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Characterization of Microwave Properties of
Superconducting NbTiN Films Using TDS
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Andrey V. Khudchenko , and Valery P. Koshelets , Member, IEEE

Abstract—In this article, we perform systematic study of electro-
dynamic properties of superconducting NbTiN films at frequencies
0.2–2.5 terahertz (THz) and in temperature range from 4 to 15 K
using time-domain spectrometer. The goal is to achieve the best
parameters of the films at THz frequencies; that is to reach а
tradeoff between the highest possible normal state conductivity
σ0, the smallest London penetration depth λL, and the highest
energy gap and critical temperature Tc. To do this, it is necessary to
determine the optimal manufacturing conditions; to this end, a set
of NbTiN films of various compositions was fabricated, controlled
by the nitrogen pressure in the magnetron chamber. As a result,
the film with parameters σ0 = 11·103 1/(Ohm·сm), λL = 280 nm,
and Tc = 14.4 K were obtained. To fit the experimental data, two
models with and without taking intragap states into account were
used, and both of them are in good agreement with experiment.

Index Terms—Intragap states, strong-coupling superconduct-
ors, superconducting materials, terahertz (THz) measurements,
thin films, time-domain spectroscopy.

I. INTRODUCTION

SUPERCONDUCTING electronics play significant role in
novel fundamental research [1], ground-based [2], [3] and

space-based [4], [5] radio astronomy, spectroscopy [6], [7],
biology [8], single photon detectors [9], and quantum systems
[10]. Heterodyne receivers based on superconductor–insulator–
superconductor tunnel junctions have noise temperature ap-
proaching quantum limit [11], [12] and operate at terahertz
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(THz) and sub-THz frequencies, which make them invaluable
for ultrasensitive measurements in this range. New advances in
development of superconducting devices can be achieved by
optimizing production processes and implementing new mate-
rials. In particular, the use of niobium compounds (e.g., NbN
and NbTiN) enables one to broaden the operating range of the
devices up to 1.2 THz.

Studies of the films made of NbN and NbTiN were performed
by a number of groups around the world and various methods
have been proposed. In works by Uzawa et al. [13] and [14], the
authors fabricated films using magnetron sputtering and charac-
terized them by transmission with a time-domain spectrometer
(TDS). The thicknesses of the films in those works were about
150 and 50 nm, which are much less than the typical thickness
of the electrodes of superconducting transmission lines which
should be equal to or larger than London penetration depth
(280 nm or even larger for NbTiN films at temperatures far below
Tc measured at frequencies less than 0.1 THz, that is much less
than the gap frequency). In [15], the authors optimized their fab-
rication process in order to achieve the lowest possible London
penetration depth and increase Tc. The parallel plate resonator
technique [16] was used to study the films at frequencies around
20 GHz. However, the parameters of the superconducting films
at high frequencies, especially close to the gap frequency, are
different from those obtained by dc measurements.

Therefore, in this article, we continue our previous article
[17] and study a series of superconducting NbTiN films with
thicknesses of about 330 nm, which is the typical thickness of
the electrodes in real superconducting devices operating at THz
frequencies.

The rest of the article is organized as follows. The fabrication
processes of the films are described in Section II. Section III
is devoted to the experimental setup and the model used to fit
the experimental data. Further discussion on models of strongly
coupled superconductors and the argumentation of the method
is presented in Section IV. The discussion of the results is given
in Section V. Finally, Section VI concludes this article.

II. FABRICATION OF THE FILMS

Fabrication process of the superconducting NbTiN films has
been previously studied in a number of papers [13], [14], [16],
[18], [19], [20], and was described in brief by our group in
[21]. There are many technological factors that contribute to
the parameters of NbTiN films, e.g., substrate material and
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TABLE I
DC PARAMETERS OF SUPERCONDUCTING NBTIN FILMS

temperature, presence of buffer layers, sputtering rate, and
percentage of niobium, titanium, and nitrogen in the film. In
[22], we investigated NbTiN films sputtered onto quartz and
silicon substrates and found only minor difference between the
parameters of the films. The lift-off process is often used in the
fabrication of superconducting devices [21]. At temperatures
above 150 °C, the photoresist baking occurs and lift-off process
is no longer possible. This leaves little space for substrate
temperature variation. The influence of the buffer layer will be
studied elsewhere.

The samples in this article were sputtered on 535-μm thick
high-resistivity silicon substrates at room temperature using
Kurt J. Lesker cluster magnetron system. Sputtering was per-
formed from a 3′′ NbTi (78% wt. of Nb and 22% wt. of Ti)
target of 99.95% purity in a mixture of nitrogen and argon. The
distance between the target and the substrate (about 80 mm) was
chosen to provide, on the one hand, good sputtering rate and, on
the other hand, homogeneity over the substrate area. The power
of the magnetron was around 500 W, which is the optimum for
our setup. The initial pressure in the magnetron chamber was less
than 10−8 mbar. The argon pressure remained at 5.6·10−3 mbar
for all the samples, while the pressure of nitrogen was varied
from 0.35·10−3 to 0.65·10−3 mbar. The amount of nitrogen in
the gas mixture plays a key role in the production process of
NbTiN films as it affects not only the composition of the film,
but also the sputtering rate. Therefore, it was selected as the
parameter to optimize NbTiN films fabrication process in this
article. The sputtering rate is less sensitive to changes of the total
pressure in magnetron, but it largely determines the tension in the
films. However, the analysis of tension in NbTiN films extends
beyond the scope of this article and will be studied in future.

The values of critical temperature Tc and the normal state dc
conductivity σ0 just above the Tc, measured using four-probe
technique for all the films are presented in Table I. The dc test
samples were fabricated at the same technological run with the
TDS samples. They have a form of a straight lines that are 10-mm
long and 200-μm wide (50 squares). The setup allows to obtain
results with an accuracy of 1%–2%.

III. MEASUREMENT TECHNIQUE

A. Description of TDS Principles

The study of the samples was conducted using the TeraView
TPS Spectra 3000 commercial TDS. The choice of TDS as a
measurement technique was driven by our previous experience

Fig. 1. Spectra of transmission coefficient Tr (a), real part of permittivity (b),
and conductivity (c) of superconducting NbTiN film #5.

as TDS has a better signal-to-noise ratio when studying NbTiN
films than DFTS [17]. The setup allows to measure complex
transmission coefficient spectra of the superconducting films
on substrates in frequency range up to 3 THz, which reliably
covers the frequency interval where the superconducting gap
frequency (≈1.2 THz) is located. THz radiation is generated
and detected by semiconducting emitter and detector gated by
ultra-short pulses of a Ti-sapphire laser. More than 10 spectra
within a temperature range from 5 to 15 K were measured for
each sample. The experimental transmission coefficient spectra
of sample #5 at temperatures 5, 9, 13, and 14 K are shown in
Fig. 1(a). The periodic structure of the transmissivity spectra is
due to multiple reflections within the substrate.

The electrodynamic properties of the films both in normal and
superconducting state can be described by complex permittiv-
ity ε∗ = ε′ − 4πiσ1/ω, where ε′ is real part of permittivity,
σ1 is real part of conductivity, and ω is circular frequency.
Spectra of ε′ and σ1 of the films were determined from the
frequency-dependent complex transmission coefficient (both
magnitude and phase). Spectra of electrodynamic response of
the film on substrate were obtained by solving corresponding
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set of equations for two-layered medium [23]. Parameters of the
substrate, including thickness, permittivity, and dielectric loss
tangent, were extracted beforehand by studying the bare silicon
plate with the same dimensions and without a film on its surface.
Permittivity and conductivity spectra of the film #5 are depicted
in Fig. 1(b) and (c), respectively. In the superconducting state, the
permittivity sharply decreases as it approaches low frequencies.
This can be described by the formula ε′ = − (ωSC

pl /ω)
2, where

negative ε′ values correspond to inductive response of Cooper
pairs condensed under a zero-frequency delta-function in the
conductivity spectrum. ωSC

pl represents the plasma frequency
of the superconducting condensate. Above the gap frequency
fg = ωg/2π = 2Δ/h, the conductivity (absorption) is suppressed
showing a kink around 2Δ/h (h is Planck’s constant) [24].

B. Theoretical Model

To model the conductivity and permittivity spectra and to
determine the parameters of the superconducting films, we used
the expressions from the work by Zimmermann et al. [25]. This
model not only allows to calculate the frequency-dependent
complex conductivity, but also takes into account finite quasi-
particle scattering time, which enables to describe decline in the
experimental conductivity curves at frequencies above the fg. We
express the scattering rate as γ = �/τ , where τ is quasiparticle
scattering time.

Corresponding theoretical curves are shown by solid lines in
Fig. 1. Transmission coefficient of the multilayer structure was
calculated as discussed in [25]. The parameters Δ, γ, and σ0

were obtained by fitting experimental data.

IV. EFFECTS OF STRONG COUPLING AND INTRAGAP STATES

In recent studies of NbN and NbTiN films [22], [26], the
authors claim that it is necessary to take into account the intragap
quasiparticle states in order to achieve good correspondence
between theory and experiment at frequencies near the gap
frequency. In corresponding models, it is assumed that for
different reasons the singularity in density of states near the
gap disappears and takes finite values, which can be handled by
adding imaginary part to the gap [26], [27], [28]. More general
way is to solve the Usadel equation [29], [30], which was done
previously by a number of authors for Ti, Ti–Al layered systems,
TiN, and NbTiN films [31], [32], [33]. In case of isotropic
film with magnetic impurities, it can be explicitly shown that
the model suggested by Nam [28] is a particular case of that
described in the papers above [29], [30], [31], [32], [33].

Nb and its compounds are the superconductors with strong
coupling. Because of the strong coupling, the BCS [24] expres-
sion Δ0 = 1.76kBTc is no longer valid (Δ0 here is the gap value
at T = 0 K, kB is the Boltzmann constant). The relation between
Δ0 and Tc becomes more complex [34] and, in addition, depends
on parameters λ and μ which denote the strength of electron–
photon coupling and Coulomb pseudopotential, respectively. To
our knowledge, the information on these parameters for NbTiN
films in literature is absent. In [35], values of λ for Nb films
obtained using different measurement techniques differ from
each other and calculations within 10%. For these reasons, in
present article, we simply use Δ0 and Tc as independent fitting

Fig. 2. Results for relative difference in reflection coefficients of NbTiN film
in superconducting and normal state from [22]. Experimental data are shown
by dots; dashed green and solid orange curves depict the theoretical results
obtained with and without taking intragap states into account, respectively. The
range below the gap with the biggest discrepancy between orange curve and
experiment is marked with arrow.

parameters. The coefficient at kBTc was found to be larger than
1.76 (2.0–2.2 for all the NbTiN films measured in this article).

As the model [25] describes the samples in the present article
accurately enough, without making any assumptions on intragap
states, it was intriguing to find out whether it could also be
applied to the data measured by other groups.

In the article by Lap et al. [22], similar superconducting
NbTiN films with the thicknesses exceeding London penetration
depth are investigated. In that article, additional silicon plates
were used in order to suppress multiple reflections within the
substrate, and as a result only superconducting film sandwiched
between vacuum and silicon media should be modeled. Theo-
retical curves together with the experimental data are shown in
Fig. 2. The difference in reflection coefficients where film is in
superconducting and normal states at low frequencies is fully
determined by σ0. By varying Δ, the position of the kink can be
changed; the steepness of the kink can be adjusted by γ. Fitting
was performed using least-square method with frequency points
above 1.3 THz having smaller weight since at higher frequencies
the accuracy of the measurements was limited by absorption in
atmosphere. It can be seen that even without taking into account
the intragap states the model still allows to fit the results of
experiment with reasonable accuracy in the whole frequency
range (see solid orange curve). The parameters of the fit were
as follows: Tc = 14.7 K, Δ0 = 2.4 meV, σ0 = 8·103 (Ω·cm)−1,
and τ = �/γ = 50 fs.

However, small discrepancy occurs at frequencies 1–1.2 THz,
i.e., near the gap frequency (1.16 THz), and especially below it
(see the red arrow in Fig. 2). By utilizing the expressions from
[28], this discrepancy can be resolved (dashed green curve in
Fig. 2). The parameters σ0 and γ remain the same as listed
above in previous paragraph. The value of the parameter Γs

that corresponds to scattering rate by magnetic impurities was
0.02·Δ0. This effect leads to broadening of the gap frequency
ωg feature, and also to a decrease of ωg (2.1 meV compared
to Δ0 = 2.4 meV when Γs = 0). Thus, Δ0 was increased to
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Fig. 3. Temperature dependences of superconducting gap parameter (a) and
London penetration depth (b) of the sample #5. The data points were obtained
from fitting the transmission spectra at corresponding temperature. Solid lines
show least-square fits with (1) and (2), respectively.

2.55 meV in order to obtain good agreement with experimental
data at frequencies near 1.1 THz.

It still remains unclear whether decrease in reflectivity near
the gap frequency is caused by intrinsic or extrinsic effects, such
as surface roughness or contamination. What is more important,
experiment and theory are in reasonable agreement for both
models. Therefore, we assume that the aforementioned factors
have a minor impact on the properties of thick NbTiN films and
the model described in Section III-B is suitable for characterizing
our films.

V. RESULTS AND DISCUSSION

Temperature dependence of the superconducting gap Δ(T) is
shown in Fig. 3(a). Each data point is obtained by fitting the
corresponding spectra shown in Fig. 1(a). Solid line corresponds
to empirical formula

Δ(T ) = Δ0 tanh
(
1.74

√
Tc/T − 1

)
(1)

where Δ0 is zero-temperature gap value.

Fig. 4. Parameters of the NbTiN films fabricated at different pressures of
nitrogen in magnetron chamber.

We also present here data on London penetration depth since
it significantly affects the phase velocity and, therefore, the
propagation constant in superconducting transmission lines [36].
The procedure applied to determine the London penetration
depth is the same as for Δ; data points at different temperatures
are obtained from Fig. 1(b) [37]. Fitting the data points with
the two-fluid model expression, presented as follows, allows to
determine the zero-temperature value λ0:

λL (T ) = λ0

√
1−

(
T

Tc

)4

. (2)

Parameters σ0 and γ were found to be constant at all tempera-
tures for every individual film. This may be explained by the fact
that the films were fabricated using magnetron sputtering, and
therefore have crystalline structure resulting in quasiparticles
mostly scatter by impurities. Moreover, γ was found to be nearly
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the same for all the films within the accuracy of the experiment.
Corresponding scattering time τ was around 33 ns.

The resultant parameters of the films, namely, Tc, Δ0, σ0,
and λ0, measured both at dc and using TDS, depending on the
pressure of nitrogen in magnetron, are shown in Fig. 4.

Difference between Tc values obtained from dc measurements
and by analyzing the TDS data is likely caused by the grain
structure of the films: at temperatures close to Tc, there are areas
both in superconducting state and normal state. Direct current
can flow through superconducting pattern and evade the areas
that are in normal state, while the THz-radiation in TDS is more
sensitive to material within superconducting grains. Therefore,
significant increase of conductivity at THz frequencies will
occur at lower temperatures where the film is in superconducting
state, resulting in lower effective Tc.

Recently [38], the properties of superconducting NbTiN film
were probed at dc and with the parallel plate resonator technique
at frequency around 19 GHz and TDS. The Tc values obtained
from TDS and resonator technique are the same within the
accuracy of the experiments (13.1 and 13.3 K, respectively),
while dc measurement yields 14.9 K which is in agreement with
the present results. At the same time, the value of λ0 determined
with parallel plate resonator (230 nm) was found to be smaller
than the one obtained from TDS (300 nm). We assume that the
difference is caused by the frequency dependence of λL.

From Fig. 4, it can be seen that the critical temperature Tc

of the films reaches its maximum value of 14.6 K at a nitrogen
pressure around 0.55 10−3 mbar; the normal-state conductivity
σ0 decreases monotonously over the entire range under study
and the London penetration depth λ0 has a minimum value at
0.45 10−3 mbar [see Fig. 4(a), (b), and (c), respectively]. On the
right axis of Fig. 4(b), the resistivity scale ρ = 1/σ0 is plotted
for convenience.

VI. CONCLUSION

To sum up, we performed a comprehensive study of THz
electrodynamic properties of superconducting NbTiN films and
determined the values of the nitrogen and argon pressure at
which the films with the highest possible Tc, Δ0, σ0, and lowest
λ0 are obtained. The effects of the buffer layer and sputtering
from the target with different Nb-Ti compound will be published
elsewhere in the near future. It should be mentioned that there is a
tradeoff between the parameters and the limit values are achieved
at different manufacturing conditions. Furthermore, the TDS
results deviate by approximately 10% from the dc measurement
data. We argue that the difference is intrinsic to the films and
therefore, it is the parameters obtained by TDS that should be
used for modeling superconducting devices at high frequencies.
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