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We report on a liquid-nitrogen-cooled compact source for continuous terahertz (THz) emission.
The emitter is a Bi2Sr2CaCu2O8þδ intrinsic Josephson-junction stack embedded between two gold layers
and sandwiched between two MgO substrates. The radiation is emitted to free space through a hollow
metallic tube acting as a waveguide. The maximum emission power is 1.17 μW. The tunable emission
frequency bandwidth is up to 100 GHz with a maximum emission power at 0.311 THz. Since the operation
voltage is about 1 V and the current is less than 30 mA, we are able to drive this terahertz source at 77 K
with only one commercial 1.5-V battery, just like a torch. This convenient and economical setup may find
applications in fields like tracer-gas detection or nondestructive evaluation.
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I. INTRODUCTION

Terahertz (THz) radiation covers the region from
0.3 THz (submillimeter) to 3 THz (far infrared) and is
attracting increasing attention due to the variety of potential
applications, including information and communication
technology, biology and medical sciences, nondestructive
evaluation, astronomical observation, and security [1–3].
The critical technical requirements are to develop powerful
terahertz sources with certain features for different appli-
cations. One of the tasks is to develop compact and
economical terahertz sources operated in a continuous-
wave (cw) mode. Terahertz radiation for frequencies above
2 THz can be well generated using quantum cascade lasers.
For frequencies below 1 THz, stacks of intrinsic Josephson
junctions (IJJs) [4] in the high-transition-temperature (Tc)
superconductor Bi2Sr2CaCu2O8þδ (BSCCO) have been
shown to emit continuous and coherent radiation [5], with
the possibility to tune the emitted frequency fe by an
applied dc voltage V, following the relation fe ¼ V=NΦ0.
Here, Φ0 is the flux quantum, with Φ−1

0 ≈ 483.6 GHz=mV.
N is the number of IJJs in the stack, and V=N is the voltage
per junction. In Ref. [5], stacks of about 1 μm in thickness
(corresponding to 666 IJJs), a length Ls of about 300 μm,
and a width W of some 10 μm have been realized as mesa
structures on top of BSCCO single crystals contacted by

Au layers. These mesas emitted radiation at frequencies
between 0.5 and 0.8 THz, with an integrated output power
on the order of 1 μW. The operation temperature was up
to 50 K.
Terahertz radiation emitted from such IJJ stacks has

become a hot topic in recent years [6–45]. The possibility
to perform terahertz imaging has been demonstrated
[22,40,41]. IJJ stacks containing typically 500–2000 junc-
tions have been realized as mesa structures but also as bare
IJJ stacks contacted by Au layers [gold-BSCCO-gold (GBG)
structures] [28,30,36,38,43] and as all-superconducting
Z-shaped structures [27]. Emission frequencies are in the
range of 0.4–1 THz. For the best stacks—particularly, the
GBG structures—emission powers in the range of tens of
microwatts have been achieved [30,33,36], and arrays of
stacks showed emission with a power up to 0.61 mW [33].
Both above-mentioned terahertz sources require cooling by
liquid helium or by using cooling systems such as a Gifford-
McMahon cryocooler or a Stirling cryocooler. In view of
the applications, these cryogenic systems are inconvenient
because of large equipment volume, electromagnetic noise,
and mechanical vibrations [46,47].
Quite recently, attempts were reported to enhance the

emission frequency to 1.05 THz and the tunable frequency
range to more than 0.71 THz [43,45]. Particularly, in
Ref. [43], the terahertz emission was observed at temper-
atures above 78 K, which allows the investigation and
application of terahertz technology using liquid-nitrogen
cooling.
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In the present work, we report on a portable and tunable
terahertz source operated in liquid nitrogen, which can
provide cw terahertz emission. The GBG structure sand-
wiched between two MgO substrates is utilized as the
terahertz emitter. The terahertz emission can be transmitted
to free space through a metal tube acting as a waveguide.
For a proof of principle, we also operate our source like a
torch, with only one commercial 1.5-V battery.

II. EXPERIMENTAL SETUP

The fabrication of the sandwiched GBG structure shown
in Fig. 1(b) is described in Ref. [43]. The 230 × 50 μm2

BSCCO IJJ stack is 1.5 μm thick and consists of approx-
imately 1000 junctions. The single crystals used are
optimally doped with Tc ∼ 88 K, which is the key factor
for operating the device at liquid-nitrogen temperatures. In
this GBG structure, the top gold layer can reflect the
radiation of the IJJ stack to the MgO-1 substrate and then to
a sapphire lens, enhancing the detectable emission power.
We put another MgO substrate (MgO-2) on the top of the

GBG structure to form a sandwich structure, using
polyimide (polyimide-1) as glue and a thermal anchor.
At a given bias current I and a given bath temperature T, the
total voltage V across the stack as well as the terahertz
emission frequencies are significantly increased compared
to the GBG structure mounted to a single substrate [43].
A photograph of the terahertz source is shown in the

inset of Fig. 1(a). It consists of a copper container for
holding the BSCCO emitter and a stainless-steel tube acting
as a waveguide. Some pieces of black polyethylene films
are employed on the outport of the waveguide to filter out
some of the infrared background. An inside view of the
copper container is presented in Fig. 1(a). The BSCCO
emitter is fixed on a hemispherical sapphire lens with a
6 mm diameter. The terahertz waves are focused by the lens
and then transmitted outward through the inner polished
tube being a hollow circular waveguide with length of
180 mm and inner radius r ¼ 1.75 mm. We also place an
Rheat ¼ 1 kΩ heating resistor (heater) next to the lens to
adjust the ambient temperature and, consequently, to
expand the tunable frequency bandwidth.

III. RESULTS AND DISCUSSION

For a hollow metallic circular waveguide, the cutoff
frequencies fc of transverse magnetic (TM) and transverse
electric (TE) waves are, respectively,

ðfcÞTMnp ¼ cxnp
2πr

; ð1Þ

ðfcÞTEnp ¼ cx0np
2πr

; ð2Þ

where xnp and x0np represent the pth roots of the nth-order
Bessel functions and its derivatives, respectively; c is the
speed of light. Then, fc of the main mode TE11 is 50 GHz
and, thus, far below the operating frequency. Therefore, for
the tunable frequency range from 0.266 to 0.364 THz,
there are multiple transmission modes, among which the
one having the highest cutoff frequency is TE24 with
fc ¼ 0.359 THz. The hollow circular waveguide transmits
waves by bouncing them with the inner metallic surface;
however, more reflections induce larger insertion losses
[48,49]. By polishing the inner surface, the losses are
reduced. Via simulation, the insertion loss LI of the
waveguide is estimated as about 10 dB according to the
relation LI ¼ −20log10jS12jðdBÞ, where S12 is the trans-
mission coefficient of the scattering matrix.
The power and the frequency (wavelength) of the

terahertz emission are measured with a homemade
Michelson interferometer armed with a Si bolometer.
The power measurement is calibrated by a blackbody
radiation source. The ratio between the power and the
bolometer readout is 2.1 × 10−3 W=V. For the fast Fourier
transform, the frequency resolution of the Michelson

FIG. 1. Structure of the terahertz source. The inset in (a) is a
photograph of the probe consisting of a stainless-steel tube acting
as a waveguide and a hollow copper container hosting the emitter.
The inner top part of the container is sketched upside down in (a).
A close-up of the sandwiched GBG structure is shown in (b).
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interferometer is given by Δf ¼ c=ð2dmaxÞ cosðθÞ, where
dmax is the maximum differential displacement of the
lamellar mirrors and θ the angle of incidence [50]. In
our setup, dmax ¼ 20 mm and θ ∼ 0°; therefore, Δf can be
estimated as 7.5 GHz. When the interferometer is inserted,
the detected power is a factor of 4.3 lower than for direct
bolometric detection.
Figure 2(a) shows a series of current-voltage character-

istics (IVCs) for different temperatures ranging from the
liquid-nitrogen boiling temperature (77 K) to the Tc (88 K)
of the BSCCO emitter. The temperature of the emitter is
varied using the heating resistor mounted on the copper
container. The contact resistance Rcont from 2.1 to 4.6 Ω is
subtracted from the IVC for each temperature. As shown in
Fig. 2(a) by the horizontal dashed arrows, at 77 K all
junctions have switched from the zero-voltage states to
the resistive states when the bias current I > 20 mA. By
further increasing I to 24 mA and then sweeping it down,
the IVC is continuous until some of the IJJs in the stack
retrap to their zero-voltage states at the retrapping current Ir
(11 mA at 77 K). The highest voltage across the mesa is

observed as 1 V at 77 K. Different from the typical heat-
induced S-shaped curves at relatively low temperatures, the
IVCs are always monotonic above the liquid-nitrogen
temperature. With increasing temperature (heater power
Pheat), the retrapping voltage is gradually decreasing, and
the entire emission regime shifts to lower voltages, i.e.,
lower emission frequencies. When Pheat reaches 0.73 W, no
emission can be detected anymore. When Pheat is increased
to 1.0 W, the BSCCO stack goes normal; i.e., it
reaches Tc ¼ 88 K.
The emission region covers a current range from about

11 to 12.5 mA and, correspondingly, a voltage range from
0.5 to 0.7 V, as shown in the inset of Fig. 2(a). The
maximum emission power is observed around 0.6 V,
corresponding to 0.311 THz at most temperatures; cf.
Fig. 2(b). As shown in more detail in the right inset of
this graph, the power peak is about 0.23 μW at Pheat ¼
0.26 W and 0.19 μW at Pheat ¼ 0. The highest value is
0.27 μW at Pheat ¼ 0.20 W. These numbers are recorded
via the Michelson interferometer and for Pheat ¼ 0.20 W
(Pheat ¼ 0) correspond to 1.17 μW (1.08 μW) with direct
bolometric detection.
In addition to the output power, the linewidth and the

frequency tunability are important parameters for terahertz
sources. Figure 3 shows at Pheat ¼ 0.20 W emission
spectra taken at the four bias points marked on the IVC
in the inset. The full width at half maximum of the emission
peak at 0.311 THz is 7.5 GHz, which is the resolution limit
of the interferometer. We do not perform high-resolution
measurements of the emission peak using a superconduct-
ing receiver [24], but note that, at least for the IJJ emitters
investigated previously, the linewidth of radiation can be as
narrow as 23 MHz [24,35].
Figure 4(a) shows the tunability of the emission frequency

with the bias current indicated by vertical error bars at a
given bath temperature. For instance, at Pheat ¼ 0.20 W, it

FIG. 2. IVCs and emission power (with interferometer inserted)
obtained from the terahertz source for different temperatures T.
The color contours represent different terahertz emission powers.
(a) A series of IVCs. Dashed arrows denote the current sweep
direction. The inset is a close-up of the emission region.
(b) Emission power P as a function of the voltage V across
the mesa. The right inset shows the maximum emission power
Pmax vs the heater power Pheat. The left inset shows P vs V on a
magnified voltage scale for four different values of Pheat.

FIG. 3. Emission spectra at Pheat ¼ 0.20 W of the four bias
points marked on the IVC shown in the inset. The colors in the
main panel are used to distinguish different spectra, whereas the
color mapping in the inset corresponds to that in Fig. 2(a).
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amounts to 52.5 GHz with the maximum emission power at
0.311 THz. The emission frequency can also be tuned with
the temperature, which in our setup, we vary using a resistor
placed next to the sample. Figure 4(a) shows the resulting
temperature and frequency changes for seven values of the
heater power Pheat. The total tunable frequency range is as
broad as 100 GHz, which makes it possible to have certain
applications like spectrum analysis of materials.
Note that the fact that fe decreases strongly with the

temperature is consistent with the assumption that in-plane
supercurrents via cavity resonances are important for
synchronization [3]. These currents lead to a large kinetic

inductance which diverges at Tc, and, consequently, the
(in-phase) cavity mode velocity becomes small [9].
By contrast, a temperature independence of fe would have
suggested that in-plane currents dominantly flow in the
gold layers, which does not seem to be the case at least for
the GBG structure we use here.
In Fig. 4(c), for the measurements performed in liquid

nitrogen, we plot fe vs the voltage across the stack V. From
the trend of the linear voltage dependence, we plot two fit
lines, N ¼ 909 and 954, which determine a range for the
number of the active junctions that have contributed to the
emission. There are some deviating data points. The reason
is that some of the junctions in the stack have already
switched back to the superconducting state. Thus, the
voltage state turns to the inner branches of the IVC. The
change in the number N of radiating junctions leads to a
change in slope of the fe vs V relation. For a given voltage,
one observes a higher value of fe, as described by
Tsujimoto et al. [29].
To obtain a more portable and economical system, for a

proof of principle, we also operate our terahertz source like
a terahertz torch driven by a commercial battery. This
operation is possible, since the maximum voltage is about
1 Vand the current less than 30 mA. A 1.5-V battery is used
as a voltage source, and two potentiometers with different
resistors are utilized to adjust the output bias voltage. One
of the potentiometers is 10 kΩ for coarse adjustment and
the other is 100 Ω for fine adjustment. The current is
obtained via a 10-Ω sampling resistor. Figure 5 shows
an IVC and the emitted power for this operation mode.

FIG. 4. (a) Frequency intervals of detectable emission vs the
heater power Pheat. (b) Emission frequency fe vs temperature T
over a large temperature range up to 80 K, as measured with
another setup [43]. (c) Emission frequency fe vs voltage V across
the mesa. The dashed and solid lines correspond to V ¼ NfeΦ0

with N ¼ 909 and 954, respectively.

FIG. 5. Characteristics of the terahertz emitter (T ¼ 77 K)
when operated with a 1.5-V battery. (a) IVC and (b) emitted
power P vs voltage V.
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The maximum emission power measured with the inter-
ferometer is only about 0.063 μW, yielding 0.27 μW for
direct detection. However, we note that the device is not
optimized for this kind of operation; thus, an increase of the
emitted power P will certainly be feasible.
Finally, let us say a few words why our terahertz source

can work at such a high temperature. At least two important
factors may contribute to the high-temperature operation.
One is to diffuse the Joule heating efficiently. In conven-
tional mesa structures, an IJJ stack is located on a thick
BSCCO base crystal, through which the heat diffuses from
the mesa to the substrate. In a GBG structure, the thick
BSCCO base crystal is replaced by a gold layer glued on a
substrate by polyimide inducing a better heating transfer.
The sandwich structure further improves the cooling
because the IJJ stack is wrapped with polyimide (having
a reasonably high thermal conductivity) on the periphery
resulting in more contact areas with the copper holder
[36,43]. The other important factor to achieve maximum
operation temperature is that the crystal is close to optimal
doping. Note that, in general, the precise temperature
dependence of the c-axis resistivity, which, in turn, depends
strongly on doping [51], strongly affects the thermal and
electrodynamic properties of an IJJ stack [19,26,35]. Most
previous results on terahertz generation by intrinsic junc-
tions have been obtained with slightly underdoped crystals.
The results presented in our paper show that terahertz
generation is also feasible using optimally doped stacks,
allowing us to operate IJJ stacks as terahertz sources in
liquid nitrogen.

IV. CONCLUSION

In summary, we design and investigate a portable and
tunable terahertz radiation system for continuous-wave
terahertz emission. The coolant is liquid nitrogen. The
terahertz waves are transmitted to free space through a
metal tube acting as a waveguide. We demonstrate that the
power source can be a commercial 1.5-V battery, allowing
the operation as a “terahertz torch.” Along with satisfactory
spectrum characteristics, the emission frequency is detected
in the range of 0.266 to 0.364 THz. In virtue of its portability
and frequency tunability, the system can be employed in
practical applications. For example, for spectroscopy pur-
poses, one can connect another tube containing some gas to
the end of the waveguide. A terahertz detector can be
attached easily to the end of this setup.
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