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INTRODUCTION

Progress toward creating a quantum computer—a
new direction in quantum superconducting electron-
ics—is currently related to the 

 

2

 

ϕ

 

-period component in
the current–phase relation (CPR) of a superconducting
Josephson junction, 
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s
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sin
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 + 
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, where

 

I

 

c

 

 is the critical current (for example, see [1]). The sec-
ond harmonic of the CPR, 
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c

 

2

 

sin

 

(2

 

ϕ

 

)

 

, has been
observed in superconductor/ferromagnetic/supercon-
ductor junctions, which are currently regarded as the
most promising elements of quantum computers [2].
For superconductors with isotropic 

 

s

 

-wave symmetry
of the order parameter (

 

S 

 

superconductors), deviation
of the CPR from the trivial form 

 

I

 

s

 

 = 

 

I

 

c

 

sin

 

ϕ

 

 is known in
the case of Josephson thin-film bridges [3]. In Joseph-
son structures comprised of oxide superconductors
with high critical temperatures (for example,
YBa

 

2

 

Cu

 

3

 

O

 

x

 

(

 

YBCO

 

)

 

), the 

 

d

 

-wave symmetry of the order
parameter dominates in the 

 

ab 

 

plane (

 

D

 

 superconduc-
tors) [4, 5]. In such structures, the second harmonic
appears in the CPR owing to the specific properties of
this type of symmetry as well as to the formation of
low-energy Andreev states [6–8]. Experimentally, sec-
ond harmonic was found in the CPR of 

 

D

 

/

 

D 

 

and 

 

S

 

/

 

D

 

superconductor structures [9–11]. However, influence
of a nontrivial CPR on the dynamics of Josephson junc-
tions at microwave frequencies has not been studied.

In this study, we experimentally investigate micro-
wave parameters of Josephson 

 

S

 

/

 

D

 

 structures with con-
siderable deviations from the trivial relation 

 

I

 

s

 

 = 

 

I

 

c

 

sin

 

ϕ

 

.
On the basis of the generalized Resistive Shunted Func-
tion model of a Josephson junction, a procedure is con-

structed to use the experimental dynamic parameters of
the junction for determination of the amplitude of the
CPR’s second harmonic; the theoretical and experi-
mental results are compared. Experimental samples are
Nb/Au/YBCO heterostructures fabricated on an tilted
film, which allowed electron transport along the [110]
direction in the 

 

ab 

 

plane of the YBCO.

1. EXPERIMENTAL PROCEDURE

YBa

 

2

 

Cu

 

3

 

O

 

x

 

 films were grown on (7 10 2) NdGaO

 

3

 

substrates. The 

 

Ò

 

 axis of an epitaxial YBCO film grown
on this substrate lies in the (110) YBCO plane and is
deflected from the normal to the substrate plane by an
angle of 

 

≈

 

11°

 

. A detailed X-ray study of the YBCO
films revealed that, during the film growth, the epitaxial
relation (001) YBCO 

 

|| 

 

(110)

 

 NGO is preserved and the
film orientation is close to (1 1 20) YBCO [8]. More
detail on the Nb/Au/YBCO fabrication technology can
be found in [8, 10]. After the final formation by photo-
lithography, the heterostructures were squares of side

 

L

 

 = 10–50 

 

µ

 

m.

The 

 

I–V

 

 curve of heterostructures were measured
under the conditions of a current bias at 

 

T

 

 = 4.2 K,
including irradiation of heterostructures with mono-
chromatic electromagnetic waves at a frequency rang-
ing from 36 to 79 GHz. In addition, voltage depen-
dences of the selective detector response were mea-
sured at frequencies in the range 36

 

−

 

120 GHz. The
dependence of the critical current on the field depen-
dence, 

 

I

 

c

 

(

 

H

 

)

 

, was measured for fields up to 10 Oe since,
above this level, the results become irreproducible,
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most likely because of the Abrikosov vortices penetrat-
ing into the film electrodes.

2. EXPERIMENTAL RESULTS

The surface morphology of as-prepared YBCO
films was observed under an atomic-force microscope.

 

A. Faceting of the (1 1 20) YBCO Film Surface 

 

The study of the surface of the YBCO films grown
on tilted (7 10 2) NdGaO

 

3

 

 substrates shows that the film
surface consists of relatively large growth steps sub-
stantially exceeding inhomogeneities of the substrate
surface both in width and height (Figs. 1a, 1c). The
height of the growth steps ranges from 15 to 20 nm, and
with a change in the facet orientation, the facet length
along the substrate surface varies in the range 0.02–
0.20 

 

µ

 

m. The YBCO surface roughness along the facets
does not exceed 2 nm [8]. Note that a 

 

c

 

-oriented YBCO
film deposited on a standard, for example, (001) SrTiO

 

3

 

substrate has no clearly defined growth directions
(Figs. 1b, 1d). Since the (1 1 20) YBCO-film surface
consists of facets that are normal to the [001] and [110]
YBCO directions, the heterostructure obtained after the
Nb sputter deposition consists of an array of contacts to
the (001) and (110) crystallographic planes of YBCO.

The 

 

S

 

/

 

D

 

c

 

-type junctions are formed on the YBCO
(001) facets (Fig. 2a). The critical current of such con-
tacts is proportional to the squared value of barrier
transparency  owing to the 

 

d

 

-wave symmetry of the
order parameter of the 

 

D

 

 electrode and must depend
mainly on the second harmonic of the CPR. In the
experiment, critical current of the 
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/

 

D

 

c

 

 junctions is
determined by the 

 

s

 

-wave component of the order
parameter [12] in the YBCO, 

 

∆

 

S

 

:

 

I

 

c

 

1

 

R

 

N

 

 

 

≈

 

 

 

∆

 

S

 

∆

 

Nb

 

/(

 

e

 

∆

 

D

 

), (1)

 

I

 

c

 

2

 

R

 

N

 

 

 

≈

 

 

 

∆

 

Nb

 

/

 

e

 

, (2)

 

where 

 

e

 

 is the charge of an electron; 

 

R

 

N

 

 is the resistance
in the normal state; and 

 

∆

 

S

 

, 

 

∆

 

D

 

,

 

 and 

 

∆

 

Nb

 

 are the energy
gaps of the 

 

D

 

 superconductor and niobium, respec-
tively.

It is assumed in (1) and (2) that the YBCO order
parameter is described by the expression 

 

∆

 

(

 

θ

 

) =
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D

 

cos

 

2

 

θ 

 

+ 

 

∆

 

S

 

, where 

 

θ

 

 is the angle between the electron
momentum and the [100] direction of YBCO. Taking
into account the experimental values of the boundary
transparency  ≈ 10–4, we obtain the ratio of the har-

monics of the CPR, q = Ic2/Ic1 ≈ ∆D/∆S ≈ 10–3, for the
typical values ∆Nb/e = 1.5 mV, ∆S/e ≈ 1 mV, and ∆D/e ≈
20 mV [8]. Owing to thermal fluctuations even at a low
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Fig. 1. (a, b) Atomic-force microscopy images and (c, d) profiles of the YBCO films with (a, c) (1 1 2 0)- and (b, d) c-orientations.
The profiles are taken along the cross-sections through the white lines.
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temperature (T = 4.2 K), such deviations of the CPR
from the sinusoidal form cannot be detected experi-
mentally. Note that the values of q ≈ 0.1 measured in
[10, 12] probably have causes that were not taken into
account in calculations [8].

The contacts between the (110) YBCO film and Nb
form S/D45-type superconducting junctions (Fig. 2b).
The supercurrent across them is described by relations
similar to (1) and (2); however, an additional current
channel arises because of the specificity of the Andreev
reflection from the interface between the (110)
D-superconductor and the normal metal (or S supercon-
ductor). As a result, the second harmonic of the CPR for
the S/D45 junctions increases noticeably up to the value

q ≈ /(kBT∆S∆NbkBT) ≈ 0.8, where kB is the Boltz-
mann constant [13, 14]. This phenomenon increases the
critical current of the structure. Such junctions have sta-
ble phases in the range 0 < ϕ0 < π (ϕ contacts in what
follows). Thus, owing to the two types of facets, the
heterostructures under study can be represented as
arrays of parallel 0 and ϕ nanocontacts.

B. Magnetic-Field Dependences 
of the Critical Current 

For heterostructures with L = 20 µm, the experimen-
tal dependence of the critical current on the magnetic
field, Ic(H), is generally close to the Fraunhofer depen-
dence |sinH|/H, which is observed for a lumped Joseph-
son junction in the case L ≈ 2λJ , where λJ  is the Joseph-
son penetration depth [15] (Fig. 3, dashed line). The
deviation of Ic(H) from |sinH|/H is small in the region
of the central maximum and grows as magnetic field |H|
increases (|H| > 5 Oe); therefore, the supercurrent dis-
tribution must be regarded as quasiuniform.

A closer approximation of the experimental depen-
dences Ic(H), especially in the region of high magnetic

∆D
3 D

fields (H ≥ 5 Oe), can be obtained via representation of
the heterostructure in the form of an array that consists
of two types of parallel nanocontacts with different
CPRs. The closest fit of thus calculated values of Ic(H)
to the experimental values (Fig. 3, solid line) is
achieved for the following parameters: the amplitudes
of the critical-current densities of the first and second
harmonics of the CPRs at the ratios 3.300 and 0.023 for
S/Dc and S/D45 junctions, respectively, and the junc-
tions’ sizes that vary throughout the heterostructure
arbitrarily. It is seen from Fig. 3 that the presence of the
second harmonic in the CPR leads to the partition of the
period of dependence Ic(H). For small values of Ic2 ,
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Fig. 2. Schematic diagrams of (a) S/Dc and (b) S/D45 junctions. The d-wave and s-wave order parameters are shown schematically.
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Fig. 3. (Data points) Experimental and (curves) theoretical
dependences IÒ(H) for the structure with the length L =
20 µm. The dashed line is the Fraunhofer dependence, and
the solid line is the calculation based on a model with a vari-
able density of the critical supercurrent for a faceted junc-
tion [16].
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only dips in this dependence are observed. The calcula-
tion was performed for 48 facets whose size variations
were calculated according to the procedure described
in [16].

For the junctions of larger sizes (L > 30 µm, depen-
dence Ic(H) differs considerably from |sinH|/H and its
first maximum resembles that in the dependence for
distributed junctions, although the condition of a
lumped junction L < 4λJ is satisfied. It is shown
in [17, 18] that, in the presence of small facets b (λ �
b � λJ , where λ = 0.15 µm is the London penetration
depth) strongly varying in the critical current, split
Josephson vortices with a fractional part of the mag-
netic-flux quantum arise. In such structures, the critical
current significantly deviates from the Fraunhofer
dependence and the period of dependence Ic(H) dou-
bles at q > 1. Typical size λϕ of a split Josephson vortex
turns out to be substantially less than λJ , a phenomenon
that is likely to be observed in the experiment. Note that
λJ was determined from the critical supercurrent den-
sity averaged over heterostructure area A, 〈jc〉 = Ic/A,
with the use of the formula

(3)

where Φ0 is the quantum of magnetic flux and µ0 is the
permeability of free space.

λJ
2 Φ0

2πµ0λ jc〈 〉
--------------------------,=

For T = 4.2 K and 〈jc〉 = 1–10 A/cm2, the values of
λJ  range from 100 to 400 µm, which considerably
exceeds the linear size of the junctions under study.

C. Dynamic Parameters of the Structures 

Dynamic parameters of Josephson structures are
usually determined with the help of Shapiro steps,
which appear on the I–V characteristics of junctions
placed in an electromagnetic field with frequency fe [3,
19, 20]. The steps appear owing to the synchronization
of the Josephson generation by the external signal. Fig-
ure 4 shows the I–V characteristics of the heterostruc-
tures without an external action and in the presence of
monochromatic field with frequency fe = 44 GHz. In
addition to the harmonic Shapiro steps observed at V =
khfe/2e (here k is a natural number and h is the Planck’s
constant), subharmonic steps are seen at V = (k/l)hfe/2e
(l = 2). The appearance of subharmonic Shapiro steps in
the junctions affected by electromagnetic waves points
to the presence of the second harmonic in the CPR [3,
10, 16, 19, 20] (see Fig. 4, inset).

Subharmonic steps were observed for all hetero-
structures and at all frequencies of the considered exter-
nal electromagnetic field. However, it is known that sub-
harmonic steps can also be caused by a finite capacitance
C of a heterostructure (the McCumber parameter β =
4πeIc C/h > 1) [20]. The value of β evaluated from
the I–V hysteresis was in the range 4–6. In order to dis-
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Fig. 4. I–V characteristics for the structures with the length L = 40 µm (solid line) in the absence of an external RF signal and (dashed
line) under irradiation at 44.5 GHz. The inset is the I–V characteristic in the vicinity of the subharmonic Shapiro step.
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tinguish between the changes that occur in the dynamic
properties of the heterostructures owing to the CPR’s
second harmonic and to the junction capacitance, we
performed a detailed study of the microwave-current
dependences of critical current, IÒ(IRF), and of the first
Shapiro step width, I1(IRF), and constructed a model for
calculating the dynamic parameters of heterostructures
with a nontrivial CPR and a finite capacitance β > 1.

3. ANALYTIC THEORY
IN THE HIGH-FREQUENCY LIMIT 

AND COMPARISON WITH THE EXPERIMENT
In the generalized Resistive Shunted Function

model of a Josephson junction with a finite capacitance
and the second harmonic in the CPR, the basic equation
for the junction under the influence of an external har-
monic signal has the form

β  +  + sinϕ + qsin2ϕ = i + iRFsin(ωt) + if, (4)

where ω = fe/fc1 and iRF = IRF/Ic1 are the normalized fre-
quency and amplitude of the external signal, respec-
tively; fc = 2eIc1RN/h is the typical frequency of the
Josephson junction; i = I/Ic1 is the normalized bias cur-
rent; and if = If/Ic1 is the normalized fluctuation current.

In the limit of the so-called high-frequency approx-
imation, when at least one of the following conditions
is satisfied,

ω � 1, βω2 � 1, iRF � 1, (5)

an analytic solution to Eq. (4) can be obtained in the
form of an expansion in terms ranked in decreasing
order of smallness. Indeed, in the case under study,
term (sinϕ + qsin2ϕ) is small in comparison with the
other terms in Eq. (4); i.e., it can serve as a small param-
eter and Eq. (4) can be solved by the method of succes-
sive approximations. To this end, the Josephson phase
and the constant bias current through the Josephson
junction are expanded in a series of corrections with
decreasing order of smallness:

ϕ = ϕ0 + ϕ1 + ϕ2 + …,  =  +  +  + …. (6)

In this case, according to (4), we obtain the set of equa-
tions

β  +  =  + iRFsin(ωt) + if, (7)

β  +  =  – sin(ϕ0) – qsin(2ϕ0), (8)

β  +  =  – ϕ1cos(ϕ0) – 2qϕ1cos(2ϕ0), (9)

which yields successive approximations to the solution
to Eq. (4). The effect of fluctuations can be analyzed
only if they are strong enough (if � 1); for this analysis,
fluctuation current if in Eq. (7) should be taken into
account.

The zeroth approximation obtained from Eq. (7)
describes the I–V characteristic of the Josephson junc-
tion in the absence of an external field. The first and
second approximations obtained from Eqs. (8) and (9)
describe either the harmonic and subharmonic Shapiro
steps in the case of negligibly small fluctuations (if = 0)
or the harmonic and subharmonic detector responses if
the fluctuations are large (if � 1).

A. Shapiro Steps 

Sinusoidal CPR (q = 0). In this case, Eq. (8) yields
the width of harmonic Shapiro steps in the form

in = 2|Jn(x)|, (10)

where

x = iRF/ω . (11)

If β = 0, the above expression coincides with the well-
known result for the Resistive Shunted Function (RSJ)
model [20]. It is seen that a finite capacitance of the
Josephson junction does not change the oscillating
character of the Shapiro-step width as a function of
external signal iRF but increases the oscillation period.

The next approximation, which can be obtained
from Eq. (9), corresponds to the subharmonic Shapiro
steps with the width

(12)

This expression can be simplified through retention of
only the largest term:

(13)

It is seen from (13) that the width of subharmonic
step 1/2 (n = 0) is described by the product of the zero-
and first-order Bessel functions; for this reason, it oscil-
lates with twice the frequency of the first step as the
external signal grows.

Nontrivial CPR (q ≠ 0). Allowance for the second
harmonic in the CPR of a Josephson junction qualita-

ϕ̇̇ ϕ̇

i i0 i1 i2

ϕ̇̇0 ϕ̇0 i0

ϕ̇̇1 ϕ̇1 i1

ϕ̇̇2 ϕ̇2 i2

ωβ( )2 1+

i 2n 1+( )/2 2β J 2n 1+( ) m– x( )Jm x( )/ ωβ( )2 2n 1+( )/2 m–( )2 1+( )
m n>
∑ .=

i 2n 1+( )/2 

= 2β Jn 1+ x( )Jn x( )/ ωβ( )2/4 1+[ ] .
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tively changes the functional dependence of the har-
monic Shapiro step width:

in = (x)sin(Θ) + qJ2n(2x)sin(2Θ)], (14)

where the maximum of the expression in brackets is
taken with respect to phase difference Θ and argument
ı is determined from (11).

It follows from (14) that second-harmonic normal-
ized amplitude q can be found via analysis of the min-
ima of the experimental critical current and harmonic-
step width as functions of iRF. For example, for small q,
the critical current attains minimum Ic(x') when J0(x') =
0. The corresponding second-harmonic amplitude can
be estimated as q = Ic(x')/[Ic(0)J0(2x')]. For the experi-
mental dependence given in Fig. 5a, this expression
yields q = 0.14, which is very close to the estimate
q = 0.16 obtained from the analysis of the minimal
width of the first step. For large junctions (L > 20 µm),
we have higher minimal values of the critical current
and first-step width and, therefore, higher values of q.
Thus, for L = 30 µm, the second-harmonic amplitudes
estimated from dependences IÒ(iRF) and I1(iRF) (see
Fig. 5b) are q = 0.43 and 0.34, respectively. Note that it
is impossible to determine the sign of a CPR harmonic
through the use of only the dependences of the critical
current and harmonic Shapiro step width. To do this, it
is necessary to study the dynamics of the formation of
fractional Shapiro steps, in particular, the case k/l = 1/2.

Expression (14) can be generalized to the case when
several harmonics are present in the CPR of a Joseph-
son junction:

in = (15)

where k is the harmonic number and qk is the contribu-
tion of the kth harmonic to the supercurrent.

It follows from Eqs. (7) and (8) that the I–V curves
of junctions with finite capacitance and the second har-
monic in the CPR may show fractional Shapiro steps, in
particular, step 1/2 with the width

(16)

Comparison of the experimental data with the step
width calculated from (16) as a function of the external
signal for q < 0 and q > 0 indicates that, in our case, the
second harmonic has a negative sign, q < 0. Indeed, the
amplitude of the step 1/2 calculated for q > 0, first, sub-
stantially exceeds the experimental values and, second,

2 Jn[
Θ

max

2 qk Jkn kx( ) kΘ( )sin
k

∑ ,
Θ

max

I1/2/Ic 2 Θ( ) qJ1 2x( ) β
J1 x( )J0 x( )
βω( )2/4 1+

----------------------------- +sin
⎩
⎨
⎧

Θ
max=

+ 4q2β
J2 2x( )J0 2x( )

βω( )2 1+
--------------------------------- Θ( )cos

⎭
⎬
⎫

.

has no local minimum observed experimentally
between iRF = 0 and the value corresponding to the first
minimum of critical current Ic(iRF) (Fig. 6). The nega-
tive sign of second harmonic q follows from the theo-
retical calculations carried out for S/D45 junctions
in [13] and was obtained experimentally for bicrystal
Josephson junctions [11].

It is interesting that a small variation of normalized
frequency ω of external radiation leads to noticeable
change in the dependence I1/2(iRF). This result is due to
the simultaneous competing effects of the junction
capacitance and the nonsinusoidal CPR on the forma-
tion of the fractional Shapiro step: the first two terms in
(16) corresponding to these factors have opposite signs.
On the whole, the experimental behavior of step 1/2
(Fig. 6) corresponds to theoretical dependence (16),
although the maximum value of I1/2(iRF) differs several-
fold from the theoretical estimate. Note that no adjust-
able parameters were used in the comparison of the
experimental and theoretical results in Fig. 6. The
amplitude of the CPR’s second harmonic and the scale
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Fig. 5. (Circles and solid line) critical current and the width
of (triangles and dashed line) the first and (squares) the frac-
tional (1/2) Shapiro steps vs. normalized microwave current
iRF = IRF/Ic1 for the structures of the lengths L = (a) 20 and
(b) 30 µm. Data points represent experimental values;
curves, calculated values.
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of the amplitude of the external electromagnetic field
were determined from the comparison of calculated
critical current IÒ(iRF) with the corresponding experi-
mental value (see Fig. 5), while parameter β was calcu-
lated from the hysteresis of the autonomous I–V curve
[20].

B. Detector Response 

Another important dynamic characteristic of the
Josephson junction that is strongly affected by a non-
trivial CPR and the finite capacitance of the junction is
the detector response, η, which reflects a change in the
I–V characteristic under the action of a small electro-
magnetic signal, η = ∆V(V). Much as the second har-
monic of CPR gives rise to the fractional Shapiro step,
a small external excitation arouses detector response in

the vicinity of voltage V = . Figure 7 plots the

experimental voltage dependence of the detector
response obtained in a wide range of voltages for het-
erostructures of the size L = 40 µm and with the exter-
nal-signal frequency fe = 77 GHz. It is seen that the
amplitude of the subharmonic detector response is sev-
eral times less than that of the harmonic response. How-
ever, the half-width of the Josephson generation line
determined from the dependence of the detector
response on the voltage applied to the heterostructure
(the distance between the maximum and the minimum)
was practically the same for both the harmonic and sub-
harmonic responses.

In the case of strong fluctuations, γ � 1, the detector
response can be obtained through solution of (7)–(9)
via the method of successive approximations for
δ-correlated fluctuations of current if , i.e., when

1
2
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2e
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Fig. 6. Width of the subharmonic step vs. normalized micro-
wave current at frequency ω = (1 and 1') 1.6 and
(2 and 2') 2.2 for the structures of the length L = 20 µm.
Data points represent experimental values; curves, calcu-
lated values.
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Fig. 7. Detector response of the structures with L = 40 µm to the external signal at 77 GHz. The insets show the (a) harmonic
and (b) subharmonic responses to external signal with a lower amplitude. Dots represent experimental values; curves, calculated
values.
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〈if(t)if(t + τ)〉 = 2δ(τ)γ and 〈if(t)〉 = 0. Here, γ is the noise
factor coinciding with the normalized width of the
Josephson generation line. The first approximation
contains neither a detector response nor Shapiro steps.
The harmonic detector response appears in the second
approximation. For small amplitudes iRF of the external
signal, the detector response is proportional to iRF
raised to the 2nth power and, in terms of the standard
RSJ model, has the form

ηn = , (17)

where δn = v – nω is the frequency detuning.
Thus, in the region of the first harmonic step (n = 1),

the detector response has a quadratic dependence on
amplitude iRF and decreases drastically with an increase
in n. In the generalized Resistive Shunted Function
model, which takes into account the capacitance of the
Josephson junction and the second harmonic of the
CPR, the harmonic detector response for n = 1 has the
form

η1 = . (18)

The second harmonic of the CPR makes only a
small contribution to the harmonic detector response of
a Josephson junction and can be derived via consider-
ation of the third approximation. It is seen that the har-
monic response decreases with an increase in the
capacitance and tends toward zero for β � 1.

In the second approximation of the generalized
Resistive Shunted Function model, we additionally
obtain a subharmonic detector response in the vicinity
of voltage v = ω/2 with its magnitude proportional to
the square of CPR’s second harmonic amplitude q,

(19)

where δ1/2 = 2v – ω.
It is easily seen that, since γ � 1, the ratio between

the harmonic and subharmonic response amplitudes at
a fixed power of the external signal is proportional to
the squared value of the CPR’s second harmonic ampli-
tude:

η1/2/η1 = 4q2. (20)

Thus, measuring the subharmonic detector response
makes it possible not only to confirm the existence of
the second harmonic in the CPR of a Josephson junc-
tion but also to find this harmonic’s amplitude q. The
harmonic and subharmonic detector responses calcu-
lated from (18) and (19) are in good agreement with the

1

2n!2
----------

iRF

2ω
-------⎝ ⎠

⎛ ⎞
2n δn

δn
2 γ 2+

----------------

iRF
2

2ω2 ω2β2 1+( )
------------------------------------

δ1

δ1
2 γ 2+

----------------
δ1

δ1
2 γ 1/β+( )2+

------------------------------------–

η1/2 = 
q2iRF

2

ω2 ω2β2 1+( )
-------------------------------

δ1/2

δ1/2
2 γ 2+

-------------------
δ1/2

δ1/2
2 γ 2/β+( )2+

---------------------------------------– ,

experimental data obtained in this study, as is shown in
the insets to Fig. 7.

CONCLUSIONS

We have conducted an experimental study of the
electrophysical and dynamic parameters (Shapiro steps
and detector response) of heterostructures based on
oxide superconductors having a d-wave order parame-
ter and causing the current–phase relation of the hetero-
structures to deviate from the trivial form. In larger het-
erostructures, the amplitude of the second harmonic of
the current–phase relation was noticeably higher,
which resulted in alteration of the dynamic characteris-
tics of the heterostructures. The dynamic parameters of
the Josephson structures were calculated in terms of the
generalized Resistive Shunted Function model, which
considers the junction capacitance and the second har-
monic of the current–phase relation. It is shown that the
presence of capacitance in the junction has almost no
effect on the Shapiro-step width but changes the scale
of the step-width dependence on the current induced by
the external electromagnetic field. The presence of har-
monics in the current–phase relation leads to the disap-
pearance of local minima in the dependence of the Sha-
piro-step width on the current induced by the external
excitation. This circumstance allows experimental
determination of the harmonics’ amplitudes, while
their sign can be determined through measurement of
the subharmonic Shapiro steps. The detector response
in the vicinity of the voltage corresponding to the sub-
harmonic step can also be used to determine the contri-
bution of the second harmonic to the current–phase
relation.
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