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We report on spectrometric gas detection using terahertz waves radiated from Bi2Sr2CaCu2O8þδ

(BSCCO) intrinsic Josephson-junction stacks. The emission frequency is varied by changing the bias
current through and thus the voltage across the emitter. For the terahertz detection, both bolometric
and heterodyne detection methods are employed. Clear absorption dips of water and ammonia vapor on the
terahertz spectrum are obtained with both detection methods. With the bolometric scheme, we achieve a
frequency resolution of about 1 GHz, which is on the order of the frequency resolution of systems
employing terahertz time-domain spectroscopy. With the more stable heterodyne detection scheme, the
minimum detectable gas pressure is around 0.001 mbar for H2O and about 0.07 mbar for NH3. The smallest
observable absorption linewidths are in the range of 4 to 5 MHz. Our results suggest that the frequency-
tunable BSCCO emitters can be convenient sources for potential terahertz applications in spectroscopy
for frequencies between roughly 0.4 and 2 THz.
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I. INTRODUCTION

Terahertz science and technology has been a hot topic
for decades due to potential applications in detection and
imaging, such as environmental monitoring, high-bandwidth
communication technologies, medical diagnostics, public
security, and food quality control [1,2]. A variety of sources
of terahertz radiation have been reported [1]. For example,
in terms of compact solid-state devices, there are powerful
quantum cascade lasers for frequencies above 1.5 THz
[3,4]. For frequencies between 0.5 and 1.5 THz, resonant-
tunneling diodes look promising, reaching power levels
in the microwatt range [5,6]. In this paper, we focus on
terahertz emitters based on the high-critical-temperature (Tc)
superconductor Bi2Sr2CaCu2O8þδ (BSCCO) operating at
frequencies of between 0.4 and 2.4 THz [7–9]. These
oscillators are based on the ac Josephson effect.
A unit cell of BSCCO consists of superconducting CuO2

layers and insulating BiO and SrO layers, resulting in
natural (intrinsic) Josephson junctions along the c axis
[10]. A single crystal of 1.5 μm thickness forms a stack of

N ∼ 1000 of such intrinsic Josephson junctions (IJJs). If the
voltage across all IJJs is the same, the junctions oscillate
at a frequency fJ ¼ 2eV=hN, where e is the elementary
charge, h is the Planck constant, and V is the voltage across
the whole stack. Coherent off-chip terahertz emission is
first demonstrated for 1-μm-thick BSCCO stacks, with an
extrapolated output power of up to 0.5 μW for frequencies
of between 0.5 and 0.85 THz [11]. Phase synchronization
of the IJJs is reached through cavity resonances excited in
the stack. Terahertz emission from BSCCO stacks is under
intensive experimental [11–41] and theoretical [42–65]
research and has led to several demonstrations of applica-
tions, such as terahertz absorption and reflection imaging
[25,33,40] or an all-high-Tc integrated receiver [26]. IJJ
stacks have been patterned as mesas on top of BSCCO base
crystals, as bare IJJ stacks contacted by Au layers [gold-
BSCCO-gold (GBG) structures] [24,26,29,31] and as all-
superconducting Z-shaped structures [21]. For the best
stacks, an emission power Pe in the range of tens of
microwatts has been achieved [26,28,29,35], and arrays of
mesas showed emission with Pe values of up to 0.61 mW
[28]. Emission frequencies range from 0.4 to 2.4 THz
[9,31,34,35]; however, above about 2 THz, the emission
power decreases strongly.
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The IJJ stacks are affected by Joule heating. For suffi-
ciently low bias currents, the temperature rises only slightly
to values above the bath temperature Tb, and the voltage V
across the stack increases with an increasing bias current I.
With increasing I values and input power, the current-
voltage characteristics (IVC) starts to backbend and, at a
certain bias current in the backbending region, a hot spot
forms in the stack, creating a region which is heated to
temperatures above Tc. In the IJJ stacks, one can thus
distinguish a low-bias regime where the temperature in the
stack varies only weakly and a high-bias regime where the
hot spot has formed. Terahertz emission can be observed in
both regimes.While the reported linewidth of radiation is not
smaller than 0.5 GHz at low bias [22,24], in the high-bias
regime it can be as narrow as 7 MHz [22,66].
It is of interest to study to what extent IJJ stacks can be

used for spectroscopy purposes. Thus, in this work, sweep-
ing the emission frequency of BSCCO emitters by varying
the bias current, we measure terahertz absorption spectra
of water and ammonia vapor. In a first, proof-of-principle
experiment, we detect the terahertz radiation bolometrically.
In a second and more elaborate experiment, we monitor
the terahertz absorption characteristics of the two gases
by a heterodyne-mixing detection method. Here, a 5-MHz
(4-MHz) linewidth of the absorption signal of ammonia
vapor is observed at a pressure p of 0.23 mbar (0.07 mbar).

II. MEASUREMENTS

The emitter is fabricated as a GBG structure from a
BSCCO single crystal which is annealed at 650 °C, 18 Pa Ar,
and 2 Pa O2 for 48 h. After annealing, the critical temper-
ature Tc is approximately 89 K. The microfabrication
process is described in Ref. [26]. The resulting rectangular
IJJ stack has an in-plane size of ð300 × 50Þ μm2 and a
thickness of 1.1 μm, corresponding to approximately 730
IJJs in series. The emitter is shown schematically in Fig. 1(a).
For electrical contact, two gold wires are connected to the
electrodes by silver epoxy.
In a first and very simple experiment, we use the gas-

detection system shown in Fig. 1.UsingGEvarnish, theMgO
substrate hosting the BSCCO emitter is glued onto a hemi-
spheric sapphire lens. No special measures are taken into
account for thermal management or impedance mismatch
between the sample, the substrate, and the lens. Then the
emitter is placed in a Stirling cryocooler (RICOR K535)
which can cool down to 30 K from room temperature. The
temperature is detected by a DT-670 silicon diode. The
emission is directed to a 52-cm-long gas cell via an off-axis
parabolic mirror, where both windows of the cell are made of
2-mm-thick terahertz-transparent Teflon. The terahertz beam
is modulated by a mechanical chopper (with a modulation
frequency of 14 Hz) and detected with a TYDEX GC-1P
Golay cell. This cell is read out by a lock-in amplifier and
calibrated against the response of a Si bolometer that is
calibrated using a blackbody radiation source. The gas

chamber is initially pumped out to a pressure of
3 × 10−5 mbar, and the target gas is then directed into the
chamber via a gas valve. Here, we should note that the
ammonia vapor used for the experiment volatilizes from
ammonia water and contains additional water vapor with a
proportionof less than10%.The terahertz beamgoes partially
through air, also causing absorption due to water. The
environmental humidity is about 40%. To change the emis-
sion frequency of the terahertz source,we simply vary thebias
current through the IJJ stack, leading to a change in voltageV
and, consequently, in fJ. To determine the frequency of the
emitted radiation, a homemade Fourier spectrometer [67]
is inserted into the beam path. For further evaluation, V is
monitored and converted to frequency using this calibration
and the proportionality of fJ and V. In a second experiment,
we operate the emitter in a helium-cooled optical cryostat
and use a helium-cooled superconducting integrated receiver
instead of the Golay cell to directly detect the emission power
and frequency by heterodyne mixing. The setup is similar to
the one shown in Ref. [68].

III. RESULTS

Figure 2 shows the IVC of the stack, as measured at a
bath temperature Tb ¼ 30 K. The contact resistance

FIG. 1. (a) Sketch and (b) photograph of the terahertz gas-
detection system with BSCCO intrinsic Josephson junctions as a
tunable terahertz emitter. M1 and M2 denote parabolic mirrors.
The IJJ stack forming a GBG structure is shown at the top of the
sketch.
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between the IJJ stack and the contacting gold layers is
subtracted. Dashed lines in the graph indicate the current
sweep sequence. All junctions switch to their resistive
states when the bias current exceeds 34.5 mA. By further
increasing I to 75 mA and then back to zero, the IVC in
the fully resistive state is obtained, exhibiting the typical
heating-induced S shape. The highest voltage across the
stack is 1.31 V. Figure 2(b) shows—as a function of I,
by the dark-cyan line—the emission power, as detected by
the Golay cell, for the case of an evacuated gas cell
(p ¼ 3 × 10−5 mbar).
In the high-bias regime, where the differential resistance

of the IVC is negative, the stack emits in the current range
20–75 mA, covering a voltage range of 0.805 to 0.956 V.
The highest detected emission power occurs at I ¼
36.76 mA [point E in Fig. 2(b)] and amounts to about
10.6 μW. The emission observed is stable over time but
exhibits several peaks as a function of I, presumably
because different resonant modes are excited at different
currents [11,12,17,18,24]. There is also an emission peak at
low bias, at a current near 5 mA. We do not evaluate this

peak further since our focus is on the high-bias regime,
providing a much broader and more stable regime to
tune our device by current. The orange line in Fig. 2(b)
displays the detected terahertz emission for an ammonia
pressure of 900 mbar. While, over large current ranges, this
curve coincides with the background curve measured at
3 × 10−5 mbar gas pressure, at currents near 40 and 55 mA,
the two curves deviate. To show this difference more
clearly, we plot in Fig. 2(c) the absorption, calculated
from the ratio of the two curves of Fig. 2(b), as a function
of V. Two absorption dips are clearly visible, where, in fact,
one is from the water vapor and the other from ammonia.
Note that there is also an “emission” peak between 0.85

and 0.86 V. This is actually an artifact arising from the
steep gradients in the terahertz emission spectra visible in
Fig. 2(b) between bias points D and E. In principle, the
voltage V across the stack could be directly converted to
frequency if the number of IJJs participating in radiation
and the contact resistance were known exactly. As this is
not the case, we measure, for the evacuated gas cell,
emission spectra using our homemade Fourier spectrom-
eter. Some spectra, as detected for the bias points A–G in
Fig. 2(b), are shown in Fig. 2(d). The widths of the
emission peaks seen here are resolution limited by the
maximum displacement of the two split mirrors used in
the spectrometer. The peak positions vary from 540 to
625 GHz, which covers the range of the rotational
frequencies of interest of ammonia and water molecules.
From these data, we also find a number N of 710� 10 IJJs
contributing to the emission peaks, which roughly corre-
sponds to the number of IJJs estimated from the thickness
of the stack.
Figure 3 shows the terahertz absorption spectra of

ammonia and water vapor at different gas pressures,
calculated from the ratio of the various P-vs-V curves to
the P-vs-V background curve obtained for the evacuated
gas cell. At the highest pressures, the widths of the
absorption lines of the two gases are very large (about
2 mV), which is expected due to collisional broadening.
However, for lower pressures, the linewidths decrease
mildly, reaching values of around 1.2–1.4 mV for pressures
below 20 mbar and showing that the resolution (in voltage)
of the absorption lines is limited by noise in the setup. For
ammonia vapor, as shown in Fig. 3(a), the absorption center
of the curves is at V ¼ 0.843 V, where the frequency,
measured with our interferometer, is about 569 GHz. This
is close to the well-known rotational-transition frequency
(f ¼ 572.5 GHz) of ammonia molecules. We use this value
and the Josephson relation to recalibrate the frequency axis
in Fig. 3(a) and to obtain a more precise value for the
number of emitting IJJs, N ¼ 712.
For water-vapor absorption, as shown in Fig. 3(b), the

same calculation also yields N ¼ 712, confirming that we
can perform gas spectroscopy—at least in principle—by
sweeping the current and monitoring the voltage of the

FIG. 2. (a) IVC of the emitter, as measured at a bath temper-
ature Tb ¼ 30 K. Dashed lines indicate the current sweep
sequence. (b) Emission power detected by the Golay cell as a
function of I for the evacuated gas cell (p ¼ 3 × 10−5 mbar) and
for the cell filled with ammonia vapor at a pressure of 900 mbar.
(c) Absorption, as calculated from a ratio of the spectra at p ¼
900 mbar and p ¼ 3 × 10−5 mbar, as a function of voltage V
across the stack. (d) Fourier spectra of the emitted radiation for
the bias points (A) to (G) indicated in (b). The emission peaks
of these spectra are indicated by the numbers in (b). The labels
“H bias” and “L bias” in (b) indicate the high-bias and low-bias
regimes.
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BSCCO emitter. The minimum pressure of the ammonia
vapor where we can still observe the absorption dip is
0.63 mbar. The inset in Fig. 3(a) shows the absorption
signal vs V at p ¼ 2.8 mbar, with a maximum absorption
of about 13.1%. Here, the measured linewidth of the
absorption curves is 1.2 mV, corresponding to about
0.82 GHz. For water [see the inset in Fig. 3(b)], we can
safely detect the absorption line down to p ¼ 0.7 mbar,
and the minimal linewidth is about 1.4 mV (0.95 GHz),
which is already comparable to the frequency resolution of
systems used in time-domain spectroscopy [69].
For further improvement, in our second experiment, to

accurately measure the terahertz absorption spectra of
ammonia and water vapor, a Nb-AlN-NbN superconducting
integrated receiver (SIR) [66], with an effective frequency
detection range of 450 to 700 GHz and a confirmed
frequency resolution well below 100 kHz is employed as
a detector [66,70]. The SIR was used previously to study
terahertz emission from IJJ stacks [22] and to perform gas
detection [66,68,71,72]. In the present experiment, the bias
current through the BSCCO emitter is kept at a constant
value, tuned to the respective gas-line frequency, and
intermediate-frequency spectra are taken using the SIR.
Measurements are done at Tb ¼ 4.2 K, where the linewidth

of radiation of the emitter is 60 MHz at 572.5 GHz (NH3)
and 57 MHz at 557 GHz (H2O). With this setup, high-
resolution terahertz absorption spectra of ammonia and
water vapor are, as in Ref. [68], achieved in a narrow
frequency band lower than the linewidth of the BSCCO
emitter; see Fig. 4 [73]. The emitter, operated in a free-
running mode, is stable enough to permit this kind of
measurement. As in Fig. 3, the absorption lines of ammonia
and water are highly broadened at large gas pressures,
with the linewidth decreasing with decreasing pressure.
For ammonia, at p ¼ 0.23 mbar, which is the order of
the concentration of trace gases, a clear absorption dip with
an absorption linewidth of about 5 MHz is observed, as
shown in the inset of Fig. 4(a). At p ¼ 0.07 mbar, the
measured linewidth is 4 MHz (although affected by Doppler
broadening, which we do not further analyze here).
The observed rotation frequencies of ammonia

(572.498 GHz) and water (556.936 GHz) coincide with
literature values. Further improvement of the lowest
resolvable linewidth is possible by using proper feedback
techniques for the oscillator [70].

IV. CONCLUSIONS

In this work, using terahertz waves generated from
BSCCO IJJ stacks, we record terahertz absorption spectra
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of ammonia vapor near 572 GHz and water vapor near
557 GHz using two different setups. The first experiment
uses a very simple terahertz transmission gas-detection
system based on the bolometric detection of the terahertz
emission signal. The emitter is cooled by a Stirling
cryocooler. Clear absorption dips at different gas pressures
are observed by simply sweeping the bias current and
monitoring the voltage across the stacks; however, the setup
is not stable enough to resolve the absorption linewidths at
low pressures.
In the second experiment, we measure terahertz absorp-

tion characteristics of the two gases using a superconduct-
ing integrated receiver for detecting the terahertz power
and frequency. The emitter and the receiver are mounted
in different helium-cooled cryostats. With this setup, we
achieve minimum absorption linewidths of 4 to 5 MHz at
pressures well below 0.1 mbar. Of course, the performance
is still far below the sensitivity and frequency resolution of
the most sophisticated detection schemes based on chirped-
pulse Fourier-transform spectroscopy [74]. However,
it is not so different from quantum-cascade-laser-based
schemes realized for gas sensing in the 2- to 3-THz range
[75]. BSCCO emitters are suitable candidates for terahertz
spectroscopy for frequencies of between about 0.4 and
2 THz and can be used for applications in environmental
monitoring.
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