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We have carried out a detailed experimental investigation of the static properties of planar Josephson tunnel
junctions in presence of a uniform external magnetic field applied in an arbitrary orientation with respect to the
barrier plane. We considered annular junctions, as well as rectangular junctions �having both overlap and
cross-type geometries� with different barrier aspect ratios. It is shown how most of the experimental findings
in an oblique field can be reproduced invoking the superposition principle to combine the classical behavior of
electrically small junctions in an in-plane field together with the small junction behavior in a transverse field
that we recently published �R. Monaco et al., J. Appl. Phys. 104, 023906 �2008��. We show that the presence
of a transverse field may have important consequences, which could be either voluntarily exploited in appli-
cations or present an unwanted perturbation.
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I. INTRODUCTION

One of the earliest experiments involving Josephson junc-
tions and magnetic fields has been the measurement of the
magnetic diffraction pattern,1 i.e., the dependence of the
junction critical current Ic on the amplitude of an externally
applied magnetic field Ha. Traditionally, since the discovery
of the Josephson effect in 1962, the magnetic diffraction pat-
tern Ic�Ha� of planar Josephson tunnel junctions �JTJs� has
been recorded with the magnetic induction field applied in
the junction plane to avoid the huge computational compli-
cations of taking demagnetization effects into account, when
a transverse magnetic component is present. A number of
important results have been derived from experiments under
these assumptions—a prominent example being the determi-
nation of the London penetration depth2 �L from which one
derives the Josephson penetration depth3 �J which sets the
JTJ electric length scale. Nowadays, every textbook on the
Josephson effect deserves at least one chapter to the mag-
netic diffraction phenomena. The simplest case is that
sketched in Fig. 1 of a rectangular JTJ placed in a uniform
and constant external magnetic field parallel to one of the
barrier edges. Let us choose the coordinate system such that
the tunnel barrier lies in the z=0 plane and let 2L and 2W be
the junction dimensions along the x and y directions, respec-
tively. Finally, let us assume that the JTJ is electrically small,
meaning that its dimensions are both smaller than the Jo-
sephson penetration depth �2L ,2W��J� �absence of self-
fields� and that its Josephson current density JJ is constant
over the barrier area.

If the externally applied field Ha is along the x direction
Ha=Hxx̂ then the magnetic field H inside the junction is
constant and equal to the external value, i.e., H��Hx ,0 ,0�.
By integrating the Josephson equation3 relating the Joseph-
son phase � to the magnetic induction field in the barrier H,

���x,y� =
2�de�0

�0
H�x,y� � ẑ , �1�

in which de is the junction magnetic thickness, �0 is the
vacuum permeability, and �0=h /2e is the magnetic-flux
quantum, we readily obtain the spatial dependence of the
Josephson phase,

� = 	Hxy , �2�

with 	=2�de�0 /�0. Equation �2� leads to the well-known
Fraunhofer-type magnetic diffraction pattern,3

Ic�Hx� = I0� sin �Hx/Hc

�Hx/Hc
� , �3�

where I0=4JJWL is the zero-field junction critical current
and Hc=�0 /2�0deL is the so-called (first) critical field, i.e.,
the smallest field value for which the Josephson current van-
ishes. Barone and Paternò4 generalized Eq. �3� to the case of
an arbitrary orientation of the external magnetic field in the
junction plane Ha=Hxx̂+Hyŷ. In such a case, still H=Ha and
the resulting magnetic diffraction pattern will be

Ic�Hx,Hy� = I0� sin �Hx/Hcx

�Hx/Hcx
�

sin �Hy/Hcy

�Hy/Hcy
� , �4�

with Hcx=�0 /2�0deL and Hcy =�0 /2�0deW. Unfortunately,
the last equation cannot be easily generalized to the case of
an arbitrary applied field orientation Ha=Hxx̂+Hyŷ+Hzẑ,
simply because when Hz�0 then H�Ha. The effect of a
transverse magnetic field has been first considered in 1975
by Hebard and Fulton5 in order to provide a correct interpre-
tation to some experimental data published in the same year.6

They observed that a transverse applied field Ha=Hzẑ in-
duces Meissner surface demagnetizing currents js feeding the
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interior of the junction and so generating a magnetic field H
in the barrier plane such that js= ẑ�H. The problem of find-
ing the js distribution in a single superconducting field sub-
jected to a transverse magnetic field has been analytically
solved for different film geometries.7,8 However, a planar JTJ
is made by two overlapping superconducting films separated
by a thin dielectric layer and the Meissner current distribu-
tions on the interior surfaces �top surface of the bottom film
and bottom surface of the top film� require numerical ap-
proaches even for the more tractable electrode configura-
tions. Recently,9 the magnetic field distribution H� in the
barrier of small planar JTJs has been numerically obtained in
the case when an external magnetic field is applied perpen-
dicular to the barrier plane Ha��0,0 ,Hz�. The simulations
allowed for heuristic analytical approximations for the Jo-
sephson static phase profile �� from which the dependence
of the maximum Josephson current Ic�Hz� on the applied
field amplitude was calculated for the most common elec-
trode geometrical configurations �overlap, cross, and annular
junctions�. Unfortunately, the theoretical findings could not
be tested against experimental results due to the insufficiency
of data available in the literature.

One of the aims of this paper is to fill this vacancy. We
have measured the transverse magnetic diffraction patterns
of several planar JTJs with the most common geometrical
configurations and compared the results with their expected
counterparts. More generally, we have recorded the Ic�Ha�
when the applied field is oblique, that is, has nonzero in-
plane and transverse components. To avoid complications
and without loss of generality, we have chosen the in-plane
component to be along one of the electrode axis—more
specifically—along the x direction,

Ha = Hxx̂ + Hzẑ , �5�

so that, as shown in Fig. 1, the applied field forms an angle 

with respect to the x-y plane, that is,

Hx = Ha cos 
, Hz = Ha sin 
 , �6�

with Ha=�Hx
2+Hz

2. We will demonstrate that the experimen-
tal oblique magnetic diffraction patterns can be nicely repro-
duced by properly extending the theoretical framework of

Ref. 9. This paper is constructed as follows. In Sec. II we
will present the samples used for the measurements and de-
scribe the experimental setup. Section III will report on the
experimental results obtained for those samples whose bar-
rier has a rectangular shape �overlap-type junctions in Sec.
III A and cross-type junctions in Sec. III B�. Section III C
will be devoted to the annular JTJs. Then, in Sec. IV we will
discuss how to generalize the theoretical analysis of the ef-
fect of a transverse magnetic field to the case of an oblique
field. Finally, the discussion and the interpretation of the
measurements will be given in Sec. V, while the conclusions
will be presented in Sec. VI.

II. SAMPLES

High-quality Nb /Al-Alox /Nb JTJs were fabricated on
0.35-mm-thick silicon substrates using the trilayer technique
in which the junction is realized in the window opened in a
SiO2 insulator layer—details of the fabrication process can
be found in Ref. 10. The so-called passive or idle region, i.e.,
the distance of the barrier borders to the electrode borders,
was on the order of 1–2 �m for all the junctions. The thick-
ness of the SiO2 insulator layer was 400 nm. The demagne-
tization currents strongly depend on the electrode thicknesses
relative to the London penetration depth. For our samples the
nominal thicknesses of the base, top, and wiring Nb layers
were 200, 100, and 500 nm, respectively. Considering that
the London penetration depth for Nb film is �L�90 nm,2 we
see that our samples satisfy the thick-film approximation. For
all samples, the high quality has been inferred by a measure
of the I-V characteristic at T=4.2 K. In fact, the subgap
current Isg at 2 mV was small compared to the current rise
�Ig in the quasiparticle current at the gap voltage Vg, typi-
cally �Ig�20Isg; the gap voltage was as large as Vg
=2.8 mV. The geometrical and electrical �at 4.2 K� param-
eters of the seven samples quoted in this paper are listed in
Table I. For the rectangular junctions #A-F, beside their di-
mensions 2L and 2W along the x and y directions, respec-
tively, we also report the junction aspect ratio 
=L /W. �As
shown in Ref. 9, this geometrical parameter turns out to be
crucial for the magnetic field line distribution in the barrier
of a JTJ subjected to a transverse magnetic field.� All the
samples belonged to the same fabrication batch �except
sample #C�. Let us observe that for the overlap-type junc-
tions #A and #B, the zero-field critical current I0 was as large
as the theoretical value 0.7�Ig predicted for strong-coupling
Nb-Nb JTJs, indicating the absence of self-field effects. The
critical current density has been calculated as11 Jc
=0.7�Ig /A in which �Ig is the measured quasiparticle cur-
rent step at the gap voltage and A is the junction nominal
area �A=2L�2W for rectangular junctions and A=��ro

2

−ri
2� for the annular junction�. The Josephson critical current

density was Jc=3.9 kA /cm2 for all samples, except for
sample #C having Jc=80 A /cm2. The values of the barrier
magnetic thickness de=2�L�180 nm has been used to cal-
culate the Josephson penetration depth �J=��0 /2��0deJc.
�In the thin-film limit, �J can be better determined by using
the expression for de found by Weihnacht.12� Accordingly, all
samples had �J�6 �m, except sample #C which had �J

FIG. 1. Sketch of a rectangular planar Josephson tunnel junc-
tion. The tunnel barrier lies in the z=0 plan. An oblique field Ha is
applied in the x-z plane and forms an angle 
 with respect to the x
direction.
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�42 �m. In other words, as far as the electrical length con-
cerns, all samples can be classified as intermediate length
junctions �2L ,2W��J�, except sample #C, that is, a long
�2L��J� unidimensional �2W��J� overlap-type JTJ.

We now come to the definition of the parameters �R
	 , �R

�,
and their ratio �R whose experimental values are reported in
Table I for the rectangular junctions ��A

	 , �A
�, and �A for the

annular junction�. As already mentioned in Sec. I, it is well
known that the magnetic diffraction pattern of an electrically
small rectangular JTJ in the presence of an in-plane field
perpendicular to one of the barrier edge follows the Fraun-
hofer pattern in Eq. �3� characterized by a periodic amplitude
modulation. As depicted in Fig. 2, the value Hc of the applied
field where first the critical current vanishes is called the
�first� critical field. For those samples whose Ic�Ha� is still
amplitude modulated but follows a different pattern �for ex-
ample, annular, circular, and rhombic junctions�, the critical
field Hc can still be defined as that value of external field Ha
where first the critical current nulls Ic�Hc�=0. Further, for

those samples whose Ic�Ha� shows modulation lobes but
never vanishes �for example, the small junction with nonuni-
form tunneling current and long JTJs�, the critical field can
still be obtained extrapolating to zero the first modulation
lobe. However, in those cases in which the critical current Ic
is a monotonically decreasing function of the applied field
Ha, the concept of critical field Hc looses its meaning and a
new feature has to be introduced to characterize the behavior
of Ic�Ha� for small fields. A theoretical example is offered by
a Gaussian-shaped junction subjected to an in-plane mag-
netic field that is characterized by a Gaussian magnetic dif-
fraction pattern.13 A practical example is given by a square
cross junction in a transverse field, whose Ic�Ha� decreases
with Ha with no measurable modulation.14 The experimental
magnetic diffraction patterns that will be reported in Sec. III
span all kinds of behaviors from Fraunhofer-type to 1 /Ha

�

type �with ��0�. Therefore, as the new and universal figure
of merit to characterize the response of the critical current to
the externally applied field amplitude, we have chosen the
width of the magnetic field range �R in which Ic�Ha�
� �2 /��I0�0.64I0 �see Fig. 2�. Considering that, when Eq.
�3� holds, Ic�Hc /2�= �2 /��I0, the value of the prefactor stems
from the requirement that the new merit figure �R numeri-
cally equals the critical field Hc whenever the measured mag-
netic pattern follows a Fraunhofer dependence, i.e., �R=Hc.
In all other cases, generally speaking �R�Hc. In our nota-
tion, �R

	 and �R
� are the merit figures of, respectively, an

in-plane �
=0� and transverse �
=90°� magnetic diffraction
patterns. With a similar reasoning, we define the parameter
�A for annular junctions as the width of the magnetic field
range �R in which Ic�Ha���I0, with ��0.67. The slightly
different prefactor stems from the fact that the in-plane dif-
fraction pattern of a small annular junction �with no trapped
fluxon� follows a Bessel-type dependence:15 Ic�Ha�
= I0
J0��1Ha /Hc�
 in which J0 is the zero-order Bessel func-
tion and �1�2.405 is its first zero. Now Hc=�0 /�0deC,
where C is the ring mean circumference.

The measurement of � requires an external field smaller
than the one required for Hc; henceforth, this new parameter

TABLE I. Relevant electrical �at T=4.2 K� and geometrical parameters of the rectangular and annular Nb /Alox /Nb Josephson tunnel
junctions quoted in this paper. The Josephson critical current density was Jc=3.9 kA /cm2 �corresponding to �J�6 �m� for all samples,
except for sample #C having Jc=80 A /cm2 ��J�42 �m�. The experimental results obtained for these samples will be presented in Sec. III
as follows: overlap-type junctions in Sec. III A, cross-type junctions in Sec. III B, and annular junctions in Sec. III C.

JJ Geometry
2L�2W
��m2� 
 L /W

I0

�mA�
�Ig

�mA�
�R

	

��T�
�R

�

��T� �R �R
� /�R

	

M

A overlap 10�10 1 3.9 5.6 1290 1100 0.85 140°

B overlap 5�20 0.25 3.9 5.6 550 190 0.35 160°

C overlap 4�500 0.008 1.0 2.3 12 0.88 0.073 176°

D overlap 20�5 4 3.6 5.6 2940 5400 1.84 107°

E Cross 10�10 1 3.8 5.8 1080 810 0.75

F Cross 20�5 4 3.0 5.4 420 2240 5.3

JJ Geometry
ri

��m�
ro

��m�
I0

�mA�
�Ig

�mA�
�A

	

��T�
�A

�

��T� �A �A
� /�A

	

M

G annular 5 8 4.3 6.4 490 310 0.63 145°

FIG. 2. �Color online� Definition of the parameter �R as the
width of the magnetic field range in which Ic�Ha�� �2 /��I0. By
definition, for a Fraunhofer-type magnetic diffraction pattern, �R

coincides with the junction �first� critical field Hc.
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also turns out to be a very useful quantity whenever the
junction critical field cannot be experimentally determined
since it exceeds the irreversible field, i.e., when the Abriko-
sov vortices first enter into the superconducting films and
become pinned in the junction.16 For our samples, the trans-
verse irreversible field was about 5 mT �50 G�.

The ratios �R=�R
� /�R

	 and �A=�A
� /�A

	 provide a direct
comparison between the Ic response to a transverse field rela-
tive to the in-plane field; specifically, ��1 means that the
junction critical current modulates faster when the applied
field is transverse. In a recent paper,17 we already provided
an experimental proof that a transverse magnetic field can be
much more capable than an in-plane one to modulate the
critical current Ic of a planar JTJ with proper barrier and
electrodes geometry requirements. This property was first
obtained and exploited in the context of a detailed investiga-
tion of the phase symmetry breaking during fast normal-to-
superconducting phase transitions of long annular JTJs.18

Our setup consisted of a cryoprobe inserted vertically in a
commercial LHe dewar. The cryoprobe was magnetically
shielded by means of two concentric magnetic shields: the
inner one made of Pb and the outer one of cryoperm. Inside
the vacuum tight can of the cryoprobe, a nonmagnetic insert
holds a chip mount with spring contacts to a Si chip with
planar JTJs. With reference to the coordinate system in Fig.
1, the chip was positioned in the center of a long supercon-
ducting cylindrical solenoid whose axis was along the x di-
rection �within less than 1° of accuracy� to provide an in-
plane magnetic field. In order to provide a transverse
magnetic field, a superconducting cylindrical coil was placed
5 mm far from the chip with its axis oriented along the z
direction �within less than 3° of accuracy�. Two independent
low-noise dc current sources were used to feed the solenoid
and the coil in order to expose our samples at magnetic fields
having arbitrary magnitude and orientation �in the x-z plane�.
The field-to-current ratio was 3.9 �T /mA for the solenoid
and 4.4 �T /mA for the coil. These values have been nu-
merically obtained from Comsol Multiphysics magnetostatic
simulations in order to take into account the strong correc-
tion to the free-space solution due to the presence of the
close fitting superconducting shield.19

III. MEASUREMENTS

In this section we present the experimental oblique mag-
netic diffraction patterns relative to planar JTJs having the
seven different electrode configurations listed in Table I. Sec-
tion III A–III C will concern samples having, respectively,
overlap, inline, and annular geometry. The theoretical inter-
pretation of our data sets will be given in Sec. IV. The angle

 that the external oblique field forms with barrier plane
could be experimentally spanned in the interval �−� ,��;
however, according to Eq. �6�, an angle rotation of �� is
equivalent to an inversion of the field direction, i.e., of the
field amplitude Ha→−Ha. For this reason, we will only
present data for 
 in the �0,�� interval with the amplitude
Ha assuming both negative and positive values. Further, by
denoting with Ic

+ and Ic
− the positive and negative critical

currents, respectively, we always had Ic
−�Ha�= Ic

+�−Ha�, as ex-

pected, due to the absence of any measurable stray fields in
our setup. For this reason, we will only present data for Ic

+,
which we will simply call Ic. We stress that, in recording the
Ic vs Ha curves, we took special care that the applied field
never exceeded the reversible field, so it was not expected
that the applied field penetrated the films. Furthermore,
through measurements of the sample’s I-V characteristic, it
was verified that Ha was so small as not to affect the energy
gap. Finally, the raw experimental data were postprocessed
to take into account the difference in the solenoid and coil
field-to-current factors.

A. Overlap-type junctions

We begin with an intermediate length square overlap-type
JTJ, namely, sample #A in Table I �2L=2W�1.6�J�. Figure
3 is a tridimensional plot of the magnetic diffraction patterns
recorded for different 
 values �with �
=10°�. Since, for
this sample, Ic�−Ha�= Ic�Ha�, we only show the data for Ha
�0. It is evident that Ic�Ha� smoothly, but drastically,
changes with the field orientation 
. To be clearer, in Fig. 4
we report the magnetic patterns for four selected 
 values.
For 
=0 the applied field is in the barrier plane �z=0� and,
as seen in Fig. 4�a�, Ic�Ha� closely follows a Fraunhofer-type
behavior, as expected. The small discrepancy between the
experimental data �closed circles� and the Fraunhofer fit
�solid line� can be ascribed to the fact that junction dimen-
sions are slightly larger than the Josephson penetration
depth. Increasing 
, in the beginning the junction critical
field Hc �or equivalently the width of the pattern main lobe
�R defined earlier� first slowly decreases until it reaches an
absolute minimum when 
�50° �see Fig. 4�b�� and later on
quickly increases until it reaches an absolute maximum when

�140° �see Fig. 4�d��. In Fig. 4�c� we also report the trans-
verse �
=90°� magnetic pattern to evidence how much it
differs from a Fraunhofer dependence. It is worth stressing
that whenever 
�2m� �with integer m�, the magnetic dif-
fraction pattern looses the modulation periodicity Hcn
=nHc1 featuring the Fraunhofer behavior; more specifically,

FIG. 3. �Color online� Tridimensional plot showing for the
square overlap junction �
=1� the recorded magnetic diffraction
patterns Ic�Ha� for different values of the field orientation 
 �with
�
=10°�.
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the distance between two adjacent minima increases as we
move to larger fields, i.e., Hcn�nHc1. Each plot in Fig. 4
explicitly reports the corresponding position of the measured
�R.

The 
 dependence of �R �normalized to �R
	 � for the

sample #A is summarized in Fig. 5�a� �solid circles�. �R�
�
is reported in Figs. 5�b�–5�d� for the samples #B, #C, and
#D, overlap-type JTJs having aspect ratios, respectively, 

=0.25, 0.08, and 4. The insets in Figs. 5�a�–5�d� sketch for
each sample its electrode configuration and its orientation
with respect to the Cartesian coordinates chosen in the Sec. I
�see Fig. 1�. We used a vertical log scale for those samples
having 
�1. Each plot in Fig. 5 is characterized by an ab-
solute maximum achieved when 
=
M. The 
M values
quoted in the last column of Table I were found to monotoni-
cally depend on the �R ratios which, in turn, scale with the 

ratios. In Sec. V we will discuss a simple theoretical ap-
proach aimed to find the 
 dependence of �R and the rela-
tionship between 
M and �R as well.

We like to point out that the only measurements similar to
those reported in Fig. 5 can be found in a pioneering paper
dated 1975 by Rosenstein and Chen.6 They measured the
first and second junction critical fields in an oblique mag-
netic field for an overlap-type planar JTJ having 
�0.5 �and
formed by two 300-nm-thick Pb electrodes of unequal
widths�. They found that both Hc1 and Hc2 reach their maxi-
mum values when the field orientation is about 8° off the

in-plane direction �
M �172° in our notation�. This value is
consistent with our findings.

B. Cross-type junctions

Figure 6 shows the transverse magnetic pattern of the
square cross junction �sample #E in Table I� on a log-log
plot. The inset displays the same data on linear scales. We
observe that the critical current monotonically decreases as
the external field is increased. The experimental data indicate
that for large fields Ic�Hz

−2, in contrast with the simple in-
verse proportionality suggested by Miller et al.14

In Figs. 7�a� and 7�b�, we report the oblique magnetic
diffraction patterns of the two cross-type junctions quoted in
Table I, respectively, JJ#E and JJ#F. For these samples, the
in-plane patterns are skewed due to the self-field effects. The
skewness is more pronounced for the asymmetric sample,
having 2L�3�J and I0= Ic�Ha=0�=3.6 mA �of course I0
does not depend on 
�. As we move from an in-plane field
�say 
=0� to a transverse one �say 
=90°�, the skewness
gradually disappears and, keeping increasing 
 toward 180°,
the skewness changes its polarity; in other words,
Ic�Ha ,� /2+
�= Ic�−Ha ,� /2−
�. For this reason, we only
present the Ic�Ha ,
� plots for 
 in the �� /2,�� range �with
�
=15°�. The two samples show a quite different 
 depen-
dence of the normalized pattern width �R /�R

	 , as shown in
Fig. 8. While the former one is characterized by a weak

(a)

(b)

(c)

(d)

FIG. 4. �Color online� Magnetic diffraction patterns of the square overlap junction �
=1� for different 
 values: �a� 
=0 �in-plane field�,
�b� 
=50°, �c� 
=90° �transverse field�, and �d� 
=140°. The experimental data are presented by closed circles. The solid lines, when
present, are the best Fraunhofer fit, while the dotted lines are the results of the calculations described in Secs. IV. For 
=0, by construction,
the calculations reproduce the Fraunhofer shape.
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dependence of �R�
� with a minimum when the applied field
is transverse, the latter one shows a substantial variation with
a maximum when the applied field is close to be transverse,
more specifically, when 
�105�.

C. Annular junctions

In two recent papers,9,17 among other things, we have re-
ported on the transverse magnetic diffraction patterns of
ring-shaped Nb-based annular JTJs with radii ten times �or
more� larger than the Josephson penetration depth. In this
section, we present the results relative to a sample having the
mean radius r̄��J, namely, JJ#G in Table I. Figure 9 com-
pares in a combined plot the transverse and the in-plane re-
corded magnetic diffraction patterns: respectively, the open
squares referred to top horizontal scale �Hz� and the closed
circles referred to the bottom horizontal scale �Hx�. The ver-
tical logarithmic scale was needed to enhance the plot differ-
ences that would be otherwise barely observable using a ver-
tical linear scale �a part of the quite different horizontal
scales�. On a first order of approximation, both patterns
closely follow the zero-order Bessel function behavior; the
solid line in Fig. 9 is the best data fit using Eq. �23� with the
first critical field as a unique fitting parameter. Figure 9 in-
dicates that for this particular sample, a transverse field
modulates the junction critical current about 1.5 times faster
than an in-plane field. In Ref. 17 we have shown that this
gain increases with the ring diameter and can be even larger
than 100.

As shown in Fig. 10, the annular range width �A drasti-
cally depends on the external field orientation 
. In fact,
although its values for 
=0 and 90° belong to the same order

(a)

(b)

(c)

(d)

FIG. 5. �Color online� Magnetic field range �R vs 
 �in degrees� for overlap junctions with different aspect ratios 
: �a� 
=1, �b� 

=0.25, �c� 
=0.08, and �d� 
=4. The experimental data are presented by closed circles. The open stars result from the calculations described
in Secs. IV, while the solid lines, when present, are the result of a simple theory developed in Sec. V. The insets sketch for each sample its
electrode configuration and its orientation with respect to the chosen Cartesian coordinates.

FIG. 6. �Color online� Log-log graph of the transverse magnetic
pattern Ic�Hz� of the cross square junction. The closed squares are
the experimental data, while the open circles are the result of com-
putations based on Eq. �15�. The dashed and solid lines are the
large-field best fit of the experimental and computed data, respec-
tively, �Hz

−2 and �Hz
−1. The inset shows the experimental data on

linear scales.
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of magnitude �A
�=0.63�A

	 , we see that �A�
� is peaked at

M �145°, with �A�
M��100�A

	 �160�A
�; in other words,

when 
�
M, the sample is practically insensitive to the ex-
ternal magnetic field, and an external field amplitude as large
as the irreversible field is required to reduce the critical cur-
rent Ic to 67% of its zero-field value I0.

IV. THEORY

In order to provide a theoretical interpretation of the ex-
perimental data presented in Sec. III, let us introduce the
spatial normalized units x̄=x /L and ȳ=y /W with the junction
center coinciding with the axis origin. Our task is to find out
the Josephson phase distribution ��x̄ , ȳ� over the barrier area
�−1� x̄�1 and −1� ȳ�1� of a small planar JTJ in a weak
oblique applied magnetic field Ha. As a preliminary step,
before resorting to Eq. �1�, we need to determine the mag-
netic field distribution over the barrier area H�x̄ , ȳ�. As the
Maxwell equations are linear in the magnetic field, one can
resort to the principle of superposition to calculate the field
H. Thus, the effect of the oblique field Ha can be conve-
niently split into the sum of the effects of two orthogonal
components, that is, the in-plane component �Hx

2+Hy
2 and

the transverse one Hz. In other words,

H�x̄, ȳ� = H	�x̄, ȳ� + H��x̄, ȳ� , �7�

in which H	 and H� are the barrier field distributions in-
duced by in-plane and transverse external fields, respectively.

As mentioned in Sec. I, it has been traditionally assumed that
when the external field lays in the barrier plane �Hz=0 and
H�=0�, it uniformly threads the oxide layer, so that H	 =H
=Ha��Hx ,Hy�. Today we know that this is only true to the
first approximation for naked JTJs, since field focusing ef-
fects should to be considered in planar JTJ structures espe-
cially in the case of window junctions20,21 that are sur-
rounded by a passive thick oxide layer—the so-called idle
region.22 Our samples were designed to have the smallest
possible idle region, so that field focusing effects could be
neglected; consequently our theory has been developed un-
der the simplifying assumption that the samples are naked.
Further, as shown in Fig. 1, we will only consider magnetic
field directions confined to the plane specified by the angle 

between the applied field and the junction plane �Hy =0�.
According to Eq. �7�, due to the linearity of Eq. �1�, also the
phase distribution can be written as the sum of two terms
�	�x̄ , ȳ� and ���x̄ , ȳ�,

��x̄, ȳ� = �	�x̄, ȳ� + ���x̄, ȳ� , �8�

provided that ��	 =	H	 � ẑ and ���=	H�� ẑ.
Once ��x̄ , ȳ� is known, it will be possible to calculate the

junction critical current Ic as14

Ic = I0
��sin �
2 + �cos �
2, �9�

in which the brackets � 
 denote spatial averages over the
junction area 4�f�x̄ , ȳ�
=�−1

1 dx̂�−1
1 dŷf�x̄ , ȳ�.

(b)

(a)

FIG. 7. �Color online� Tridimensional plots for the recorded
oblique magnetic diffraction patterns Ic�Ha ,
� of two cross-type
junctions: �a� square junction with 
=1 and �b� asymmetric junc-
tion with 
=0.25. The angular separation is �
=15°. �For these
samples Ic�Ha ,� /2+
�= Ic�−Ha ,� /2−
�.�

(a)

(b)

FIG. 8. �Color online� Magnetic field range �R vs 
 �in degrees�
for the two cross-type junctions of Fig. 7: �a� 
=1 and �b� 

=0.25. The experimental data are presented by closed circles, while
the open stars are the result of the calculations described in Secs.
IV. The insets sketch for each sample its electrode configuration and
its orientation with respect to the chosen Cartesian coordinates.
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Being H	 =Hxx̂ �for naked small JTJs�, �	 is given by Eq.
�2� that, with our normalization, becomes

�	�x̄, ȳ� = h	ȳ cos 
 , �10�

in which h	 =2��0HaWde /�0, since Ha cos 
=Hx. �If one
wants to consider the effect of the idle region, still h	 �Ha,
but the proportionality constant needs proper correction.� H�

and their corresponding �� have been found in Ref. 9 for
naked small JTJs having the most common electrode con-
figurations. Generally speaking, it was found ���Hz
=Ha sin 
, so that we are allowed to write

���x̄, ȳ� = h����x̄, ȳ�sin 
 , �11�

with h��Ha and ���x̄ , ȳ� containing the spatial part of
���x̄ , ȳ�. It is important to stress that the proportionality con-
stant between h� and Ha is not known a priori, being a
nontrivial and still unknown function of several geometrical
junction features such as the widths and the thicknesses of
the two electrodes, their separation, and their configuration.9

Therefore h� remains the only free parameter when compar-
ing the experimental data to their theoretical counterparts.
Equation �8� can be now rewritten in terms of Eqs. �10� and
�11� as

��x̄, ȳ� = h	ȳ cos 
 + h����x̄, ȳ�sin 
 .

Being both h	 and h� proportional to the intensity of the
applied field Ha, their ratio �=h� /h	 depends uniquely on
geometrical parameters �including the junction magnetic
thickness de�. Therefore, the last equation can be conve-
niently cast in its final form,

�h,
�x̄, ȳ� = h�ȳ cos 
 + ����x̄, ȳ�sin 
� , �12�

in which, h	 has simply been renamed h and the indices h
and 
 have been added to explicitly indicate that the Joseph-
son phase distribution depends on the field strength and ori-
entation. In the remaining part of this section, we will exten-

sively make use of Eq. �12�, inserting—for each junction
geometrical configuration—the proper �� expression from
Ref. 9.

A. Overlap-type junctions

From the numerical analysis of the magnetic scalar poten-
tial induced in the barrier plane of a planar JTJ by a trans-
verse field, we were able to derive approximate and simple
expressions for the Josephson phase distribution in the bar-
rier area that satisfy the Laplace equation ��2� /�x2

+�2� /�y2=0�. These heuristic expressions were found to be
markedly dependent on the junction aspect ratio 
=L /W.
For an overlap-type junction in a unitary transverse magnetic
field, we found

���x̄, ȳ� � sin ȳ
cosh 
x̄

sinh 

, �13�

Inserting Eq. �13� into Eq. �12�, we observe that �h,
 is an
odd function of ȳ, henceforth �sin �h,

=0; furthermore,
considering that �h,
 is an even function of x̄, the calculation
Eq. �9� of the magnetic diffraction pattern reduces to

Ic�h,
� = I0�
0

1

dx̄�
0

1

dȳ cos �h,
. �14�

The above integral has been numerically evaluated as a func-
tion of the reduced field h and for several values of 
, setting
I0=3.9 mA, 
=1, and �=0.85 in order to make a compari-
son with the experimental data for the square overlap junc-
tion of Figs. 4—the calculated Ic vs h are reported as dotted
lines and a proper horizontal scaling was chosen to match the
in-plane field range �R

	 =1.29 mT.
By construction, for 
=0, Eq. �14� returns the Fraunhofer

pattern. For 
�0 the calculated Ic�h�, at a quantitative level,
is only consistent with the experimental data, the discrepan-
cies being more evident for large-field values. However our
calculations can grasp most of the pattern small field fea-

FIG. 9. �Color online� Comparison of the magnetic patterns re-
corded for the annular junction quoted in Table I �r̄��J� in a trans-
verse �open squares referred to top horizontal scale� and in-plane
�closed circles referred to the bottom horizontal scale� applied mag-
netic field. The logarithmic vertical scale helps the data comparison
in the lower current range. The solid line corresponds to a Bessel-
type fit according to Eq. �23�.

FIG. 10. �Color online� Magnetic field range �A vs 
 �in de-
grees� for the annular junction quoted in Table I �r̄��J�. The ex-
perimental data are presented by closed circles, while the open stars
are the result of calculations described in Secs. IV. The solid line
arises from the approximate analytical expression �27�. The inset
sketches the Lyngby-type annular junction and its orientation with
respect to the chosen Cartesian coordinates.
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tures: in particular, they can nicely reproduce the dependence
of the pattern width �R on 
, as far as 
�1 �see the open
stars in Figs. 5�a�–5�d��. In fact, for 
=4, to use expression
�13� only allows us to reproduce the correct value of 
M.

B. Cross-type junctions

For a cross-type small naked JTJ with aspect ratio 
, it
was heuristically found,9

���x̄, ȳ� = sin ȳ
sinh 
x̄

cosh 

+ sin x̄

sinh ȳ/

cosh 1/


. �15�

This approximate expression, beside satisfying the Laplace
equation, has the proper symmetry properties required by the
problem ��


 �x̄ , ȳ�=��
1/
�ȳ , x̄�. We will consider first the rel-

evant case of a square cross junction, i.e., 
=1. When this is
the case, by retaining the first terms in the Taylor expansion
of the trigonometric and hyperbolic functions, the above ex-
pression �15� reduces to

���x̄, ȳ� = x̄ȳ �16�

proposed by Miller et al.14 in 1985. The transverse magnetic
pattern of a square cross junction can be computed through
Eq. �9�, by inserting Eq. �15� into Eq. �8� and setting 

=� /2. The resulting Ic�Hz� is shown by the open squares in
Fig. 6. Very similar results are obtained, if Eq. �15� is re-
placed by Eq. �16�. For large fields, the calculations are well
fitted by an inverse proportionality law Ic�1 /Hz, while the
best fit to the experimental data results in a quadratically
decreasing dependence Ic�Hz

−2. Again we come to the con-
clusion that the empirical expression taken from Ref. 9 is
only valid in the small field range, in this case, as far as
Ic�Hz��0.2I0. Also for cross junctions, the Ic�Ha ,
� were
calculated and the 
 dependencies of �R were extracted and
shown by the open stars in Figs. 8. In evaluating the integral
�9�, the parameter � in Eq. �12� was chosen to be equal to its
experimental counterpart �R

� /�R
	 . As expected, the calculated

�R�
� are symmetric with respect to 
=90°.

C. Annular junctions

In this section, we will examine the static behavior of
small annular JTJs in the presence of an oblique magnetic
field. Denoting the inner and outer ring radii, respectively, as
ri and ro, we assume that the annular junction is unidimen-
sional, i.e., the ring mean radius r̄= �ri+ro� /2 is much larger
than the ring width �r=ro−ri.

Using polar coordinates r and � such that x=r cos � and
y=r sin �, the Josephson magnetic Eq. �1� can be split into

��

�r
= 	H�,

��

r � �
= − 	Hr, �17�

where Hr and H� are the radial and tangential components of
the magnetic field in the ring plane, respectively. With the
annulus unidimensional, we can neglect the radial depen-
dence of the Josephson phase,23 i.e., ��r ,��=��r̄ ,��; hence-
forth,

���� = − 	r̄� d�Hr�r̄,�� + �0, �18�

in which �0 is an integration constant. By resorting again to
the superposition principle, we can readily write the analo-
gous of Eqs. �7� and �8� for annular junctions as

Hr��� = Hr
	��� + Hr

���� �19�

and

���� = �	��� + ����� , �20�

provided ��	 /��=−	r̄Hr
	 and ��� /��=−	r̄Hr

�.
It is well known23 that when an external field is applied in

the plane of an electrically short �r̄��J� annular junction, it
fully penetrates the barrier H	 =Hxx̂, whose radial component
Hr

	 =Hx cos �, through Eq. �18�, leads to

�	��� = h	 sin � , �21�

with h	 =	Hxr̄. As far as ���� is an odd �periodic� function,
the calculation of the maximum critical current reduces to
the following integration:

Ic =
I0

�
�

0

�

d� cos ���� . �22�

Inserting � as in Eq. �21�, we obtain the in-plane magnetic
modulation pattern

Ic�h
	� = I0
J0�h	�
 , �23�

in which J0 is the zero-order Bessel function �of first kind�.
In deriving Eq. �23�, it was assumed that the Josephson cur-
rent density is uniform over the barrier area and that no mag-
netic flux is trapped in between the junction electrodes
����+2��=�����. The static properties of an annular junc-
tion in a transverse field have been numerically investigated
in Ref. 9 for a Lyngby-type annular JTJ obtained by two
films having the same widths;24 it was found that in a first
approximation, Hr

� sinusoidally depends on � resulting in a
Bessel-type transverse magnetic pattern. In other words,
small differences are expected in comparing the shapes of
the in-plane and transverse magnetic diffraction patterns of
an annular junction, as shown by the logarithmic graph in
Fig. 9. However, a small amplitude third � harmonic has to
be added in order to correctly reproduce Hr

����,

Hr
���� � Hz�cos � + 3� cos 3�� , �24�

with the coefficient � much smaller than unity. The last ex-
pression readily provides a more realistic ����� dependence

����� = h��sin � + � sin 3�� , �25�

with h��Hz. Being Hx=Ha cos 
 and Hz=Hasin 
, by in-
serting Eqs. �21� and �25� into Eq. �20�, the Josephson phase
in the presence of an arbitrary oblique magnetic field applied
with amplitude Ha=�Hx

2+Hz
2 and orientation 


=arctan �Hx /Hz� becomes
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�h,
��� = h�sin � cos 
 + ��sin � + � sin 3��sin 
� ,

�26�

in which, again, h	 has simply been renamed h and �
=h� /h	. In order to reproduce the experimental findings re-
ported in Sec. III C, we have computed the Ic�h ,
�, inserting
Eq. �26� in Eq. �22�, being still �h,
�−��=−�h,
���. The
value of � has been taken from the experimental �A

� /�A
	

ratio �A=0.63 from Table I, while the value of � was deter-
mined from the best fit of the experimental transverse mag-
netic pattern �=0.02. The results of such calculations for
several 
 values are displayed in Fig. 10 with open stars; the
agreement with the experimental data is excellent. Indeed,
the third harmonic correction is mainly needed to reproduce
the peak in �A�
�; in fact, with � set to zero, the field am-
plitude dependence in Eq. �26� would be undetermined for

=−arctan 1 /�, resulting in an unphysical independence of
Ic on Ha. However, far enough from this critical angle, we
can set �=0 in Eq. �26� and the integral �22� trivially results
in a Bessel-type behavior with critical field Hc or pattern
width �A given by

�A�
� =
�A

	


cos 
 + � sin 


. �27�

The last approximate expression plotted as a the solid line in
Fig. 10 exactly matches the experimental points, everywhere
except near 
M =−arctan�1 /�A��145°, where it goes to in-
finity. From measurements not reported in this paper, we
found that Eq. �27� can be usefully applied to reproduce also
the behavior of long �r̄�10�J� unidimensional Lyngby-type
annular junctions in the presence of an arbitrary oblique
field.

V. DISCUSSION

A similar approach can be adopted to describe the behav-
ior of overlap-type junctions having the aspect ratio smaller
than unity. In fact, being −1� x̄�1 and −1� ȳ�1, then
sin ȳ� ȳ, and, under the assumption 
�1, cosh 
x̄�1.
Therefore, Eq. �12� simplifies to a linear ȳ dependence

��x̄, ȳ� = h�cos 
 + � sin 
�ȳ ,

resulting in a Fraunhofer-type magnetic diffraction pattern
with Hc or, with our notation �R, given by

�R�
� =
�R

	


cos 
 + � sin 


= 1/� cos 


�R
	 +

sin 


�R
� � . �28�

It’s seen that the critical width �R diverges at a critical angle

c given by


c = − arctan
1

�
= − arctan

�R
	

�R
� . �29�

In other words, when 
=
c, the effect of the transverse com-
ponent of the applied magnetic field exactly cancels that of
the in-plane component, so that the junction is virtually in-
sensitive to the magnetic field. In practice, a full compensa-
tion is never achieved, although �R�
M� can be as large as

100�R
	 . Equation �28� is plotted as a solid line in Figs.

5�a�–5�c� and it is seen that it nicely reproduces the experi-
mental data not only when 
�1 �see Fig. 5�b�� but also for

=1 �see Fig. 5�a��. It also closely fits the results of a long
�2W�12�J� unidimensional JTJ �see Fig. 5�c�� for which the
calculations developed in Sec. IV A for electrically small
junctions do not apply. Equations �27� and �28� indicate that
for small unidimensional annular junctions and small
overlap-type junctions with small aspect ratio, only two mea-
surements are needed to forecast their static behavior in an
arbitrary oblique field, that is, the in-plane and the transverse
magnetic diffraction patterns.

As far as cross-type samples JJ#E and JJ#F are con-
cerned, we observe that the experimental data shown, respec-
tively, in Figs. 5�a� and 5�b� are affected by a slight asym-
metry with respect to 
=90°, in contrast with the system
symmetry properties �even in the case of electrically long
junctions�. We explain this symmetry break in terms of tiny
fabrication misalignments. In our fabrication line, once the
base electrode has been etched away, each next layer is po-
sitioned with an accuracy better than 1 �m �in each direc-
tion�. This accuracy, although smaller, is comparable with
the idle-region dimension, resulting in an unavoidable—
albeit small—imperfection in positioning the junction area
exactly in the centers of the films. Since the screening cur-
rents mainly flow along the electrode borders, the misalign-
ment effect increases with the junction side dimension. This
explains why the observed asymmetry is larger for junction
#F.

For the Lyngby-type annular junction, our theory repro-
duces the experimental data in a more than satisfactory fash-
ion. However, the situation might be not so good for annular
junctions made by electrodes of unequal widths as, for ex-
ample, those used in Ref. 18, which require also the intro-
duction of the second � harmonic in Eq. �24�. However,
when ����� is as in Eq. �25�, exploiting the trigonometric
equivalence sin 3x=sin x�1+2 cos 2x�, the transverse mag-
netic pattern can be analytically shown to be given by the
following even expression:

Ic�h
	� = I0
J0�h	� + 2�J2�h	�
 ,

in which J2 is the second-order Bessel function and � was
assumed to be much smaller than unity. Similarly, Ic�h� can
be analytically worked out in the more general case of Eq.
�26�, as far as 
 is far from 
M, more precisely, when �
�1+1 /�A tan 
.

The weak point of our theoretical approach based on the
superposition principle is the indetermination of the param-
eter h� introduced in Eq. �11�. The knowledge of the mag-
netic field actually introduced into the barrier for a given
transverse field Hz requires a careful experimental investiga-
tion with samples having a given junction geometry and dif-
ferent geometrical parameter of the connecting electrodes.
However, while the superconducting film widths can be eas-
ily varied, it is difficult to realize samples with much differ-
ent film thicknesses. Consequentially, when the shape of the
Ic�Hz� is known a priori, the effective normalized field h�

remains to be determined from the direct measure of the
transverse magnetic diffraction pattern.
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VI. CONCLUSION

In this paper, we examined the static properties of small
planar Josephson tunnel junction in presence of a uniform
external field applied at an arbitrary angle with respect to the
barrier plane. This topic has been considered from both the
experimental and theoretical point of view. We have pre-
sented the recorded oblique magnetic diffraction patterns of
junctions with the most common electrode configuration,
namely, overlap, cross, and annular geometries. These data,
beside being original by themselves, also served as a test for
the theoretical analysis of small JTJs in a purely transverse
field that we recently proposed.9 Further, by invoking the
superposition principle, the findings of Ref. 9 in a transverse
field were combined with the classical knowledge for a JTJ
in a parallel field to provide a general theory for any arbitrary
oblique field. We stress that the theory has been developed
assuming that junction was electrically small, naked, geo-
metrically perfect, and made with purely diamagnetic super-
conducting films ��L=0 and Hc=��. Although our samples
satisfied these conditions only to a rough approximation, the
agreement between the experimental and theoretical results
is more than satisfactory especially for annular junctions. For
rectangular samples, the theoretical approach is again very
good only for small values of the applied field and of the
junction aspect ratio. In the other cases, our theoretical pre-
dictions fail to provide a correct description. This was to be
expected because the approximate analytical expressions
heuristically found in Ref. 9 were already observed to have
the largest relative error near the junction corners. As already
reported elsewhere,14 the importance of the Josephson phase
at the junction corners grows with the amplitude of the ex-
ternal field.

The main message of this paper is that even a small trans-
verse field �which has been largely ignored in the past� can
strongly influence the magnetic interference patterns. We ex-
plore the implications of this result in supposing systematic
errors in previous experiments and in proposing different
possible applications. Since in most of the applications the
external field needed to modulate the critical current of a
planar JTJ is applied in the barrier plane by means of a long
solenoid or Helmholtz coil pairs, we want to stress the im-
portance of the alignment of the solenoid �or coil� axis with
the junction plane. It was believed that any possible tiny
angular misalignment �
 between the coil axis and the junc-
tion plane would result in only second-order errors, being
Hx= �1−0.5�
2�Ha. However, as we have shown, this is not
necessarily true, since the unwanted �and often unknown�
small transverse field component Hz=�
Ha might have an
effect comparable or even larger than that of the in-plane

component, if the junction critical angle 
c is close to 180°.
For example, in the case of sample JJ#C of Table I, a mis-
alignment �
�−4° would result in a systematic error of
more than 1 order of magnitude for the measurement of the
first critical field. The consequence of the coil misalignment
might have been underestimated, if not ignored, in many
previous experiments dealing with JTJs in an external mag-
netic field, including those in which the exact knowledge of
the field in the barrier plane is of capital importance. As a
corollary, it also follows that in shielding a cryoprobe the
same care has to be taken to minimize both the in-plane and
the transverse stray fields.

Furthermore, in planar superconducting quantum interfer-
ence device �SQUID� applications, the magnetic field to be
measured is applied perpendicular to the SQUID loop and its
effect on the junction critical currents has never been consid-
ered. However, it might not be negligible, especially when
the field is large and the junction�s� is placed close to the
borders of the superconducting electrodes where the induced
screening currents are larger—this is the case of step-edge or
ramp-type junctions.25,26

In this paper, we have shown that for a given junction
geometry the response to an externally applied magnetic
field drastically depends on the field orientation; a property
that might be exploited to design angle resolving instru-
ments. Furthermore, considering that this response is differ-
ent for JTJs having different geometries, it makes possible to
design multijunction chips in which, for a given applied
magnetic field, the critical current of some junctions is al-
most completely suppressed while that of other junctions re-
mains unaffected. Our findings also suggest that two �or
more� independent magnetic fields with different amplitudes
and orientations can be applied to multijunction chips in or-
der to obtain the proper critical current suppression required
for samples having different geometrical configurations.

By using Eq. �4�, the theory developed in Sec. IV for a
uniform oblique field applied in the y=0 plane can be easily
extended to the most general case in which all three field
components are nonzero. In other words, the oblique mag-
netic diffraction pattern can be theoretically predicted for the
most common junction configurations, as far as the junction
dimensions are smaller than Josephson penetration length.
The case of long JTJ in a transverse field still remains an
open question since it requires the solution of a tridimen-
sional magnetostatic problem in the presence of external
�nonlinear� currents.
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