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Abstract—A superconducting integrated receiver (SIR) com-
prises all of the elements needed for heterodyne detection on a
single chip. Light weight and low power consumption combined
with nearly quantum-limited sensitivity and a wide tuning range
of the superconducting local oscillator make the SIR a perfect
candidate for many practical applications. For the first time, we
demonstrated the capabilities of the SIR technology for remote op-
eration under harsh environmental conditions and for heterodyne
spectroscopy at atmospheric limb sounding on board a high-alti-
tude balloon. Recently, the SIR was successfully implemented for
the first spectral measurements of THz radiation emitted from
intrinsic Josephson junction stacks (BSCCO mesa) at frequencies
up to 750 GHz; linewidth below 10 MHz has been recorded in
the high bias regime. The phase-locked SIR has been used for
the locking of the BSCCO oscillator under the test. To extend the
operation range of the SIR well above 1 THz, a new technique for
fabrication of high-quality SIS tunnel junctions with gap voltage
Vg up to 5.3 mV has been developed. Integration of a supercon-
ducting high-harmonic phase detector with a cryogenic oscillator
opens a possibility for efficient phase locking of the sources with
free-running linewidth up to 30 MHz that is important both for
BSCCO mesa and NbN/MgO/NbN oscillators.
Index Terms—Oscillators and spectrometers, phase locking,

superconducting integrated circuits, terahertz receivers, thin-film
circuits, tunnel junctions.

I. INTRODUCTION

A SUPERCONDUCTING integrated receiver (SIR) [1]–[4]
comprises on a single chip a low-noise SIS mixer with

quasioptical antenna, a flux-flow oscillator (FFO) acting as a
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Fig. 1. Central part of the SIR chip with antenna, twin SIS-mixer, and harmonic
mixer for FFO phase-locking [4].

local oscillator (LO), and a second SIS harmonic mixer (HM)
for the FFO phase locking (see Fig. 1). The concept of the SIR
looks very attractive for many practical applications due to its
compactness and wide tuning range of the FFO; a bandwidth of
up to 35% has been achieved with a twin-junction SIS mixer
design. Recently, the frequency range of most practical hetero-
dyne receivers was limited by the tunability of the local oscil-
lator; nowadays, commercially available multipliers cover the
band up to 40% of the center frequency,1 and the best SIS re-
ceivers2 offer the bandwidth 15%–30%. All components of the
SIR microcircuits are fabricated out of high-quality Nb-based
tri-layer on Si substrate, placed on the flat back surface of the
silicon lens.
Continuous tuning of the phase-locked local oscillator has

been realized at any frequency in the range 300–750 GHz [3],
[4]. The output power of the FFO is sufficient to pump the
matched SIS mixer in a wide frequency range and can be elec-
tronically adjusted. The FFO free-running linewidth has been
measured between 0.3 and 5 MHz, resulting in the spectral ratio
of the phase-locked FFO above 70% over the range. As a re-
sult of receiver optimization, the DSB noise temperature was
measured below 100 K, which is about ; the spectral
resolution is well below 1 MHz [3], [4].
All of these achievements enabled the development of a

450–650-GHz integrated receiver for the atmospheric-re-
search instrument TELIS (TErahertz and submillimeter LImb
Sounder)—the balloon-borne instrument for the detection of
spectral emission lines of stratospheric trace gases that have
their rotational transitions at THz frequencies [4], [5], [6].
Diurnal cycle of ClO has been observed; the BrO line with a
level of only 0.3 K was isolated and clearly detected. Some
recently obtained TELIS results are presented in Section II.
Capability of the SIR for high-resolution spectroscopy has been
successfully proven also in laboratory environment by gas cell

1[Online]. Available: http://vadiodes.com/index.php/en/products/full-band-
multipliers-wr-series

2[Online]. Available: http://www.almaobservatory.org/en/about-alma/how-
does-alma-work/technology/front-end
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measurements. The possibility to use SIR devices for the med-
ical analysis of exhaled air has been demonstrated [3]. Many
medically relevant gases have spectral lines in the sub-terahertz
range [7] and can be detected by a SIR-based spectrometer.
Recently, the SIR was successfully implemented for the first

spectral measurements of THz radiation emitted from intrinsic
Josephson junction stacks (BSCCO mesa); some of the lately
obtained spectral data as well as the first result of BSCCO mesa
phase-locking to external reference is presented in Section III. A
possibility to extend an operation frequency of the SIR beyond
1 THz will be discussed in Section IV.

II. RECENT TELIS RESULTS

The TELIS instrument is a three-channel balloon-borne
heterodyne spectrometer [8] developed by collaboration of
four institutes: the Deutsches Zentrum für Luft- und Raumfahrt
(DLR), Germany, the Rutherford Appleton Laboratories (RAL),
United Kingdom, and the SRON—Netherlands Institute for
Space Research, The Netherlands (in close collaboration with
the Kotel'nikov Institute of Radio Engineering and Electronics,
IREE, Moscow). The TELIS is a compact, lightweight instru-
ment capable of providing information about spectral lines
presented in both sub-THz (SIR channel by SRON-IREE) and
THz (1.8 THz HEB-mixer developed by DLR) spectral regions.
The TELIS shares the balloon platformwith the Fourier trans-

form spectrometer MIPAS-B [9], developed by the Institute of
Meteorology and Climate research of the University of Karl-
sruhe, Germany (IMK) and is operated in the mid-infrared range
(680 to 2400 cm ). Both instruments observe simultaneously
the same air mass, and together they can provide information
about many atmospheric trace gases measured simultaneously
in several spectral regions, which provides an opportunity for
cross-check results of different instruments. The instrument has
been proven to be stable against the strong atmospheric temper-
ature variations during the ascent (with ambient temperatures as
low as 90 C).
TELIS instrument had four successful flights: three in Kiruna,

Sweden (2009, 2010, and 2011) and one in Timmins, Canada
(2014). During all of those flights, the shortest of which lasted
10 h on float, were measured thousands of limb spectra. Exam-
ples of recently elaborated spectra measured by the SIR-TELIS
channel at different LO frequencies are presented in Figs. 2 and
3.
The flights in North Sweden focused on catalytic ozone loss

by halogens in the Arctic region, similar to processes causing
the infamous ozone-hole over the Antarctic. The spectra de-
picted in Figs. 2 and 3 cover some core molecules to address
these processes, namely ozone itself and Cl-bearing species
HCl and ClO. ClO is the main form of active chlorine causing
the catalytic destruction of ozone. HCl, on the other hand, is a
so-called reservoir species as it is mostly inert in ozone chem-
istry. The ozone destruction depends on the ClO concentration
which strongly depends on altitude. Limb sounding provides
a tool to gain insight in the vertical distribution of these con-
centrations. A single recording of a spectrum contains mostly
information of molecules at tangent point, which is the lowest
point in the atmosphere of the light path. By combining several

Fig. 2. Spectra of two HCl isotopes, ozone and ClO; LO frequency is
619.1 GHz. Spectra for tangent heights 22–31 km and up-looking 6 measured
in Kiruna, 2010, are presented in the graph. Corresponding estimated concen-
trations of observed gases are shown.

Fig. 3. Spectra of ClO, ozone and O; LO frequency is 507.52 GHz. Spectra
for tangent heights 19–31 km and up-looking 6 measured in Kiruna, 2010, are
presented in the graph.

spectra recorded at different tangent heights, a vertical profile
can be constructed. The integration time of a single spectrum is
1.5 s and a typical limb scan contains typically 10–20 different
recordings, covering tangent heights between 10 and 35 km, for
a total measurement time, including calibration measurements,
close to 1 min. In the figures, only a few spectra from a limb
scan are shown to prevent cluttering.
For the results presented in Figs. 2 and 3 limb scans data were

averaged 10 and 23 times correspondingly. It gives the total av-
eraging time for one tangent height about 16 s (Fig. 2) and 35 s
(Fig. 3). To provide the same signal-to-nose ratio (SNR) for the
semiconductor-based receivers, which have noise temperature
not lower than 1800 K [10] in the same frequency range, mea-
surement time should be increased for two orders of magnitude
at least. The wideband coverage of the FFO gives the advantage
that huge amount of molecules which absorption lines lay in the
FFO tuning range, can be measured during one campaign. The
TELIS-SIR channel has been characterized in eight micro-win-
dows covering the FFO frequency range from 495.04 GHz (for
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H O) to 619.10 GHz (for HCl, ClO and HOCl); in combina-
tion with short integration time, it gives an opportunity to pro-
vide vertical profiles for many molecules for almost the same
air mass.
The final product of those measurements is presented in sev-

eral papers concerning atmospheric chemistry [6], [11]–[13].
Analysis of all of the flight data is an ongoing process, where
post-flight characterization of the SIR (for example, precise lab-
oratory measurement of the SIR sideband ratio) gave a new
input to processing of the flight data with higher accuracy. Al-
ready analyzed data proved the SIR to be one of the most sensi-
tive sub THz spectrometers allowing to measure concentration
of trace gases lower than 1 ppbv.

III. MEASUREMENTS OF THZ RADIATION FROM BSCCO
MESA AND ITS PHASE-LOCKING TO EXTERNAL REFERENCE
In recent years, coherent THz emission have been obtained

from stacks of intrinsic Josephson junctions (IJJs) made of the
high temperature superconductor Bi Sr CaCu O (BSCCO).
An IJJ is formed naturally in the BSCCO unit cell with the
CuO layers forming the superconducting electrodes and the
BiO and SrO layers forming the barrier layer [14]. A 1- m-thick
crystal consists of about 670 IJJs. In 2007, it was reported that
such stacks can emit coherent radiation at frequencies up to 0.85
THz with a directly detected power of about 10 nW [15]. Tera-
hertz emission from intrinsic BSCCO stacks has been obtained
both at a low bias (where the temperature distribution in the
stack is almost homogeneous) and a high bias regime (where
an over-heated part and a cold part of the sample coexist) [16],
[17]. Application of the SIR has allowed to measure radiation
emitted from intrinsic Josephson junction stacks in both regimes
with spectral resolution better than 1MHz for the first time [17].
While at low bias we found that linewidth is not smaller than
500 MHz, at high bias, emission linewidth turned out to be in
the range 10–100 MHz. We attribute this to the hot spot acting
as a synchronizing element; linewidth as narrow as 7 MHz has
been recorded at high bias [see Fig. 4(a)].
Typical dependencies of the linewidth on the BSCCO fre-

quency both in the low-bias and high-bias regimes that were
measured by the SIR are presented in the Fig. 4(b). Important
to note that the tuning of the BSCCO oscillator frequency is
continuous over the range; that was confirmed by fine tuning
of the SIR LO frequency. Actually for the presented data the
lowest measured frequency of about 550 GHz was limited by
the BSCCO mesa, while losses in the Nb interconnection lines
of the SIR restrict the measurements at frequencies higher than
750 GHz.
Coherent emission above 1 THz by intrinsic Josephson

BSCCO junction stacks with improved cooling has been
demonstrated [18], [19]. Due to the variable size of the hot
spot and the temperature rise caused by the self-heating, the
emission frequency can be tuned over a wide range of up to
700 GHz [18]. So far, emitted by one device power up to
30 W was obtained [20], [21]; recently, by synchronizing the
emissions from a three-mesa array, power as high as 610 W
was reported [22]. These are very encouraging results, although
for most practical application phase-locking of the cryogenic
oscillator to a stable reference is required.

Fig. 4. (a) Down-converted spectrum of the BSCCO at 476 GHz in the high-
bias regime; dashed line is a Lorenzian fit with full 7 MHz.
(b) Typical dependence of the BSCCO linewidth on the frequency (measured
for the different sample)—solid (open) symbols are for high (low) bias regime.

To check a principal possibility of such locking we used the
phase-locked SIR not only for detection of the BSCCO oscil-
lator emission, but also for further locking of the oscillator under
the test [23]. Block diagram of the experimental setup for phase
locking of the BSCCO oscillator is presented in Fig. 5. The
BSCCO oscillator signal initially down-converted by the SIR to
the IF band 4–8 GHz was then down-converted one more time
to a secondary IF band 0.1–0.9 GHz. The obtained IF signal is
actually a convolution of the BSCCO oscillator signal and stable
phase-locked SIR LO. This signal is applied to the PLL 2, where
phase of the signal is compared with phase of the stable refer-
ence ( MHz). Note that all reference sources used
in the experiment (400 MHz, 6 GHz, and tunable 19–21 GHz)
were internally synchronized to the common 10 MHz refer-
ence. The error signal is returned back to the BSCCO oscil-
lator to control its phase via additional 5- resistor mounted
on the bias plate of the oscillator. It should be mentioned that
both PLLs were equipped by additional frequency discriminator
(FD), which compares signal with internal 400-MHz resonance
tank; the FD error signal was applied to the oscillator in parallel
with PLL signal and can be adjusted separately.
Results of the BSCCO oscillator frequency and phase locking

are presented in Fig. 6. Linewidth of the BSCCO oscillator fre-
quency locked at 563 GHz is 13.5 MHz [Fig. 6(a)]; about 10%
of the oscillator power has been phase-locked. The ratio of the
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Fig. 5. Block diagram of the experimental setup for the BSCCO oscillator
phase locking (see text for more details).

phase-locked power to the total power emitted by the oscil-
lator is called a “spectral ratio” (SR); an obtained SR value of
about 10% is a reasonably good result taking into account wide
linewidth of the BSCCO oscillator and long length of the PL
loop. An SNR of about 57 dB in a bandwidth of 1 Hz has been
recorded [see Fig. 6(c)].
In the phase-locking experiments, we have found that, while

higher power is favorable for phase-locking (especially because
the PLL feed-back circuitry was not optimized for BSCCO os-
cillator phase-locking), the realization of the true voltage control
oscillator with relatively small delay (compare to hot spot oper-
ation, where all voltage changes are rather slow) is also rather
important. This situation is quite similar to the results obtained
at the quantum cascade laser (QCL) phase-locking [24]. This
first successful attempt to phase-lock a BSCCO oscillator to
stable microwave reference opens prospects for numerous prac-
tical applications.

IV. TOWARDS THZ INTEGRATED RECEIVERS

For many years, tunnel junctions based on niobium nitride
(NbN) have been attracting interest as an alternative to Nb junc-
tions for high-frequency applications since NbN has large gap
energy. There have been many reports on the development of
NbN tunnel junctions using different tunnel barrier materials
[25]–[28]. Initially, only NbN/MgO/NbN junctions have exhib-
ited reasonably good quality so far, because both NbN andMgO
have the same crystal structure with a lattice mismatch of less
than 5%. Recently high-quality epitaxial NbN/AlN/NbN tunnel
junctions with a wide range of current density have been demon-
strated [29]. Although previous works have proven a possibility
to produce high-quality all NbN tunnel junctions, we developed
a new technique to fabricate NbN/MgO/NbN circuits. Our ap-
proach somehow resembles the “classical” technique proposed
many years ago for the Nb/AlOx/Nb junctions [30], which are
the basic building block for most devices of modern supercon-
ducting electronics. According to our approach very thin Mg
layer (about 1.5 nm only) is dc sputtered on the NbN layer; the
Mg is then oxidized in the plasma (similar to Al nitridiza-
tion process used for fabrication of Nb/AlN/NbN junctions [31],
[32]). Details of the fabrication process as well as results of the
comprehensive measurements of obtained circuits will be pre-
sented elsewhere [33].
The transmission electron microscopy (TEM) image (see

Fig. 7) shows the layer structure of the junction area of the

Fig. 6. Spectra of the BSCCO oscillator measured relative to the phase-locked
FFO of the SIR: (a) Frequency (dashed) and phase locked (solid line). Span 100
MHz, resolution bandwidth 0.47 MHz 13.5 MHz.
(b) Phase-locked, span 10 MHz, 9.1 kHz. (c) Phase locked,
100 Hz, 1 Hz, SNR is 57 dB as measured in a bandwidth of 1 Hz.

sample. The MgO substrate, bottom and top NbN electrodes
and MgO barrier are visible. Bottom electrode consists of the
epitaxial 70 nm NbN monitor layer covered by 150-nm-thick
NbN film, which is polycrystalline due to lift-off structuring of
this and all subsequent layers. Top NbN electrode is polycrys-
talline and has thickness of 70 nm. High-resolution TEM image
of 1.5-nm-thick MgO barrier layer is shown in the insert of the
picture. It was observed that the orientation of crystal structure
of NbN electrodes is maintained across the MgO barrier.
By using the developed technique it is possible to fabri-

cate high-quality junctions with quasiparticle tunnel current
density Jg in the range 0.05–80 kA/cm . The IVC of the
NbN/MgO/NbN junction ( 2 kA/cm ) is shown in Fig. 8;
the dependencies of the gap voltage Vg and quality factor Rj/Rn
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Fig. 7. Transmission electron microscopy image of the layer structure of the
NbN–MgO- NbN junction.

Fig. 8. IVC of the NbN/MgO/NbN junction (Ic is suppressed by
magnetic field): 18 m 2 kA/cm 5.3 mV;

11.7 .

(ratio of the leakage resistance Rj and normal state resistance
Rn) on the current density are presented in Fig. 9.
To summarize, new technique for fabrication of high-quality

SIS tunnel junctions based on epitaxial NbN films with MgO
barrier has been developed; the junctions with gap voltage
5.3 mV and quality barrier parameter 4 mV have
been fabricated. Such junction parameters are very promising
for development of a SIR for frequencies well above 1 THz.
For efficient locking of Lorentzian lines a PLL system with

a very wide regulation bandwidth (RegBW) is required (due
to slow decrease of the noise level with offset from the car-
rier). The required RegBW depends on the oscillator linewidth
[34]; to phase lock more than 90% of the emitted by the oscil-
lator power (that is required for most applications in radio as-
tronomy and high-precision spectroscopy) the RegBW should
exceed 70 MHz for free-running linewidth of 10 MHz. To over-
come the limitations of the traditional PLL, we have developed
the Cryogenic Phase Locking Loop system (CPLL) [35]. Im-
plementation of SIS junction both for down-conversion of os-
cillator frequency and generation of feedback signal allows us

Fig. 9. Dependencies of the NbN-MgO-NbN junction' parameters on current
density Jg. Experimental points are connected by lines as a guide for the eye.

Fig. 10. Down-converted spectra of the FFO: frequency locked (dash-dotted
line) and phase-locked by the HPD (solid line). The CPLL synchronizes up to
63% of emitted power for free-running FFO linewidth of about 33 MHz.

to place all PLL elements in close vicinity to the oscillator. In
turn, this provides significant reduction of loop time delay (less
than 4 ns) and extremely large RegBW (up to 70 MHz).
We called this novel element “high-harmonic phase detector

(HPD)”; the basic principle of its operation is as follows: the
FFO signal ( 600 GHz) is mixed by HPD with LO signal,
which frequency (of about 20 GHz) is chosen to exactly sat-
isfy the relation . In this case the HPD generates
low frequency output signal proportional to the phase difference
between the FFO and the appropriate harmonic of the LO. This
error signal is applied directly to the FFO control line through
a low-pass filter. Since the CPLL system consists of only su-
perconductive and low-consumption elements, it could be inte-
grated on the single chip with locked oscillator. As it is shown in
Fig. 10, the CPLL system could efficiently synchronize highly
broad emission lines. So, the HPD approach is promising for
NbN/MgO/NbN oscillator stabilization, which is expected to
have large linewidth due to increased surface losses, as well as
for the phase-locking of BSCCO oscillators by using high-Tc
harmonic mixer [20].

V. CONCLUSION
Nowadays the SIR is probably the most functionally complex

fully superconducting device that was already successfully im-
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plemented for practical applications such as Earth atmosphere
monitoring. The SIR is very attractive for future airborne and
space-borne missions as well as for analysis of exhaled air at
medical survey and for security monitoring. New techniques for
fabrication of high-quality SIS tunnel junctions with gap voltage

mV as well as approach for phase-locking of the cryo-
genic oscillators with linewidth up to 50 MHz have been devel-
oped to extend operation frequency of the SIR beyond 1 THz.
The SIR was successfully implemented for the first spectral
measurements of THz radiation emitted from intrinsic BSCCO
Josephson junction stacks; linewidth as narrow as 7 MHz has
been recorded in the high bias regime. The phase-locked SIR
has been used for the locking of the oscillator under the test.
That is the first, but very important step towards the develop-
ment of fully high Tc phase-locked local oscillator.
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