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Abstract

Results on analytical and computational investigations of high-frequency dynamics of Josephson junctions, characterized by non-zero
capacitance and the second harmonic in the current-phase relation are presented. These attributes each have influence on the behaviour
of integer Shapiro steps and lead to the formation of non-integer Shapiro steps. Analytic theory of the integer and non-integer Shapiro
steps has been developed for the so-called high-frequency limit. The analytical and numerical results are compared with experimental
data for hybrid heterostructures YBCO/Au/Nb. Detector response for the case of high fluctuation level has been considered as well.
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1. Introduction

When rf signal is applied to Josephson junction, its /-V-
curve shows a set of Shapiro steps resulting from phase-
locking of Josephson oscillations. Analytical description
of the Shapiro step dependence on the signal amplitude
was obtained only for a high-frequency limit in the frame
of resistively shunted junction (RSJ) model [1] describing
an overdamped junction with McCumber parameter § =
2nlcRy,C/®y < 1. At the same time, many types of Joseph-
son junctions do not meet the model. Most of all, this con-
cerns to the junctions on the base of high-7, d-wave
superconductors. Such junctions are usually characterized
by f>1 and some digression from sinusoidal current-
phase relation assumed in RSJ model. Both the factors
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can cause origin of the sub-harmonic steps unavailable in
the frame of RSJ model. Among the junctions, one should
mention s-wave superconductor/normal metal/d-wave
superconductor (SND) Josephson junctions [2,3].

In this work we deliver results of analytical theory for
dependence of the harmonic and sub-harmonic Shapiro
step amplitude on amplitude of the applied rf signal taking
into account the impact of both factors:  and second har-
monic in the current-phase relation. The theory is devel-
oped for the so-called high-frequency limit, when at least
one of the three following conditions is fulfilled:
w>1 or fw’>1 or a>1 (1)
(frequency w and the rf signal amplitude a are normalized
by characteristic Josephson frequency Q. and voltage V.,
correspondingly). The analytical results are compared with
data of numerical simulation and experimental data for
S/N/D junctions.


mailto:kornev@phys.msu.ru

28 V.K. Kornev et al. | Physica C 435 (2006) 27-30

2. Analytical theory approach

The analytical consideration of Josephson junction
dynamics is performed using the following master
equation:

B+ ¢ +sing+ gsin2¢p =i+ asin(wt) + i, (2)

where the bias current i and fluctuation current i; are nor-
malized by critical current /., and factor g describes the sec-
ond harmonic contribution. The term (sing + sin2¢) is a
small parameter in the extreme case (1), therefore Joseph-
son-junction phase ¢ and constant component of the cur-
rent i can be presented as expansions in the order of
vanishing:

P=Qo+ @+ oyte, i=igtihtht, (3)

and Eq. (2) can be reduced to the set of equations as
follows:

ﬁ¢o + 9.00 = ;0 +a sin(wt) —+ if, (4)
B + @1 = i1 —sin(g,) — gsin(2¢,), (5)
Bz 4 @2 = i — @, cos(py) — 29, cos(2¢). (6)

The 0-order approximation (solution of Eq. (4)) describes
autonomous I~V curve. In the case of negligible fluctua-
tions (if=0), the first- and second-order approximations
that can be found from (5) and (6) describe accordingly
harmonic and sub-harmonic Shapiro steps. The opposite
case of if # 0 corresponds to large-scale fluctuations
inasmuch as the term i, is put in Eq. (4) for 0-order approx-
imation. In such a case the first- and second-order approx-
imations that can be found from (5) and (6) describe
detector response at high fluctuation level.
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3. Negligible fluctuations
3.1. The case ¢ =0

At ¢ =0, the amplitudes of harmonic Shapiro steps
result from Eq. (5). The step amplitudes are described by
the following expressions:

Ai, =217, (x)], (7)
x=ajw\/(wf)’ + 1. (8)

If f =0, formulas (7) and (8) coincide with the well known
ones for RSJ model [1].

Amplitudes of the sub-harmonic Shapiro steps result
from Eq. (6). The sub-harmonic step amplitudes are
described by the following sum:

Aiuinyp =2

Sy (M) / (@B2(@n+1)/2-m?+1)
©)

Keeping only the major term, one can reduce the sum as
follows:

Aiyyyryp = 2B

Ty (0, [ [(@B)/4+ 1)) (10)

3.2. The case g # 0

Eq. (5) gives the following formula for the harmonic
Shapiro step amplitudes:

Ai, = ngx [/ (x) sin(®) + ¢J,,(2x) sin(20)], (11)
where x is defined by (8). This formula can be extended for
the case of several harmonics in the junction current-phase
relation as follows:
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Fig. 1. Left side: Dependences of the 1/2- and 3/2-step amplitudes on the applied signal amplitude a at frequency w = 0.611, f = 35 and ¢ = 0. Solid line
corresponds to formula (10); filled dots, numerical simulation; and empty dots, experimental results for the c-oriented Nb/Au/YBCO junctions. Right side:
Dependences of the critical current amplitude Ai/2 (0-step) and the 1-step amplitude Ai (in inset) on the applied signal amplitude a at frequency o = 1.62
and f = 4. Dashed and solid lines correspond to formula (11) at ¢ = 0 and ¢ = 1 correspondingly, the filled dots correspond to experimental results for the

c-tilted Nb/Au/YBCO junctions.
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Fig. 2. Dependence of the 1/2-step amplitude Ai on the applied signal amplitude a at § =4 for frequencies w = 1.62 (left side) and w = 2.2 (right side).
Dashed, solid and dotted lines correspond to the step behaviour given by formula (13) accordingly at ¢ =0, ¢ =0.14 and ¢ = 0.3. The filled dots are

experimental data for the c-tilted Nb/Au/YBCO junction.

Ai, = 2max {Z G kn () sin(k@)}. (12)

And finally, the sub-harmonic Shapiro step amplitudes
resulting from Eq. (6), are given by the following expression:

Ji(x)J
Aiyjy = 2m@ax 1o (x)

Sin(@){qu(ZX) +B

(Bw)*/4+1
+4qzﬁJ2(2x)Jo(2x)

(ﬁw)2 1 os(@)}

where x is defined by (8) as well.

Figs. 1 and 2 present the analytical results, as well as
experimental data for both the c-oriented and c-tilted
Nb/Au/YBCO junctions formed on NdGaO substrates
(junction areas ranged from 10 x 10 um? to 30 x 30 um?)
and measured at 4.2 K under electromagnetic irradiation
at frequency 36-120 GHz [2,3]. In the latter case, the
S/N/D heterojunctions based on single-domain films of
(1120) YBCO have been prepared on specially oriented
(7102) NdGaO substrates, yielding an inclined growth of
epitaxial YBCO. The c-oriented junction parameters were
estimated as ¢ =0 and =35, while the parameters for
the c-tilted junctions are ¢ = 0.14 and f§ = 4.

; (13)

4. Detector response

Detector response resp = i(v) — i(v) is the difference
between the I~V curve under rf signal impact and the auton-
omous one. As a rule, it is more convenient to use the fre-
quency difference ,, = nw — v instead of normalized voltage
v = V/V,, where V. is characteristic voltage of the junction.

4.1. The case of negligible fluctuations

In the case of negligible fluctuations, the set of Egs. (4)-
(6) yields the harmonic detector response for arbitrary f5 as
follows:

(0| if 5, =0
resp =
P {mﬁmmﬁﬁ+1ﬂ@¢m

4.2. Large-scale fluctuations

(14)

We have considered the impact of the large-scale o-cor-
related fluctuations on detector response in the high-fre-
quency limit. In this case, when noise-factor y = Iy/I. (in
case of thermal fluctuations, Iy = 2ekT/#) it is much more
than 1 and therefore the term i; is put in Eq. (4), the set
(4)—(6) allows us to analyse detector response at arbitrary
values of f§ and ¢. In practice this case may correspond
to the junctions with especially low critical current.

When ¢ =0 and f§ =0, the harmonic detector response
is described by the simple expression:

S
5+

1
resp zzJi(x) ) (15)

At arbitrary value of f and ¢ =0, more complicated
expression takes place:

resp = Ly (x) (16)

2 n

0 On
o477 G+ 1/B’]
In the general case of arbitrary values of f and ¢ the har-
monic detector response is as follows:

1
resp = EJi (x)

O O
£+w_x+w+um4

o, o,
N+ O+ (r+2/p)

The second harmonic in current-phase relation yields also
sub-harmonic detector response (0 &~ nw/2):

1
+ ECIZJ%”(ZX)

]. (17)

(18)

resp = ¢°J>(2x)

! 5/
72 - 2_ 2 . 21
5, +v* 0, +(r+2/B)
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where 8, = 20 — nw. In all the expressions (14)-(18) argu-
ment x is given by (8).

5. Conclusion

Generalizing formulas for both harmonic and sub-har-
monic Shapiro steps in the presence of non-zero junction
capacitance and second harmonic in current-phase relation
are obtained. The analytical theory generalizes the well-
known high-frequency-limit consideration developed ear-
lier for RSJ model [1] to the stated departures from RSJ
model. The formulas are verified by numerical simulation
and mainly by experimental results for YBCO/Au/Nb
heterostructures. Some quantitative disagreement of the
experimental data, which takes place mostly for sub-
harmonic steps shown in Fig. 2, follows from distributed
character of the junctions with the size of order of charac-
teristic Josephson length ;.

At relatively small signal amplitude a, harmonic detec-
tor response is proportional to @*" i.e. linear in respect to
the signal power P at n = 1, and proportional to P" at
n > 1. One should emphasize that the consideration of sec-
ond harmonic in the junction current-phase relation gives
the second-order contribution to the harmonic responses,
and the main contribution proportional to power P to
the sub-harmonic responses at v ~ nw/2. It means that

observation of the sub-harmonic response enables mostly
in a sensitive way to detect second harmonic in current-
phase relation.
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