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Abstract—We present the results of theoretical modeling of 
FFO included into PLL system and its comparison with 
experiment. To theoretically describe the dynamics of phase-
locked FFO we have considered two models: the first order PLL 
system and the PLL system with integral-proportional filter. 
While the first order PLL system may be treated analytically, 
and gives good coincidence of the spectral ratio with 
experimental results, it does not describe all peculiarities of 
spectral density, that may be well described by more 
sophisticated model with the integral-proportional filter. 

I. INTRODUCTION 
HE Josephson Flux Flow Oscillator (FFO) [1] has proven 
to be the most developed superconducting local oscillator 

for integration with an SIS mixer in a single-chip submm-
wave Superconducting Integrated Receiver (SIR) [2]. Such a 
receiver comprises in one chip a planar antenna and an SIS 
mixer, pumped by an integrated FFO. In order to obtain the 
frequency resolution and frequency stability required for 
practical application of a heterodyne spectrometer (of at least 
one part per million) the integrated local oscillator (LO) must 
be phase-locked to an external reference. To achieve this goal 
several different types of ultra wideband phase-locked loop 
systems (PLL) (the achieved regulation bandwidth is about 10 
MHz) has been developed and implemented [3]-[5]. All these 
PLL systems are based on analog electronic components, that 
allow them to operate for rather low signal-to-noise ratios of 
order unity. These achievements enabled the development of a 
550 - 650 GHz integrated receiver for the Terahertz Limb 
Sounder (TELIS) [6] intended for atmosphere study and 
scheduled to fly on a balloon in 2006. Here we report some 
results of theoretical modeling of FFO included into PLL 
system and its comparison with experiment. 

II. MODEL 
It is known, that the Flux Flow (Traveling Wave) Oscillator 

is the voltage controlled oscillator (VCO). For a standard 
VCO, included into the phase lock loop system, the equation 

for a phase difference between the reference and the phase 
locked oscillator has the following form [7]: 
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Here p=d/dt, ∆0 - is the initial detuning of the phase locked 
oscillator with respect to the reference, ∆=µsAAm/2 is the 
bandwidth of retention (synchronization), µ is the coefficient 
of conversion of the multiplier, s is the slope of linear part of 
the characteristics of the control element, A is the amplitude of 
the phase locked oscillator, Am is the amplitude of the 
reference oscillator, ξ(t) is the white Gaussian noise with the 
correlation function <ξ(t)ξ(t+τ)>=2Dδ(τ). The PLL with the 
idealized low bandpass filter, when k(p)=1, i.e., the transfer 
coefficient of the filter in a wide band of low frequencies is 
equal to unity and for high frequencies is equal to zero, is 
called the idealized PLL system or the first order PLL system. 
If one has to fulfill two contradictory requirements: to follow 
the fast variations of the signal and to remember the old 
information, one can use as the low frequency band filter the 
proportionally-integrating filter (as it is in our experimental 
PLL system), then k(p)=υ+(1- υ)/(1+T2 p)=(1+T1 p)/(1+T2 p), 
υ= T1/ T2= αT1. In this case the PLL system is described by the 
system of two first order differential equations: 
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III. RESULTS 
Our aim is to investigate how the shape of spectral density 

of FFO is changing if the FFO is included into the PLL 
system. In order to get the required spectral density one has to 
compute the Fourier transform of the following correlation 
function: <cosφ(t)cosφ(t+τ)+sinφ(t)sinφ(t+τ)>. Let us start 
our consideration from the analysis of the first order PLL 
system, k(p)=1, whose nonlinear model may be analyzed both 
analytically and numerically. Let us consider how the value of 
synchronization bandwidth affects the spectral density of the 
phase locked oscillator. From Fig. 1 one can see that with 
increase of the synchronization bandwidth the power, 
contained in the spectral peak becomes larger, while spectral 
density around the peak decreases. On the other hand, the 
wings of spectral density, located further than, approximately, 
3∆, are not, actually, affected by the PLL system. It should be 
noted, that it is difficult to distinguish, what is the value of ∆, 
looking at the plot (see Fig. 1), there are no specific 
boundaries indicating it. As it is seen from Fig. 2, the first 
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order PLL model does not describe all peculiarities of the 
experimental spectral density even qualitatively. To resolve 
this problem, let us consider more sophisticated model with 
the integral-proportional filter (2). In the case of a “strong” 
synchronization, when the phase diffusion may be neglected 
(and, therefore, sinφ may be linearized) one can perform 
analytical analysis in the frame of linear PLL model. 
Following [8], the modulo of the transfer function of the PLL 
with the integral-proportional filter has the form: 
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Fig. 1. The spectral density for the first order PLL system for ∆0=0, D=1 and 
different values of synchronization bandwidths ∆. Dashed line - ∆ =0 –
spectral line of an autonomous oscillator. 

 The spectral density of the phase-locked signal may be 
presented from |Hϕ(ω)| as: Sp(ω)=|1- Hϕ(ω)|2Sa(ω), where 
Sa(ω) is the spectral density of the autonomous oscillator. The 
transfer function Hϕ(ω) qualitatively describes the shape of the 
spectral density of the phase-locked signal, in particular, it 
describes the characteristic climb, but it gives good 
quantitative coincidence for spectral ratio (ratio between the 
phase-locked power and the total power) for the case of large 
spectral ratios only. Therefore, let us consider the nonlinear 
PLL model, which for the case of the integral-proportional 
filter may be analyzed by means of computer simulations of 
Eq. (2). The results of comparison of experimental and 
theoretical spectral densities are presented in Fig. 2. It is seen 
that the experimental curve has a climb, after which it 
monotonically decreases. The first order PLL system does not 
describe such a climb. The model, described by Eq. (2) gives 
good qualitative coincidence with the experimental results. 
The quantitative coincidence is, however, not perfect, that can 
be explained by the fact, that in the experimental setup the 
PLL circuit contains not one integral-proportional filter, but 
three of them. The spectral ratio, computed from numerical 
simulations of Eq. (2) is presented in Fig. 3 by solid line with 
crosses. It is seen, that the coincidence with the experimental 
results is nearly perfect. The results for linear theory are 
presented by the solid line with triangles. We note, that in 
spite of the simplicity of the first order PLL model, it 

nevertheless gives rather good coincidence of the spectral 
ratio with the experimental results, see Fig. 3. 

Fig. 2. The power spectral density. Solid line with dots - experimental results, 
solid line - first order PLL system, dashed line - PLL system with integral-
proportional filter, nonlinear theory. 

 
Fig. 3. The spectral ratio versus autonomous linewidth. Dots - experimental 
results, dashed line - first order PLL system, solid line with crosses - PLL 
system with integral-proportional filter, nonlinear theory, solid line with 
triangles - linear theory. 
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