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Общая характеристика диссертационной работы. 

Развитие коммуникационных технологий привело к созданию 

современных глобальных сетей связи по проводным и беспроводным 

радиолиниям. Один из основных способов реализации сетей данных типов 

основан на применении спутниковых информационных систем (СИС) в качестве 

самостоятельного средства связи и базового дополнения к наземным сетям связи. 

Потребителям информации этих систем предоставляется широкий спектр 

коммуникационных услуг независимо от времени и местоположения. 

СИС работают в широких частотных диапазонах: P (до 500 МГц), L (0.5 

...1.5 ГГц), Ku (11...14 ГГц), Ka (20...40 ГГц), Q/V (40...70 ГГц). Рациональный 

выбор частотных диапазонов для разрабатываемых СИС определяется многими 

факторами, включая типами физических сред в составе радиолиний - околоземная 

ионосфера, тропосфера (дождь, туман, облака, др.), лесные массивы, др. 

В диссертационной работе рассмотрено влияние околоземной ионосферы 

и тропосферы (радиолинии с туманом) на эффективность функционирования 

СИС. 

Для относительно низкочастотных диапазонов (P-, L- частотные 

диапазоны) преобладает влияние околоземной ионосферы при распространении 

сигналов. Для этих диапазонов основное влияние на верность передачи 

информации связано с рассеянием и дисперсионными свойствами околоземной 

ионосферы. Для высокочастотных диапазонов (Ka, Q/V - диапазоны) 

существенное влияние на верность передачи оказывает тропосфера (туман, 

облака, дождь, др.) со свойствами частотной дисперсии и поглощения.  

На практике выбор частотного ресурса определяется не только 

свойствами радиолиний, но и административно-правовыми актами, которые 

назначают диапазоны и частотные полосы СИС. Устойчивой тенденцией является 

увеличение скоростей передачи информации по спутниковым радиолиниям. При 

этих условиях повышение информационных скоростей достигается, используя 

класс цифровых информационно-емких сигналов. Данный класс цифровых 

сигналов подвержен искажениям за счет влияния физических сред 

распространения. Суть искажений - случайные изменения комплексных 

огибающих сигналов при распространении (свойство частотной дисперсии), 

обусловливающие возникновение интерференционных межсимвольных (МСИ) и 

межканальных помех (МКИ), а также замирания сигналов за счет их 

многолучевого распространения (свойство временной дисперсии). Данные 

искажения приводят к существенной деградации верности передачи информации. 

Это обусловливает актуальность проблем разработки и анализа методов 

обработки информационно-емких цифровых сигналов при их обнаружении и 

приеме при распространении по рассматриваемым спутниковым радиолиниям с 

целью снижения искажающего влияния радиолиний и обеспечения высоких 

информационных скоростей и верности передачи информации. 
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Возможность эффективной передачи информации по данным 

радиолиниям связана с решением комплекса проблем, составляющих предмет 

исследований диссертационной работы. 
Теория передачи дискретных сообщений и теория сигналовв работах 

многих исследователей (Колмогоров А.Н., Зяблов В.В., Зигангиров К.Ш., Элайес 

П., Хэмминг Р.В., Витерби А., Месси Дж., Галлагер Р., Форни Д., Харкевич А.А., 

Тихонов В.И., Баскаков А.И., Финк Л.М., Зюко А.Г., Смольянинов В.М., Назаров 

Л.Е., Цыкин И.А., Золотарев В.В., Овечкин Г.В., Егоров С.И., Возенкрафт Дж., 

Берлекэмп Е., Витерби Э.Д., Фано Р. и др.). Теории спутниковых радиолиний, 

теории распространения радиоволн с учетом околоземной ионосферы и тропосферы 

создавались и развивались в работах исследователей (Лукин Д.С., Крюковский 

А.С., Палкин Е.А., Арманд Н.А., Егоров В.В., Смирнов В.М., Кутуза Б.Г., Пожидаев 

В.Н., Пулинец С.А., Захаров В.Е., Иванов Д.В., Иванов В.А., Стрелков Г.М., 

Черниговская М.А., Пашинцев В.П., Дэвис К., Намгаладзе А.А., др.). 

Цель работы - развитие теории и методов передачи информационно-

емких сигналов по спутниковым радиолиниям с частотной и временной 

дисперсией для обеспечения информационных скоростей для ограниченных 

частотных полос выделяемого частотного диапазона. Основные решаемые задачи: 

 развитие, создание и анализ моделей спутниковых радиолиний, 

содержащих физические среды распространения радиосигналов различных 

частотных диапазонов (околоземная ионосфера, тропосфера (туман)) со 

свойствами частотной и временной дисперсии; 

 развитие и создание моделей искажений комплексных огибающих 

цифровых сигналов при распространении по анализируемым спутниковым 

радиолиниям; 

 развитие, создание и анализ методов снижения искажений цифровых 

информационно-емких сигналов за счет влияния физических сред в составе 

спутниковых радиолиний с частотной и временной дисперсией (околоземная 

изотропная и анизотропная околоземная ионосфера, тропосфера (туман)); 

 развитие и апробация разработанных методов оптимального 

посимвольного приема цифровых информационно-емких сигналов в недвоичных 

полях Галуа, согласованных с объемом сигнальных «созвездий»; 

 выполнение и анализ экспериментальных исследований с целью 

оценивания статистических характеристик ионосферных спутниковых 

радиолиний P-, L- частотных диапазонов. 

Методы исследований. Развиваемая теория передачи цифровых 

сигналов по спутниковым радиолиниям с частотной и временной дисперсией 

представляет исследования на стыке пяти дисциплин - теории распространения 

радиоволн, помехоустойчивой передачи информации, теории сигналов, теории 

околоземной ионосферы и тропосферы, теории отождествления каналов. 

Научная новизна. Развита теория оптимального посимвольного приема 

класса цифровых информационно-емких сигналов в недвоичных полях Галуа, 

размерность которых согласована с объемом сигнальных «созвездий». 
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Разработаны новые модели спутниковых радиолиний, включающие 

физические среды распространения радиосигналов - околоземную ионосферу и 

тропосферу (туман) со свойствами частотной и временной дисперсии.  

Разработаны новые модели искажений комплексных огибающих класса 

информационно-емких цифровых сигналов с различными видами манипуляций 

при распространении по спутниковым радиолиниям. 

Разработаны модели спутниковых радиолиний с многолучевостью 

распространения радиосигналов из-за отражения и рассеяния на ионосферных 

неоднородностях, порождающей фазовые и амплитудные замирания сигналов. 

Разработан ряд методов снижения искажений цифровых информационно-

емких сигналов за счет влияния физических сред в составе спутниковых 

радиолиний с частотной и временной дисперсией. 

Выполнено экспериментальное исследование с целью вычисления 

статистических характеристик ионосферных спутниковых радиолиний P-, L- 

частотных диапазонов с использованием сигналов спутниковой аварийно-

спасательной системы Коспас/Сарсат. 

Практическая значимость результатов работы определяется 

направленностью на решение комплекса проблем для разработки методов 

помехоустойчивой передачи информации по спутниковым радиолиниям, 

характеризуемым искажающим влиянием физических сред на сигналы. 

Защищаемые положения. 

1. Новый алгоритм оптимального посимвольного приема цифровых 

информационно-емких сигналов с различными видами манипуляций, 

обеспечивающий достижение значимого энергетического выигрыша до 5…30 дБ 

при приеме сигнальных конструкций на основе корректирующего кодирования с 

минимальной избыточностью по сравнению к известным корректирующим кодам 

для спутниковых радиолиний с временной дисперсий относительно приема 

сигналов без кодирования. 

2. Класс разработанных моделей спутниковых радиолиний, используемый 

для описания искажений цифровых сигналов и оценивания характеристик при их 

обнаружении и приеме, включающий изотропные и анизотропные неоднородные 

спутниковые ионосферные радиолинии с частотной дисперсией; радиолинии с 

временной дисперсией из-за отражения и рассеяния на ионосферных 

неоднородностях, порождающей фазовые и амплитудные замирания сигналов; 

радиолинии с туманом с частотной дисперсией. С использованием моделей 

впервые получены статистические оценки временной стационарности (50…1200 

мс) для ионосферных радиолиний с временной дисперсией. 

3. Новые методы описания искажений цифровых сигналов за счет влияния 

физических сред распространения (околоземная ионосфера, туман), 

эквивалентного линейной фильтрации с комплексными коэффициентами 

передачи, задаваемыми разработанными моделями спутниковых радиолиний. С 

использованием этих методов впервые показано наличие значительных 

энергетических потерь (более 10 дБ) при приеме по отношению к 

распространению в свободном пространстве и, как следствие, возможное 
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нарушение штатной работы спутниковых информационных систем при 

увеличении информационной емкости цифровых сигналов (до  8  бит/с/Гц) и 

увеличении частотной полосы. 

4. Разработанные методы снижения искажений цифровых информационно-

емких сигналов на основе использования линейных фильтров, инверсных к 

линейным фильтрам спутниковых радиолинии с частотной дисперсией 

(ионосферные радиолинии, радиолинии с туманом), позволяют обеспечить 

верность передачи информации с вероятностными характеристиками, близкими к 

передаче в свободном пространстве. 

5. Результаты экспериментальных исследований относительно совместного 

влияния околоземной ионосферы на распространение сигналов в Р- (радиолиния 

вверх), L- (радиолиния вниз) частотных диапазонах, полученные с 

использованием созданного приемо-передающего комплекса на основе 

спутниковой системы Коспас/Сарсат - впервые произведена оценка диапазона 

значений индекса сцинтилляций 49.0...27.04 S  и диапазона замираний сигналов 

11...5   дБ для средних широт РФ. 

Публикации по теме диссертации. По теме диссертации опубликовано 

25 статей в рецензируемых журналах, из них 10 статей из списка Web of Science и 

Scopus, 9 статей из списка научных журналов, рекомендованном ВАК РФ по 

специальности 1.3.4 «Радиофизика». 

Апробация результатов. Материалы диссертации докладывались на 

33 научных Всероссийских и международных конференциях. 

Результаты диссертации использованы при выполнении ряда СЧ ОКР 

(три акта об использовании результатов диссертации). 

По теме диссертации получено свидетельство о государственной 

регистрации программы для ЭВМ. 

Исследования по теме диссертационной работы поддержаны грантами 

РФФИ (№16-07-00746, №20-07-00525). 

Достоверность научных выводов по главам и заключению 

диссертационной работы подтверждается согласованностью полученных 

теоретических результатов и результатов математического моделирования 

разработанных методов и алгоритмов с известными в литературе результатами, 

согласованностью экспериментальных исследований с результатами 

теоретического анализа. 

Личный вклад автора заключается в выборе направлений исследований 

по тематике диссертационной работы, в постановке основных составляющих 

проблем, в проведении компьютерного моделирования разработанных методов и 

алгоритмов и теоретического анализа результатов и интерпретации полученных 

результатов моделирования и экспериментальных исследований. 

Все вошедшие в диссертацию результаты исследований получены лично 

автором либо при его непосредственном участии и соавторстве. 

 

Структура и объем работы. 
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Работа состоит из введения, 5 глав, заключения, списка цитируемой 

литературы и четырех приложений. Она содержит 155 страниц, включая 51 

рисунок, 13 таблиц и 151 ссылок на источники. 

В введении изложено состояние проблемы, обоснована актуальность 

проводимых в работе исследований, сформулированы цель и решаемые в 

диссертации задачи, научная новизна и практическая значимость полученных 

результатов, основные положения, выносимые на защиту, личный вклад автора, а 

также приведены сведения об апробации работы. 

В главе 1 дан обзор теории помехоустойчивой передачи дискретных 

сообщений с использованием цифровых сигналов, общая функциональная схема 

систем передачи дискретных сообщений дана на рисунке 1. 

Источник 
дискретных сообщений

Кодер
канала

Модулятор
цифровых сигналов

Канал
передачи

))(),(( fHtsF m


Демодулятор
цифровых сигналов

mВ

)(tsm

)(tn

Декодер
канала

)(txm

Получатель 
дискретных сообщений

Â

A

mB̂

непрерывный
канал

дискретно-
непрерывный

канал

дискретный
канал

I

II

III

IV  

Рис.1. Функциональная схема систем передачи дискретных сообщений. 

Непрерывный канал передачи сигналов )(tsm  включает среду 

распространения, действие которой задается функциональным отображением 

)())(),(()( tnfHtsFtx mm   , определяющее искажения сигналов из-за 

фильтрующих свойств среды с коэффициентом передачи )( fH  и искажения 

тепловым шумом )(tn . Демодулятор сигналов и канальный декодер производят 

обработку реализации )(txm  с целью наилучшего соответствия переданного 

дискретного сообщения A  принятому дискретному сообщению Â  относительно 

используемого статистического критерия качества. 

Сигналы )(tsm  длительностью nT  задаются соотношением 






n

i

mimim fttUAts

1

)2cos()()(  , f - центральная частота; 1)( tU  при 

TitiT )1(  , иначе 0)( tU ; miA , mi  - амплитуда и фаза цифровых сигналов 
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)(tsmi  объемом lM 2  в составе )(tsm , значения которых задают вид 

сигнального «созвездия»; T - длительность )(tsmi . 

Характеристикой цифровых сигналов является частотная эффективность 

Ml 2log  (бит/с/Гц), которая определяет максимальную информационную 

скорость FlR   (бит/c)  для радиолинии с частотной полосой F  (Гц) . 

Известен широкий класс цифровых сигналов с различными типами манипуляций 

и «созвездий» (фазовая (ФМ-M), квадратурно-амплитудная (КАМ-M), 

амплитудно-фазовая (АФМ-M) манипуляции), интенсивно используемых в 

спутниковых информационных системах. Пример «созвездия» АФМ-16 приведен 

на рисунке 2 , даны законы отображения l  двоичных символов в комплексные 

огибающие символов «созвездия». 

 

Рис. 2. Вид сигнального «созвездия» АФМ-16. 

При приеме сигналов используются статистические критерии, в частности, 

критерий максимума апостериорных символьных вероятностей, который 

заключается в вычислении вероятностей символов )Pr( Yβb j


 , )(2lGFβ  и в 

принятии решения относительно переданного символа )Pr(maxˆ

)(2

Yβb
l

b j
GFβ

j






. 

В диссертационной работе приведены результаты по развитию теории 

посимвольного приема цифровых сигналов с различными видами манипуляций. 

Основу разработанного алгоритма составляет алгоритм быстрого преобразования 

в базисе Уолша-Адамара с размерностью, совпадающей с объемом «созвездия». 

Сложность алгоритма посимвольного приема определяется лишь 

размерностью дуального кода, что обусловливает перспективность применения 

для блоковых корректирующих кодов с низкой избыточностью. Приведены 

вычисленные характеристики для сигнальных конструкций на основе цифровых 

сигналов и корректирующего кодирования в недвоичных полях с минимальной 

избыточностью с использованием разработанного алгоритма оптимального 

посимвольного приема для канала с аддитивным белым гауссовским шумом 
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(АБГШ) и показано достижение значимого энергетического выигрыша 

до 1.5…4.0 дБ по отношению к приему сигналов без кодирования. 

В главе 2 рассмотрены модели спутниковых радиолиний с частотной и 

временной дисперсией, влияние которых приводят к искажениям комплексных 

огибающих цифровых сигналов за счет дисперсионных свойств радиолиний, 

обусловливающих возникновение помех МСИ и МКИ; к многолучевому 

распространению сигналов (включая образование обыкновенной и 

необыкновенной радиоволн за счет гиротропных свойств ионосферы), 

порождающему фазовые и амплитудные нестационарные замирания сигналов. 

При исследовании используются две модели спутниковых радиолиний: модели 

неоднородной непрерывной среды с частотной дисперсией, характеризуемой 

диэлектрической проницаемостью ),( fz  (земная ионосфера (глобальная модель 

земной ионосферы Клобушара, однослойная модель Чепмена), атмосфера 

(туман)); модели с ионосферными неоднородностями. 

В частности, рассмотрена модель анизотропных ионосферных 

спутниковых радиолиний с частотной дисперсией за счет влияния магнитного 

поля Земли )(rH


. Для распространения электромагнитных волн вдоль оси OX и 

расположения поля )(rH


 в плоскости XOZ с углом   к оси ОХ проницаемость 

2

1,2
2 2 2 2

пр

2 ( )
( , ) 1

2 ( , ) ( , ) 4

pf z
z f

f h z f h z f f f

  

  

,
)/1(

),(
22

2
пп

ff

f
fzh

p
 ;

m

eH
f пп0
пп


 ; 

m

eH
f

пр0
пр


 ; sinпп HH  ; cosпр HH  ;   - угол 

между вектором H


 и осью OX (продольное и поперечное распространение при 

0  и при 
090 ) ; 0  - магнитная проницаемость свободного пространства. 

Существование двух решений для ),( fz  соответствует двойному 

лучепреломлению: для спутниковых ионосферных радиолиний выражение 

упрощается, что приводит к модели лишь продольного распространения 

электромагнитных волн. В этом случае существуют два решения 

)/(1),( пр
22

1 fffffz p   и )/(1),( пр
22

2 fffffz p  . 

Одно из критических искажений цифровых сигналов обусловлено 

многолучевостью распространения из-за отражения и рассеяния на ионосферных 

неоднородностях, которая порождает временные вариации (замирания) фаз и 

амплитуд сигналов. Фазовые и амплитудные замирания представляют случайные 

процессы, их характеристики связаны с характеристиками временных и 

пространственных флуктуаций электронной плотности ионосферных 

неоднородностей. Экспериментальные и теоретические исследования показывают 

значимость данных искажений для P- и L- частотных диапазонов. 
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При создании и развитии статистических моделей фазовых и 

амплитудных замираний при распространении по ионосферным спутниковым 

радиолиниям использованы два подхода: 

- на основе эмпирических плотностей распределения фазы )(p   и 

амплитуды )(Ap , связанных с индексом сцинтилляции 
4S ; 

- на основе аналитического описания распространения сигналов, 

основанные на теории распространения радиоволн в случайно-неоднородных 

средах с коэффициентом преломления ионосферы ),(1),( trntrn


 , ),( trn


  - 

флуктуации коэффициента преломления. Решение задачи распространения 

сигналов через такие среды предполагает установление связи характеристик 

),( trn


  и параметров (время стационарности радиолинии st ). Выражения для 

флуктуации фазы и амплитуды монохроматических сигналов со слабыми 

возмущениями ),( trn


  получены при использовании приближения Рытова. 

На рис.3 даны вычисленные кривые, определяющие вероятности времени 

фазовой стационарности радиолиний P - частотного диапазона для 3.04 S  и 

6.04 S , скорость движения ионосферных неоднородностей 500v  м/с. Кривые 

1, 3 вычислены для 0
10 , кривые 2, 4 для 0

20 . Вероятность минимального 

времени стационарности 95.0)Pr( minst,  для 3.04 S  достигается при 

170minst,  мс для 
0

10  и при 250minst,  мс для 
0

20 . При увеличении 

4S  минимальное время стационарности уменьшается - вероятность 

95.0)Pr( minst,  для 6.04 S  достигается при 50minst,  мс для 
0

10  и при 

110minst,  мс для 0
20 . 

 
Рис.3. Вероятности времени стационарности радиолиний P - частотного 

диапазона, скорость движения ионосферных неоднородностей 500v  м/с: кривая 

1 - 3.04 S , 
0

10 ; кривая 2 - 3.04 S , 
0

20 ; кривая 3 - 6.04 S , 
0

10 ; 

кривая 4- 6.04 S , 
0

20 . 
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В работе рассмотрена модель радиолиний с туманом, основным 

параметром которой является водность q  (г/м3). Данные искажения значимы для 

высокочастотных диапазонов Ku-, Ka-, Q/V- частотных диапазонов. Получено 

соотношение относительно диэлектрической проницаемости 




















q
f

2

1
31)(



 , 



































ssppsp fff

f

fff

f
j

ffff /

)(

/

)(

)/(1)/(1 2
21

2
10

22
21

2
10 




 ,

 )1(3.10366.770   , 01 0671.0   , 52.32  , 0/300 T , 

2)1(316)1(14620.20  pf , ps ff 8.39 . 

Здесь f  - частота (ГГц); 0T  - температура воды ( K ). 

Полученные выражения относительно диэлектрической проницаемостью 

),( fz , задающие модели ионосферных радиолиний и радиолиний с туманом, 

применяются для оценки искажений и деградации вероятностных характеристик 

рассматриваемых цифровых сигналов при их обнаружении и приеме. 
В главе 3 даны результаты по развитию теории искажений цифровых 

сигналов при распространении по спутниковым радиолиниям, включая 

изотропные и анизотропные ионосферные радиолинии со свойством частотной 

дисперсии; ионосферные радиолинии с временной дисперсией; радиолинии с 

туманом со свойствами частотной дисперсии и поглощения. 

Основу методов анализа искажающего влияния среды распространения 

составляет решение волнового уравнения при распространении плоской волны 

),( fzE  с частотой f , падающей на слой среды с диэлектрической 

проницаемостью ),( fz . Ограниченный ряд аналитических решений получен при 

использовании упрощений относительно ),( fz , полагая, в частности, среду 

распространения изотропной (модель «холодной» плазмы), а также плоско-

слоистой или сферически-слоистой. Альтернативным направлением является 

определение приближенных решений геометрической оптики волнового 

уравнения. Условием применимости этого подхода является медленность 

изменения диэлектрических свойств среды на длине волны  , т. е. 1
),(




dz

fzd

. 

В работе приведены методы описания искажений цифровых сигналов при 

распространении по спутниковым радиолиниям во временной области с 

использованием импульсной характеристики ),( zh  и в частотной области с 

использованием коэффициента передачи ),( fzH .  
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Искажения сигналов в частотной области задаются как 

 




 dffjfzHfgtzE )2exp),()(),(  , )( fg  - спектр сигналов ),0( tE  (для 

сигналов длительностью T  с огибающей в виде меандра 

 
2/)(

2/)(2sin
)(

0

0

ff

Tff
fg







 при условии Tf /10  ); ),( fzH  - коэффициент 

передачи радиолинии 

















 
AB

ф xfc

dx
fjfzfjzfH

),(
2exp)),(2exp(),(  , ),( fz  - 

время распространения сигнала с частотой f  вдоль лучевой линии ; 

),(/),( xfсxfcф   - фазовая скорость. 

Отличие времени распространения сигнала вдоль линии распространения и 

линии прямой видимости определяется как 

 
  c

L

RnxRfxnc

dxxRfxn
fz AB

z

AAф






 

0

2/12
З0

2
З

2

З

))sin(())(,(

))(,(
),(



 , ЗR  - радиус 

Земли; A  - зенитный угол направления линии прямой видимости; 0n  - 

коэффициент преломления на высоте 0z ; А  - угол рефракции; ABL  - 

расстояние линии прямой видимости АВ.  
На рис.4 приведен вид исходного радиоимпульса (кривая 1) ( 4000 f  

МГц, 400z  км, 200T нс, 10F МГц). Кривая 2 - радиоимпульс при 

распространении с параметрами модели ионосферы дневного времени, 
060A . 

 

Рис.4. Вид радиоимпульсов )0,(zE
 
(кривая 1) и ),( tzE  (кривая 2). 

-1,25

-0,75

-0,25

0,25

0,75

1,25

0 125 250 375 500 625

t,нсек

E(z,t)
1 2
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На рис.5 приведены вероятностные кривые когерентного обнаружения 

сигналов )(ts  при распространении в зависимости от отношения сигнал/помеха 

0/ NE  для АБГШ и сигналов с искажениями )(ˆ ts . Кривые получены 

моделированием процедуры обнаружения Неймана-Пирсона: 3
л.тр. 10P , 

варьируемые длительности T  25нс, 50нс, 100нс, 200нс, 4000 f
 
МГц, 400z

км. Кривая 1 соответствует обнP  для неискаженных сигналов, кривые 2-5 

вычислены для модели дневной ионосферы, кривая 6 для модели ночной 

ионосферы. Формирование искаженных сигналов осуществлялось с 

использованием приведенного метода в частотной области с учетом углов 

рефракции для зенитных углов
00A , 

060A  и 
080A . Показано 

достижение энергетических потерь до 4.85 дБ при увеличении частотной полосы 

сигналов до 80 МГц для модели дневной ионосферы и зенитного угла 
080А . 

 
Рис.5. Вероятности когерентного обнаружения сигналов при распространении по 

ионосферной радиолинии (
060A ): кривая 1 - сигнал без искажений; кривая 2 - 

200T  нс, модель дневной ионосферы; кривая 3 - 100T  нс, модель дневной 

ионосферы; кривая 4 - 50T  нс, модель дневной ионосферы; кривая 5 - 25T  

нс, модель дневной ионосферы; кривая 6 - 25T  нс, модель ночной ионосферы. 

В таблице 1 приведены оценки асимптотических значений вероятностей 

ошибочного приема сP  для класса ФМ-сигналов с искажениями. Видно, что 

асимптотические значения сP  увеличиваются с уменьшением длительности T  и 

с увеличением угла Aθ . Это поведение вероятностей сP  представляет 

ограничивающий фактор использования рассматриваемого класса цифровых 

сигналов с расширением их частотного спектра в спутниковых информационных 

системах для анализируемого P - частотного диапазона. 

 

Таблица 1. Теоретические оценки асимптотических вероятностей ошибки cP  
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Сигналы Aθ  Т, нс 

50 100 

ФМ-4 0 7109.3   910  

080  5102.3   910  

ФМ-8 0 5106.6   9101.1   

080  3106.1   9109.2   

ФМ-16 0 2107.5   7105.2   

080  2105.6   3106.1   

Оценивание ошибок сP  для ряда цифровых сигналов получены 

моделированием алгоритма посимвольного приема. На рис. 6 в качестве примера 

приведены вероятности сP  для сигналов КАМ-256 при распространении по 

ионосферным радиолиниям Р - частотного диапазона ( 4000 f МГц). При 

увеличении порядка манипуляции М цифровых сигналов значения Е  

значительны: для ФМ-8 сигналов с длительностью 50=T нс (частотная полоса 

40F  МГц) потери E  потери превышают 10 дБ; для ФМ-16, КАМ-64 и 

АФМ-256 асимптотические вероятности 05.0cP , что показывает неприемлемое 

качество работы информационных систем. Подобные значения Е  получены для 

анизотропных ионосферных радиолиний, а также для радиолиний с туманом с 

различными параметрами. 

Вычисленные значения энергетических потерь при использовании 

рассматриваемого класса сигналов необходимо учитывать при оценивании 

энергетических бюджетов рассматриваемых радиолиний. 

 

Рис.6. Вероятности ошибки сP  для сигналов КАМ-256 при распространении по 

ионосферной радиолинии: 1 - распространение в свободном пространстве; 2 - 

200T  нс, 0=θA ; 3 - 400T  нс, 0=θA ; 4 - 400=T  нс, 
080=θA . 
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В главе 4 даны описания и анализ разработанных методов снижения 

искажающего влияния рассматриваемых спутниковых радиолиний при 

распространении информационно-емких сигналов. 

Основу методов снижения искажающего влияния ионосферных 

радиолиний с временной дисперсией и повышения верности передачи 

информации составляют: 

- применение корректирующих кодов в сочетании с перемежением 

символов сигнальных «созвездий» для борьбы с дружными замираниями, в 

частности, с временным перемежением; 

- задание мощности передатчика, обеспечивающей требуемую верность 

передачи информации на основе корректного оценивания энергетических 

бюджетов анализируемых радиолиний с использованием моделей. 

В таблице 2 даны значения энергетических выигрышей E  для 

рассматриваемых сигналов и ионосферных радиолиний при 
5

с 10P  при 

применении разработанных сигнальных конструкций на основе корректирующего 

кодирования недвоичных полях Галуа. 

Таблица 2. Значения энергетического выигрыша E  при распространении по 

радиолинии с временной дисперсией 

Цифровые 

сигналы 
E  (дБ) 

3.04 S  6.04 S  
ФМ-4 5.0 15.0 

ФМ-8 6.0 17.0 

ФМ-16 6.5 19.0 

КАМ-16 7.0 20.5 

АФМ-16 6.0 29.0 

АФМ-16 7.0 21.5 

АФМ-32 7.5 21.5 

КАМ-64 4.5 21.0 

АФМ-64 9.0 21.5 

АФМ-64 8.5 23.5 

АФМ-256 10.5 37.5 

Данные таблицы 3 (выигрыш по энергетике E  до 37.5 дБ) показывают 

перспективность применения разработанных схем корректирующего кодирования 

и алгоритма посимвольного приема для повышения верности передачи 

информации по ионосферным радиолиниям с временной дисперсией. 

Методы снижения искажающего влияния рассматриваемых радиолиний 

с частотной дисперсией основаны на следующих подходах: 

- на формировании линейного дискретного фильтра, инверсного к 

линейному фильтру радиолинии, характеристики которого определяются с 

использованием и без использования пилот-сигналов; 

- - на использовании глобальных моделей земной ионосферы; 
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- на применении корректирующих кодов, в частности, при применении 

разработанных сигнальных конструкций на основе корректирующего кодирования 

в недвоичных полях Галуа. 

На рисунке 7 приведена блок-схема адаптивной обработки сигналов с 

искажениями при приеме без использования пилот-сигналов. 

a


Модулятор

)(ts

)( fH Демодулятор

)(ˆ ts kx

)(ˆ fH
ky

Квантователь

Вычисление

коэффициентов

фильтра

-

a

ˆ

Задержка

""2

"1"

 

Рис.7. Блок-схема адаптивной обработки сигналов с искажениями при приеме. 
На выходе демодулятора поступает последовательность отсчетов kx , 

(сумма сигнальных, шумовых и помеховых интерференционных составляющих). 

Задача инверсного дискретного фильтра с коэффициентом передачи )(
ˆ

fH  - 

компенсировать влияние интерференционных помех. При условии 

)()(
ˆ 1 fHfH    выполняется полная компенсация рассматриваемого типа помех. 

Инверсный фильтр эквивалентен трансверсальному фильтру с 

коэффициентами )(iw , Ni ,...,1,0 . На выходе фильтра вычисляется реализация 






N

i

ikk iwxy

0

)( . Здесь N  - размерность фильтра. Весовые коэффициенты 

вычисляются рекуррентно ][])[]2[(][][ )()1( inxnyNnaiwiw nn    , 

Ni ,...,1,0 ,   - параметр, определяющий сходимость итеративной процедуры. 

При моделировании рассматриваемого метода снижения искажающего 

влияния радиолинии рассматриваются сигналы )(ts  на основе ФМ-16, для 

которых влияние искажений комплексных огибающих является значительным. 

Характеристики радиолинии - высота 400=z  км, центральная частота 4000 f  

МГц, зенитный угол 
060=θA . На рис.8 приведены вычисленные вероятности сP  

при приеме сигналов. Кривая 1 соответствует сP  при распространении в 

свободном пространстве. Кривая 2 соответствует распространению сигналов по 

ионосферной радиолинии, длительность радиоимпульсов, 200=T  нсек, частотная 

полоса 10F  МГц. Видно монотонное уменьшение вероятности ошибочного 

приема сP  при увеличении параметра 0/ NEб , что показывает приемлемое 

качество радиолинии для информационной системы за счет превышения 

мощности АБГШ относительно мощности интерференционных помех. В этом 
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случае энергетические потери при 
3

с 10P  за счет рассеяния и влияния 

интерференционных помех по отношению к распространению в свободном 

пространстве достигают 4.5 дБ. Кривая 3 соответствует распространению 

сигналов по ионосферной радиолинии, длительность радиоимпульсов 100=T  нс, 

частотная полоса 20F  МГц. В этом случае при увеличении параметра 

0/ NEб  вероятность ошибочного приема практически не изменяется ( 01.0с P ). 

Это показывает разрушение нормальной работы информационной системы за счет 

превышения мощности интерференционных помех по отношению к мощности 

АБГШ. Кривая 4 соответствует вероятности сP  для данной ионосферной 

радиолинии с использованием адаптивного алгоритма обработки сигналов ФМ-16 

с параметрами 15N , 000001.0 . Видно монотонное уменьшение 

вероятности ошибочного приема сP  при увеличении параметра 0/ NEб . 

Эти результаты показывают перспективность приведенного алгоритма 

компенсации искажений широкополосных сигналов и коррекции ионосферной 

радиолинии. 

 

Рис.8. Вероятности ошибочного приема сигналов ФМ-16 при распространении по 

ионосферной линии, 
060=θA : 1 - распространение в свободном пространстве: 2 - 

без компенсации искажений сигналов ( 200=T  нс, 10F  МГц); 3 - без 

компенсации искажений ( 100=T  нс, 20F  МГц); 4 - с компенсацией 

искажений ( 100=T  нс, 20F  МГц). 

В главе 5 даны результаты экспериментальных исследований амплитудных 

замираний сигналов при их распространении по спутниковым ионосферным 

радиолиниям Р-, и L- частотных диапазонов. Исследования выполнены с 

использованием созданного комплекса передачи/приема сигналов спутниковой 

информационной системы аварийного оповещения Коспас/Сарсат (Р- частотный 

диапазон радиолинии «вверх», L- диапазон радиолинии «вниз»). На рис.9 

приведена блок-схема экспериментальной части исследований с использованием 

спутников-ретрансляторов сигналов P/L- частотных диапазонов в составе 

международной системы Коспас-Сарсат: Р- частотный диапазон канала «вверх» 
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(406 МГц), L- частотный диапазон канала «вниз» (1540 МГц). Основу блок-схемы 

составляет плата программируемого радио SDR (Software Define Radio: 

передатчик/приемник). Особенностью данных радиолиний является совместное 

влияние ионосферных неоднородностей на распространение сигналов в P-, L- 

частотных диапазонах. В результате обработки сигналов определен примерный 

диапазон замираний амплитуды сигналов 11...5   дБ. 

 

Рис.9. Блок-схема разработанной экспериментальной части исследований с 

использованием спутников-ретрансляторов сигналов P/L частотных диапазонов 

спутниковой системы Коспас-Сарсат. 
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