}^{M}, \qquad (4.18)$$

$$A_{\rho}^{3} = \int_{0}^{b}\int_{0}^{2\pi} \rho' \Big[J_{\rho'}^{3}\cos(\varphi - \varphi') + J_{\varphi'}^{3}\sin(\varphi - \varphi')\Big]P_{0}d\varphi'd\rho', \qquad (4.18)$$

$$A_{\varphi}^{3} = \int_{0}^{b}\int_{0}^{2\pi} \rho' \Big[J_{\rho'}^{3}\cos(\varphi - \varphi') - J_{\rho'}^{3}\sin(\varphi - \varphi')\Big]P_{0}d\varphi'd\rho', \qquad (4.18)$$

$$\begin{aligned} A^{\mathcal{M}}_{\rho} &= \int_{0}^{b} \int_{0}^{2\pi} \rho' \Big[J^{\mathcal{M}}_{\rho'} \cos(\varphi - \varphi') + J^{\mathcal{M}}_{\varphi'} \sin(\varphi - \varphi') \Big] P_{0} d\varphi' d\rho' , \\ A^{\mathcal{M}}_{\varphi} &= \int_{0}^{b} \int_{0}^{2\pi} \rho' \Big[J^{\mathcal{M}}_{\varphi'} \cos(\varphi - \varphi') - J^{\mathcal{M}}_{\rho'} \sin(\varphi - \varphi') \Big] P_{0} d\varphi' d\rho' , \\ A^{\mathcal{H}}_{\theta} &= \cos \theta A^{\mathcal{H}}_{\rho} , A^{\mathcal{M}}_{\theta} = \cos \theta A^{\mathcal{M}}_{\rho} , \end{aligned}$$

где *P*₀ - функция Грина свободного пространства в сферической системы координат (2.17).

Интегрируя, получаем выражения для ДН в сферической системе координат:

$$E_{\theta}^{1} = \frac{-\omega\mu_{a}}{k} \left(\frac{b}{\varepsilon_{11}}\right)^{2} J_{1}(\varepsilon_{11}) \sin\varphi(v_{3}\cos\theta + k) \frac{J_{1}(kb\sin\theta)}{\sin\theta}.$$
(4.19)

$$E_{\varphi}^{1} = \omega \mu_{a} J_{1}(\varepsilon_{11}) \cos \varphi \frac{J_{1}'(kb \sin \theta)}{v_{3} - k \cos \theta}.$$
(4.20)

Выражения (4.19) и (4.20) совпадают с известными выражениями ДН моды H_{11} при излучении из открытого конца круглого волновода в приближении ГФК [9].

Компоненты поля (4.17) в декартовой системе координат (x, y, z) имеют вид:

$$E_{x} = i\omega\mu_{a} \left(\frac{b}{\varepsilon_{11}}\right)^{2} \left[\frac{1}{\rho'}J_{1}\left(\frac{\varepsilon_{11}}{b}\rho'\right) - J_{1}'\left(\frac{\varepsilon_{11}}{b}\rho'\right)\right] \sin\varphi'\cos\varphi',$$

$$E_{y} = i\omega\mu_{a} \left(\frac{b}{\varepsilon_{11}}\right)^{2} \left[\frac{1}{\rho'}J_{1}\left(\frac{\varepsilon_{11}}{b}\rho'\right)\sin\varphi'^{2} + J_{1}'\left(\frac{\varepsilon_{11}}{b}\rho'\right)\cos\varphi'^{2}\right],$$

$$H_{x} = -iv_{3} \left(\frac{b}{\varepsilon_{11}}\right)^{2} \left[J_{1}'\left(\frac{\varepsilon_{11}}{b}\rho'\right)\cos\varphi'^{2} + \frac{1}{\rho'}J_{1}\left(\frac{\varepsilon_{11}}{b}\rho'\right)\sin\varphi'^{2}\right],$$

$$H_{y} = -iv_{3} \left(\frac{b}{\varepsilon_{11}}\right)^{2} \left[J_{1}'\left(\frac{\varepsilon_{11}}{b}\rho'\right) - \frac{1}{\rho'}J_{1}\left(\frac{\varepsilon_{11}}{b}\rho'\right)\right] \sin\varphi'\cos\varphi'.$$
(4.21)

Компоненты тока на поверхности S_1 имеют вид:

$$j_{\varphi'} = \cos\varphi' \begin{bmatrix} \frac{1}{i\omega\mu_a} \left[k^2 A_{\varphi_1}^{\scriptscriptstyle M} + \frac{1}{\rho_1} \frac{\partial}{\partial\varphi_1} \left[\frac{1}{\rho_1} \frac{\partial}{\partial\rho_1} (\rho_1 A_{\rho_1}^{\scriptscriptstyle M}) + \frac{1}{\rho_1} \frac{\partial}{\partial\varphi_1} A_{\varphi_1}^{\scriptscriptstyle M} + \frac{\partial}{\partial y} A_{y}^{\scriptscriptstyle M} \right] \right] + \\ + \left[\frac{\partial}{\partial y} A_{\rho_1}^{\scriptscriptstyle P} - \frac{\partial}{\partial\rho_1} A_{y}^{\scriptscriptstyle P} \right]$$
(4.22)

где

$$\begin{aligned} A_{y}^{3} &= \int_{-b-b}^{b} \int_{y}^{3} G_{5} dx dy, A_{y}^{M} = \int_{-b-b}^{b} \int_{y}^{M} G_{5} dx dy, A_{\rho_{1}}^{3} = \sin \varphi_{1} \int_{-b-b}^{b} \int_{x}^{3} G_{5} dx dy, \\ A_{\varphi_{1}}^{3} &= \cos \varphi_{1} \int_{-b-b}^{b} \int_{x}^{3} G_{5} dx dy, A_{\rho_{1}}^{M} = \sin \varphi_{1} \int_{-b-b}^{b} \int_{x}^{M} G_{5} dx dy, A_{\varphi_{1}}^{M} = \cos \varphi_{1} \int_{-b-b}^{b} \int_{x}^{M} G_{5} dx dy. \\ j_{\rho'} &= \cos \varphi_{1} \sin \varphi' \left[\frac{1}{i \omega \mu_{a}} \left[k^{2} A_{x}^{M} + \frac{\partial}{\partial x} \left[\frac{1}{\rho_{1}} \frac{\partial}{\partial \rho_{1}} (\rho_{1} A_{\rho_{1}}^{M}) + \frac{1}{\rho_{1}} \frac{\partial}{\partial \varphi_{1}} A_{\varphi_{1}}^{M} + \frac{\partial}{\partial x} A_{x}^{M} \right] \right] + \\ &+ \frac{1}{\rho_{1}} \left[\frac{\partial}{\partial \rho_{1}} (\rho_{1} A_{\varphi_{1}}^{3}) - \frac{\partial}{\partial \varphi_{1}} A_{\rho_{1}}^{3} \right] \end{aligned}$$

$$(4.23)$$

где

$$A_{x}^{3} = \int_{-b-b}^{b} \int_{x}^{3} G_{5} dx dy , A_{x}^{M} = \int_{-b-b}^{b} \int_{x}^{M} G_{6} dx dy , A_{\rho_{1}}^{3} = \sin \varphi_{1} \int_{-b-b}^{b} \int_{y}^{3} G_{5} dx dy ,$$

$$A_{\varphi_{1}}^{3} = \cos \varphi_{1} \int_{-b-b}^{b} \int_{y}^{3} G_{5} dx dy , A_{\rho_{1}}^{M} = \sin \varphi_{1} \int_{-b-b}^{b} \int_{y}^{M} G_{6} dx dy , A_{\varphi_{1}}^{M} = \cos \varphi_{1} \int_{-b-b}^{b} \int_{y}^{M} G_{6} dx dy ,$$

For $I^{3} = 2H$, $I^{3} = -2H$, $I^{M} = -2E$, $I^{M} = 2E$

где $J_x^9 = 2H_y$, $J_x^9 = -2H_x$, $J_x^M = -2E_y$, $J_x^M = 2E_x$ - эквивалентные токи на плоскости *S*, а компоненты поля E_x , E_y , H_x и H_y определены в (4.21), $G_{5,6}$ определены в (4.6) и (4.14).

Вклад токов на S_1 в диаграмму направленности:

$$E_{\varphi}^{2} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\varphi}.$$
(4.24)

$$E_{\theta}^{2} = \frac{-k^{2}}{i\omega\varepsilon_{a}}A_{\theta}.$$
(4.25)

где

$$\begin{aligned} A_{\varphi} &= \int_{0}^{2\pi b+a} \int_{0}^{\beta} \rho' \sqrt{1 + \left(\frac{b-\rho'}{\sqrt{a^2 - [\rho' - (a+b)]^2}}\right)^2} \left[j_{\varphi'} \cos(\varphi - \varphi') - j_{\rho'} \sin(\varphi - \varphi')\right] P_0 d\rho' d\varphi', \\ A_{\theta} &= \cos\theta \int_{0}^{2\pi b+a} \int_{0}^{\beta} \rho' \sqrt{1 + \left(\frac{b-\rho'}{\sqrt{a^2 - [\rho' - (a+b)]^2}}\right)^2} \left[j_{\rho'} \cos(\varphi - \varphi') + j_{\varphi'} \sin(\varphi - \varphi')\right] P_0 d\rho' d\varphi', \end{aligned}$$

*P*₀ - функция Грина свободного пространства в сферической системы координат (2.17).

Суммируя все вклады, получаем:

$$E_{\varphi} = E_{\varphi}^1 + E_{\varphi}^2. \tag{4.26}$$

$$E_{\theta} = E_{\theta}^1 + E_{\theta}^2. \tag{4.27}$$

На рис. 4.9, 4.10 приведены результаты расчета ДН моды H_{11} в Е плоскости для kb = 2 и разных значений ka, а на рис. 4.11, 4.12 – в Н плоскости. Кривая 1 показывает результаты расчета методом моментов, 2– МКЭ, 3 – гибридным методом по формулам (4.26) и (4.27), 4 – методом ГФК по формулам (4.19) и (4.20).

Рис 4.9. Диаграммы направленности в Е- плоскости моды H_{11}

при *ka* =1.

Рис 4.10. Диаграммы направленности в Е- плоскости моды H_{11}

Рис 4.11. Диаграммы направленности в H- плоскости моды H_{11}

при *ka* =1.

Рис 4.12. Диаграммы направленности в H- плоскости моды H_{11}

при *ka* = 0.5.

На рисунках видно, что в секторе углов 135⁰ разница результатов расчета ДН точными методами от расчета гибридным методом в обеих плоскостях менее 2 дБ, а отличие от от расчета методом ГФК достигает 4 дБ. На краях переднего полупространства разница между точными методами и гибридным методом достигает 4 дБ, а отличие от метода ГФК - 5 дБ. При этом разница результатов, полученных с использованием метода моментов и МКЭ в передем полупространстве около 1 дБ.

На основании полученных в главе результатов можно сделать следующие выводы:

1. При излучении моды *H*₀₁ из открытого конца нерегулярного круглого волновода, погрешность вычисления диаграммы направленности в переднем полупространстве гибридным методом не превышает 2 дБ.

2. При излучении моды *E*₀₁ из открытого конца нерегулярного круглого волновода, погрешность вычисления диаграммы направленности в переднем полупространстве в Н плоскости гибридным методом не превышает 2 дБ.

3. При излучении моды H_{11} из открытого конца нерегулярного круглого волновода, погрешность вычисления диаграммы направленности в секторе углов 135⁰ переднего полупространства в обеих плоскостях менее 2 дБ, а на краю переднего полупространства достигает 4 дБ.

5. Погрешность метода ГФК при вычислении излучения из открытого конца нерегулярного волновода в переднем полупространстве может превышать 5 дБ.

ЗАКЛЮЧЕНИЕ

В диссертационной работе получены следующие основные результаты:

- Предложен и апробирован гибридный метод решения задач рассеяния электромагнитных волн на идеально-проводящих телах с цилиндрической и осевой симметрией, сочетающий метод собственных функций, метод последовательных дифракций и принцип эквивалентности.
- Разработан алгоритм и проведено исследование диаграммы рассеяния плоской электромагнитной волны на идеально-проводящем цилиндре с кусочно- аналитической образующей гибридным методом.
- Разработан алгоритм и проведено исследование диаграммы рассеяния плоской электромагнитной волны на идеально-проводящем теле с осевой симметрией и кусочно- аналитической образующей гибридным методом.
- 4) Предложен и апробирован гибридный метод решения задач излучения антенн с цилиндрической и осевой симметрией, сочетающий метод собственных функций, метод последовательных дифракций и принцип эквивалентности
- 5) Разработан алгоритм и проведено исследование диаграмм направленности открытого конца нерегулярного в Е и нерегулярного в Н плоскости прямоугольного волновода гибридным методом.
- 6) Разработан алгоритм и проведено исследование диаграммы направленности открытого конца нерегулярного круглого волновода гибридным методом.

Несмотря на погрешности вычисления, можно делать вывод о том, что предложенный гибридный метод позволяет, с одной стороны, расширить область применения метода разделения переменных, а с другой стороны уточнить асимптотические методы решения задач излучения и рассеяния электромагитных волн гладкими металлическими телами с кусочноаналитической образующей.

- 1. А.Ю.Гринев. Численные методы решения прикладных задач электродинамики.М.:Радиотехника.2012.
- A.A.Kleshchev. JournalofAcoustics, 2016, Vol.6, N.4, P. 45.https://www.scirp.org/journal/paperinformation.aspx?paperid=72779.
- 3. Г.Т.Марков, А.Ф.Чаплин. Возбуждение электромагнитных волн. М.- Л.: Энергия.1967.
- 4. Л.Фелсен, Н.Маркувиц. Излучение и рассеяние волн. М.:Мир.1978.
- А.Г.Кюркчан, Н.И.Смирнова. Обобщение метода Т-матриц на задачи рассеяния волн телами с неаналитической границей// РЭ. 2017.Т.62. №5.С.476.
- В.А.Боровиков, Б.Е.Кинбер. Геометрическая теория дифракции. М.: Связь. 1978.
- П.Я.Уфимцев. Основы физической теории дифракции.М.: БИНОМ. Лаборатория знаний. 2013.
- В.А.Фок. Проблемы дифракции и распространения электромагнитных волн. М.: Сов. Радио.1970.
- Л.А.Вайнштейн. Теория дифракции и метод факторизации. М.: Сов. Радио. 1966.
- 10. Б.З. Каценеленбаум. Теория нерегулярных волноводов с медленно меняющимися параметрами. М.: АН СССР. 1961.
- Canton, A. Diffraction by a rounded wedge with an hybrid method MM/PO // Ann. Télécommun. 49, 554–558 (1994). https://doi.org/10.1007/BF02999446.
- Ozlem A.C, Prabhakar H.P, Hsi T.C and Paolo Nepa. A hybrid uniform theory of diffraction-moment method for efficient analysis of electromagnetic radiation/scattering from large finite planar arrays // Radio Science. 2000. 35(2). P. 607-620. DOI: 10.1029/1999RS001922.

- M. A. Basha, S.K. Chaudhuri and S. Safavi-Naeini. Fast hybrid method for analysis of optical diffraction by finite number of gratings //Conference: Frontiers in Optics, DOI: 10.1364/FIO.2003.MT34.
- 14. A. Tzoulis and T. F. Eibert.Combining the multilevel fast multipole method with the uniformgeometrical theory of diffraction //Advances in Radio Science.2005. 3.
 P.183–188. SRef-ID: 1684-9973/ars/2005-3-183.
- 15. S. Balling, Dirk Plettemeier and K.H.Gonschorek. An extended hybrid method a combination of MOM, GMT and UTD // IEEE International Symposium on Electromagnetic Compatibility, Honolulu,HI,USA,2007, DOI:10.1109/ISEMC.2007.106.
- Joerg Bischoff. Improved diffraction computation with a hybrid C-RCWAmethod // Proc. SPIE 7272, Metrology, Inspection, and Process Control for Microlithography XXIII, 72723Y (23 March 2009); DOI:10.1117/12.813960.
- 17. В.В.Лесняк. Комбинированный метод расчета ЭПР тел сложной формы на основе физической оптики, геометрической оптики и метода интегральных уравнений в 2D- пространстве. Восемнадцатая ежегодная научная конференция ИТПЭ РАН, Москва, 2017, С.43-46.
- Демин Д.Б., Клеев А.И., Кюркчан А.Г. Использование гибридного метода диаграммых уравнений для расчета рассеяния на цилиндре большого поперечного сечения // Т-Сотт: телекоммуникации и транспорт. 2018. Т.12. № 8. С.4-7.
- А.М.Лебедев, И.А.Селин, Т.А.Фурманова. Разработка и тестирование гибридного метода решения задачи рассеяния протяжённым, сложным по составу объектом. Двадцатая ежегодная научная конференция ИТПЭ РАН, Москва, 2019, С.56-57.
- V.A.Kaloshin, D.T.Luu. Plane wave scattering on ideally conductive plate with rounded edges. Intern.Sci.Conf. "Radiation and Scattering of Electromagnetic Waves RSEMW-2019", Divnomorskoe, Russia, 2019, P. 232. DOI:10.1109/RSEMW.2019.8792743.

- 21. В.А.Калошин, Д.Т.Луу. Рассеяние плоской волны нацилиндре с кусочноаналитической формой сечения//РЭ. 2020. Т.65. №5.С. 457.DOI:10.31857/S0033849420050071.
- 22. В.А.Калошин, Д.Т.Луу. Решение задачи рассеяния на теле вращения с кусочно-аналитической формой образующей гибридным методом// Журнал радиоэлектроники. 2020. № 6.DOI: 10.30898/1684-1719.2020.6.6.
- 23. В.А.Калошин, Д.Т.Луу. Решение задач излучения открытого конца нерегулярного волновода гибридным методом// Журнал радиоэлектроники. 2020. № 7.DOI: 10.30898/1684-1719.2020.7.6.
- 24. Д.Ю. Муромцев, О.А. Белоусов. Техническая электродинамика. ТГТУ.2012.