К 70-ЛЕТИЮ ИРЭ ИМ. В.А. КОТЕЛЬНИКОВА РАН

УДК 537.874.76

ИССЛЕДОВАНИЕ СВЕРХПРОВОДНИКОВЫХ ЛИНИЙ ПЕРЕДАЧИ И ТУННЕЛЬНЫХ ПЕРЕХОДОВ ДЛЯ ДЕТЕКТИРОВАНИЯ СИГНАЛОВ НА ЧАСТОТЕ ВЫШЕ 1 ТГп

© 2023 г. Н. В. Кинев^{а, *}, А. М. Чекушкин^а, Ф. В. Хан^а, К. И. Рудаков^b

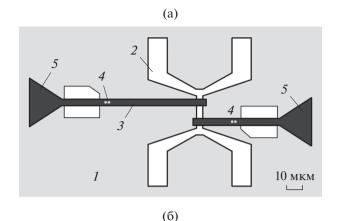
^а Институт радиотехники и электроники им. В.А. Котельникова РАН, ул. Моховая, 11, стр. 7, Москва, 125009 Российская Федерация

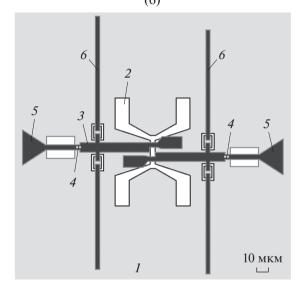
^b Редакция журнала "Радиотехника и электроника", ул. Моховая, 11, стр. 7, Москва, 125009 Российская Федерация

*E-mail: nickolay@hitech.cplire.ru

Поступила в редакцию 28.04.2023 г.
После доработки 28.04.2023 г.
Принята к публикации 25.05.2023 г.

Разработаны и экспериментально исследованы сверхпроводниковые интегральные схемы на основе линий передач NbTiN/Al на частотах до 1.1 ТГц. Проведено численное моделирование двух топологий микросхемы с рабочим диапазоном частот 0.9...1.2 ТГц, содержащих щелевую антенну, выполненную в тонкой пленке NbTiN и согласованную по выходу с микрополосковой линией передачи, и туннельный переход вида "сверхпроводник—изолятор—сверхпроводник" (СИС) площадью порядка 1 мкм², выступающий в качестве терагерцового детектора. Изготовлены и протестированы экспериментальные образцы микросхемы, в экспериментальной установке в качестве источника использована лампа обратной волны (ЛОВ) с выходной частотой до 1.1 ТГц. Получена мощная накачка СИС-детектора, тем самым продемонстрирована применимость изготовленных линий передач NbTiN/Al для работы в составе сверхпроводниковых схем на частотах выше 750 ГГц, где не работают традиционно используемые линии передачи Nb/Nb из-за высокого затухания.


DOI: 10.31857/S0033849423090127, EDN: SCRCTR


ВВЕДЕНИЕ

В настоящее время системы по приему терагерцового (ТГц) излучения используются во многих областях: исследование атмосферы и космоса, технологии связи, биомедицина, фундаментальные исследования в материаловедении и молекулярной спектроскопии [1-3]. При этом наиболее чувствительными детекторами в ТГц-диапазоне являются переходы вида "сверхпроводник-изолятор-сверхпроводник" (СИС) благодаря низкой температуре и сильной нелинейности характеристик, обусловленной туннелированием квазичастиц через барьерный слой [4]. В большинстве существующих приемных систем на основе туннельных переходов в качестве электродов СИСиспользуется ниобий (например, Nb/AlO_x/Nb) либо нитрид ниобия (например, Nb/AIN/NbN), работающие при температуре кипения жидкого гелия 4.2 К. В некоторых современных задачах, преимущественно связанных с квантовыми вычислениями, используются СИС-переходы на основе алюминия [5], однако для их работы требуются сверхнизкие температуры (порядка 300 мК и ниже) и, соответственно, технически

сложные системы охлаждения. Для переходов на основе ниобия наиболее традиционными линиями передачи сигналов являются тонкие пленки ниобия, изготавливаемые в том же цикле магнетронного напыления, что и электроды туннельного перехода. Такие линии передачи обладают максимальной рабочей частотой около 750 ГГц, выше которой значительно возрастают потери в пленках согласно теории Маттиса-Бардина [6]. Данное фундаментальное ограничение обусловлено энергетической щелью сверхпроводниковых материалов Д. Таким образом, в системах, работающих на частотах до 1 ТГц и выше, необходимо использование более высокочастотных линий передачи из материалов с более высоким значением Д. Наиболее подходящими для таких частот являются линии передачи на основе NbTiN, имеющие фундаментальное ограничение порядка 1.4 ТГц [7, 8].

Целью данной работы является разработка, изготовление и исследование сверхпроводниковых интегральных схем для изучения характеристик линий передачи на основе NbTiN/Al с рабочими частотами до 1.1 ТГц.

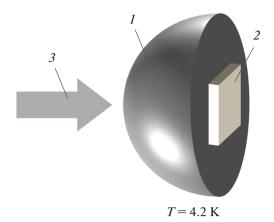


Рис. 1. Топология интегральной терагерцовой структуры ТГц-МПЛ (а) и ТГц-МПЛР (б): 1 — нижний электрод структуры на основе NbTiN, 2 — щелевая антенна, 3 — верхний электрод структуры на основе Al, 4 — двойной СИС-переход на основе Nb/AlN/NbN с площадью 1 мкм 2 каждый, 5 — замыкатель по СВЧ, 6 — резонатор.

1. РАЗРАБОТКА И ИЗГОТОВЛЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ОБРАЗЦОВ МИКРОСХЕМ

1.1. Принципиальная конструкция интегральных схем и численная модель

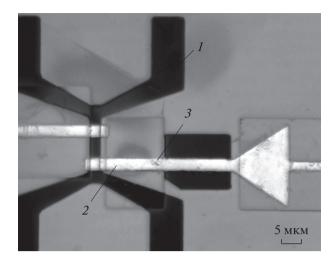

Были разработаны и численно промоделированы две различные топологии интегральных микросхем, содержащие СИС-переходы на основе Nb/AlN/NbN, включенные в ТГц-линию передачи с нижним электродом из NbTiN и верхним электродом из Al (далее — NbTiN/Al) и выполняющие роль детекторов внешнего ТГц-сигнала. Топология № 1 микросхемы вида "терагерцовая микрополосковая линия" (ТГц-МПЛ) и топология № 2 микросхемы вида "терагерцовая микрополосковая линия с резонатором" (ТГц-МПЛР)

Рис. 2. Схема установки на кремниевой полуэллиптической линзе 1 микросхемы 2 с исследуемой структурой для регистрации $T\Gamma$ ц-излучения 3.

показаны на рис. 1а и 16 соответственно. Обе топологии состоят из входной шелевой антенны. выполненной в нижнем электроле интегральной структуры NbTiN, детекторов на основе двойных параллельно соединенных СИС-переходов площадью 1 мкм² каждый, а также исследуемой линии передачи, согласованной с антенной по входу и СИС-переходами по выходу. Двойные СИСпереходы вместо одиночных используются для увеличения ширины приемной полосы частот за счет взаимной отстройки емкости переходов индуктивностью, соединяющей их линии. В топологии ТГц-МПЛ использованы традиционные отрезки микрополосковой линии, имеющие длину $\lambda/4$ (далее — короткая секция) и $3\lambda/4$ (далее длинная секция), λ — длина волна принимаемого излучения. Разница между принимаемой детектором мощностью в длинной и короткой секциях позволит в дальнейшем оценивать потери в микрополосковой линии и определить параметры тонких пленок. В топологии ТГц-МПЛР использованы два симметричных и идентичных по геометрическим размерам отрезка микрополосковой линии с встроенным резонатором, что в дальнейшем позволит оценивать потери в линии из величины добротности резонатора. Конструкция антенны одинаковая в двух топологиях интегральной структуры. Микросхема с интегральной структурой устанавливается в фокусе полуэллиптической кремниевой линзы, что формирует квазиоптический линзово-антенный приемный тракт, как показано на рис. 2. Криогенный модуль с интегральной структурой помещается в вакуумном заливном криостате с рабочей температурой 4.2 К.

Численное моделирование топологий микросхем производилось в специализированный программе трехмерного численного электромагнитного моделирования Ansys HFSS. Данная программа позволяет моделировать сложные структуры,

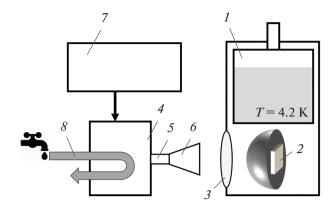
Рис. 3. Микрофотография центральной части микросхемы топологии ТГц-МПЛ (короткая секция): 1 — щелевая антенна, 2 — микрополосковая линия передачи, 3 — двойной СИС-переход с площадью 1 мкм 2 каждый.

учитывая краевые эффекты, граничные условия и взаимное влияние элементов схемы друг на друга. Поскольку в программе нет встроенного метода для учета свойств сверхпроводниковых материалов, был использован метод, предложенный в [9, 10]. На первом этапе создается массив данных для поверхностного импеданса сверхпроводниковых пленок с использованием соотношений из теории Маттиса-Бардина [6]. Конкретные параметры для пленок NbTiN были взяты из работы [11], результаты в которой получены с помощью спектроскопии временного разрешения, а исследованные образцы тонких пленок изготовлены с использованием той же технологии, что и образцы в представленной работе. На втором этапе полученный массив данных внедряется в численную программу Ansys HFSS и задаются граничные условия на поверхности сверхпроводниковых электродов.

Импеданс СИС-перехода в численной модели $Z_{\text{СИС}}$ определяется соединенными параллельно сопротивлением перехода в нормальном состоянии $R_{\text{норм}}$ и его емкостью C, что в программе может быть задано специальным элементом "сосредоточенный RLC" (далее — RLC). СИС-переходы были заданы как последовательно соединенные RLC и сосредоточенный порт с сопротивлением $R_{\text{п}} = 1$ мОм, много меньшим $R_{\text{норм}}$. Поскольку в каждой секции интегральной схемы использованы два СИС-перехода с расстоянием 2 мкм между ними, то в модели переходы учтены как два независимых объекта. Для расчета детектируемой мощности $P_{\text{дет}}$ (дБ), которая в численной модели эквивалентна поглощенной двойным СИС-пере-

ходом мощности в каждой секции, использована формула

$$P_{\text{дет}} = 10 \lg \left[\left| S_{21}^{\text{n1}} \right|^2 \left(\text{Re} \left(Z_{\text{CИC}} \right) / R_{\text{п}} \right) + \left| S_{21}^{\text{n2}} \right|^2 \left(\text{Re} \left(Z_{\text{CИC}} \right) / R_{\text{п}} \right) \right],$$
(1)


где $S_{21}^{\rm nl}$ и $S_{21}^{\rm n2}-S$ -параметры, рассчитанные на двух портах, соответствующих каждому СИС-переходу в секции.

1.2. Изготовление экспериментальных образцов

Экспериментальные образцы микросхем на основе тонких пленок были изготовлены методами магнетронного распыления и оптической УФ-литографии, фотошаблоны с субмикронной точностью размеров изготавливали методом электронно-лучевой литографии. Технология изготовления туннельных переходов Nb/AlN/Nb, Nb/AlN/NbN с использованием традиционных линий передачи Nb/Nb достаточно детально описана в [12, 13], а технология туннельных переходов, встроенных в линии передачи NbTiN/Al, обсуждалась в работах [14, 15]. Все структуры изготавливались на высокоомной подложке (>5 кОм см) из полированного кремния. На подложку напыляли буферный слой Al_2O_3 толщиной 100 нм, на него по всей поверхности подложки напыляется пленка NbTiN толщиной 325 нм. Затем пленка травится по резистивной маске с использованием плазмохимического травления в среде СГ₄ для формирования нижнего электрода линии передачи. На следующем этапе формируется туннельная СИС-структура Nb/Al-AlN/NbN (толщина 80 нм/6 нм-1 нм/80 нм соответственно) и травится по резистивной маске до слоя NbTiN. На этом этапе производится анодирование поверхности слоя нижнего электрода NbTiN, а также торцов СИС-переходов, после чего осаждается слой изоляции SiO₂ толщиной 400 нм. Эти процедуры необходимы для создания качественного изоляционного слоя между нижним и верхним электродами. На заключительном этапе напыляется верхний электрод на основе Al толщиной 500 нм. Микрофотография изготовленной структуры (участок длинной секции топологии ТГц-МПЛ) показана на рис. 3.

1.3. Экспериментальная установка

Для охлаждения структур использован вакуумный криостат 4.2 К, заливаемый жидким гелием. Для накачки СИС-детекторов ТГц-сигналом и исследования свойств линий передачи был использован в качестве внешнего генератора мощный источник на основе лампы обратной волны (ЛОВ) с рабочим диапазоном выходных частот порядка 0.9...1.1 ТГц. ЛОВ является генератором,

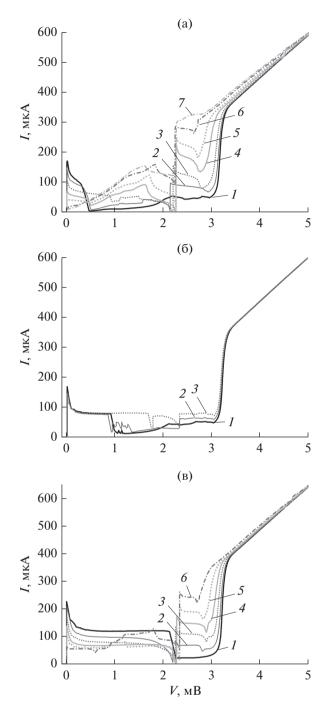
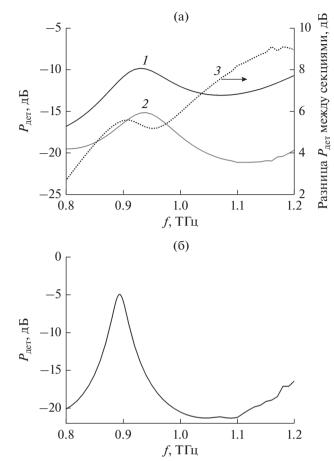


Рис. 4. Схема экспериментальной установки для исследования сверхпроводниковых интегральных структур: I — заливной криостат, 2 — микросхема с исследуемой структурой, 3 — входное окно криостата, 4 — ЛОВ, 5 — выходной волновод ЛОВ; 6 — выходной рупор ЛОВ; 7 — блок питания ЛОВ; 8 — водяная система охлаждения ЛОВ.

управляемым напряжением на катоде $V_{\rm K}$ замедляющей системы в диапазоне 4...6 кВ, с водяным охлаждением. Чтобы обеспечить достаточно узкий выходной пучок излучения, на волноводном выходе ЛОВ дополнительно установлена рупорная антенна. Входное окно криостата выполнено из майлара, который практически прозрачен в ТГц-диапазоне частот. Схема экспериментальной установки представлена на рис. 4. Поскольку диаграммы направленности как выходного сигнала ЛОВ, так и приемного сигнала антенно-линзовой системы достаточно узкие, точная оптическая юстировка относительного расположения ЛОВ и криостата (масса каждого прибора более 20 кг) являлась достаточно сложной задачей. Кроме того, измерительная система крайне чувствительна к слабым механическим вибрациям и отклонениям положения, поэтому экспериментальный стенд был размещен на массивном столе.


2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖЛЕНИЕ

Воздействие ТГц-сигнала ЛОВ на детектор регистрировали путем измерения вольт-амперных характеристик (ВАХ) СИС-перехода. Для точных измерений ВАХ использован специально разработанный низкошумящий блок задания и измерения с питанием от батарей. ВАХ СИС-переходов измеряли в режиме задания напряжения до 7 мВ. Характерные токи через переход при этом составляли примерно 0.8...1 мА. Семейства измеренных ВАХ СИС-переходов для короткой и длинной секций топологии ТГц-МПЛ, а также для одной из идентичных секций топологии ТГц-МПЛР представлены на рис. 5. Нормальное сопротивление перехода $R_{\text{норм}}$ для представленных характеристик составляет

Рис. 5. Серия ВАХ СИС-перехода в короткой (а), длинной секции (б) топологии ТГц-МПЛ и в приемной секции топологии ТГц-МПЛР (в) без внешнего воздействия (*I*) и под воздействием сигнала ЛОВ различной мощности и частоты: а) 1.032 (*2*), 1.060 (*3*), 1.088 (*4*), 1.09 (*5*), 1.079 (*6*) и 1.092 ТГц (*7*); б) 1.102 (*2*), 1.103 ТГц (*3*); в) 1.038 (*2*), 1.064 (*3*), 1.074 (*4*), 1.104 (*5*) и 1.105 ТГц (*6*).

7.14 Ом (рис. 5а), 6.86 Ом (рис. 5б) и 6.52 Ом (рис. 5в). Наибольший уровень детектируемой мощности соответствует самым верхним кривым на рис. 5а, 5б, 5в. Использованный источник на

Рис. 6. Результаты численного расчета детектируемой мощности для топологии ТГц-МПЛ (а) в короткой (I) и длинной (2) секциях и разница между ними (3), а также для топологии ТГц-МПЛР (6).

основе ЛОВ имеет выходную частоту 1.035 ТГц при $V_{\rm k}=5~{\rm kB}$ и линейный коэффициент перестройки частоты около 70.73 ГГц/кВ. Накачка СИС-детекторов экспериментальных образцов обоих топологий наблюдалась в диапазоне 1.02...1.1 ТГц. Следует отметить, что использованная ЛОВ согласно спецификации производителя работает и при более низких частотах до 0.94 ТГц, однако в эксперименте на частотах ниже 1.02 ТГц мощность оказалась недостаточной для визуального изменения ВАХ СИС-перехода.

Воздействие на СИС-переход сигналом в ТГцдиапазоне приводит одновременно к двум независимым эффектам скачкообразного увеличения туннельного тока: возникновению ступеней Шапиро [16] и квазичастичных ступеней [4]. Поскольку критический ток перехода не подавлен, на ВАХ СИС-переходов появляется четко выраженная первая ступень Шапиро при напряжениях в диапазоне 2.12...2.25 мВ, что соответствует частоте накачки 1.025...1.088 ТГц из константы Джозефсона 2e/h = 483.6 ГГц/мВ (e — заряд элек-

трона, h — постоянная Планка), а также слабо выраженная вторая ступень Шапиро при напряжении около 4.4 мВ, соответствующая удвоенной частоте. Можно заметить точное соответствие относительного положения первой ступени на ВАХ и частоты накачки: чем выше частота воздействия, тем выше напряжение ступени. Интересно отметить чрезвычайно эффективное детектирование сигнала в короткой секции для топологии ТГц-МПЛ, при котором накачка достигла насыщения (см. рис. 5а, кривая 7).

Численные результаты расчетов детектируемой мощности для топологии ТГц-МПЛ в короткой и длинной секциях представлены на рис. 6а. Частота наиболее эффективного детектирования практически совпадает для двух секций с точностью до 10 ГГц и составляет около 0.93 ТГц. В то же время детектируемая мощность в длинной секции в окрестности частоты 1.05 ТГц практически на порядок (8 дБ) ниже, чем в короткой секции, что показано на рис. 6а кривой 3, являющейся разницей между детектируемой мощностью в короткой и длинной секциях.

Таким образом, результаты расчетов соответствуют экспериментальным, в которых накачка в длинной секции оказалась значительно меньшей, чем в короткой (ср. рис. 5а и 5б). Численные результаты расчетов детектируемой мощности для двух идентичных секций топологии ТГц-МПЛР представлены на рис. 6б. Значительно более узкий по частоте пик эффективной накачки в численных расчетах по сравнению с топологией ТГц-МПЛ обусловлен наличием резонатора, из значения добротности которого в дальнейшем можно оценивать характеристики тонких пленок линий передачи. Для данной топологии также экспериментально получена достаточно мощная накачка СИС-детектора (см. рис. 5в, кривая 6), не приводящая, однако, к насыщению.

Важно отметить, что обе разработанные топологии позволяют оценивать характеристики поглощения в линии передачи: топология ТГц-МПЛ – по частотной зависимости разницы детектируемой мощности в длинной и короткой секциях в исследуемом диапазоне, топология ТГц-МПЛР – по частотной зависимости детектируемой мощности при условии либо однородной по частоте характеристики выходной мощности, либо строго известной зависимости выходной мощности от частоты в абсолютной величине. Мошность выходного сигнала ЛОВ чрезвычайно неоднородна по частоте, неизвестна в абсолютном выражении и может существенно отличаться для двух близко расположенных частот, поэтому такой источник не удовлетворяет требованиям для постановки добротного эксперимента по оценке параметров затухания в пленках. Таким образом, для постановки такого эксперимента в дальнейшем достаточно иметь более слабый по мощности (в сравнении с ЛОВ), но однородный по частоте источник излучения в диапазоне 0.9...1.1 ТГц.

ЗАКЛЮЧЕНИЕ

Интегральные структуры на основе СИС-переходов являются высокочувствительными приемными системами и способны работать на частотах до 1 ТГц и выше, однако технология изготовления линий перелачи и оптимизация их конструкции пол конкретные задачи является достаточно сложной задачей. В данной работе разработаны, численно рассчитаны, изготовлены и экспериментально исследованы две топологии интегральных структур на основе СИС-переходов Nb/AlN/NbN с приемной антенной, встроенных в линии передачи NbTiN/Al, обладающие рабочим диапазоном частот 0.9...1.2 ТГц. В качестве внешнего источника ТГц-излучения была использована ЛОВ, а фидером являлась квазиоптическая антеннолинзовая система. Была получена мощная накачка СИС-детекторов в диапазоне 1.02...1.1 ТГц. что демонстрирует успешное функционирование разработанных СИС-переходов и линий передачи для задач с целевой частотой выше 1 ТГц.

Авторы заявляют об отсутствии конфликта интересов.

БЛАГОДАРНОСТИ

Авторы выражают благодарность А.М. Барышеву за помощь в численных расчетах. Авторы благодарны за возможность доступа к оборудованию уникальной научной установки "Криоинтеграл" (\mathbb{N} 352529), которое было использовано при изготовлении образцов и проведении исследований.

ФИНАНСИРОВАНИЕ РАБОТЫ

Разработка технологии изготовления, изготовление образцов и эксперимент выполнены при поддержке Российского научного фонда (проект № 23-79-00019), численные расчеты выполнены за счет бюджетного финансирования в рамках государственного задания. Функционирование уникальной научной установки "Криоинтеграл" поддержано Министерством науки и высшего образования Российской Федерации (соглашение № 075-15-2021-667).

СПИСОК ЛИТЕРАТУРЫ

- Terahertz Spectroscopy: Principles and Applications / Ed. by S.L. Dexheimer. Boca Raton: CRC Press, 2008. https://doi.org/10.1201/9781420007701
- 2. Plusquellic D.F., Siegrist K., Heilweil E.J., Esenturk O. // ChemPhysChem. 2007. V. 8. № 17. P. 2412. https://doi.org/10.1002/cphc.200700332
- 3. *Davies A.G.*, *Burnett A.D.*, *Fan W. et al.* // Mater. Today. 2008. V. 11. № 3. P. 18. https://doi.org/10.1016/S1369-7021(08)70016-6
- 4. *Tucker J.R., Feldman M.J.* // Rev. Mod. Phys. 1985. V. 57. № 4. P. 1055. https://doi.org/10.1103/RevModPhys.57.1055
- 5. Vettoliere A., Satariano R., Ferraiuolo R. et al. // Nanomaterials. 2022. V. 12. № 23. P. 4155. https://doi.org/10.3390/nano12234155
- 6. *Mattis D.C., Bardeen J.* // Phys. Rev. 1958. V. 111. № 2. P. 412. https://doi.org/10.1103/PhysRev.111.412
- 7. Kooi J.W., Stern J.A., Chattopadhyay G. et al. // Int. J. Infrared and Millimeter Waves. 1998. V. 19. № 3. P. 373. https://doi.org/10.1023/A:1022595223782
- 8. *Jackson B.D. et al.* // IEEE Trans. 2001. V. AS-11. № 1. P. 653. https://doi.org/10.1109/77.919429
- 9. *Kerr A.R.*, *Pan S.K.* // Int. J. Infrared and Millimeter Waves. 1990. V. 11. № 10. P. 1169. https://doi.org/10.1007/BF01014738
- Belitsky V., Risacher C., Pantaleev M., Vassilev V. // Int.
 J. Infrared and Millimeter Waves. 2006. V. 27. № 1.
 P. 809.
 https://doi.org/10.1007/s10762-006-9116-5
- 11. *Khudchenko A., Lap B.N.R., Rudakov K.I. et al.* // IEEE Trans. 2022. V. AS-32. № 4. P. 1500506. https://doi.org/10.1109/TASC.2022.3147736
- 12. *Dmitriev P.N., Lapitskaya I.L., Filippenko L.V. et al.* // IEEE Trans. 2003. V. AS-13. № 2. P. 107. https://doi.org/10.1109/TASC.2003.813657
- 13. *Khudchenko A., Baryshev A.M., Rudakov K.I. et al.* // IEEE Trans. 2016. V. TST-6. № 1. P. 127. https://doi.org/10.1109/TTHZ.2015.2504783
- 14. Fominsky M. Yu., Filippenko L.V., Chekushkin A.M. et al. // Electronics. 2021. V. 10. № 23. P. 2944. https://doi.org/10.3390/electronics10232944
- 15. Чекушкин А.М., Филиппенко Л.В., Фоминский М.Ю., Кошелец В.П. // ФТТ. 2022. Т. 64. № 10. С. 1399.
- Grimes C.C., Shapiro S. // Phys. Rev. 1968. V. 169. № 2.
 P. 397.
 https://doi.org/10.1103/PhysRev.169.397