Lecture 1: sine-Gordon equation

and solutions

e Equivalent circuit
e Derivation of sine-Gordon equation
e The most important solutions

[J plasma waves
[] a soliton!

[] chain of solitons
L] resistive state

[] breather and friends
e Mechanical analog: the chain of pendula

e Penetration of magnetic field

Introduction to the fluxon dynamics in LJJ

Nr. 2



Why LJJ?

e Almost ideal system to study soliton dynamics
(simple measurable quantities e.g. V x u)

e Applications as oscillators (FF, ZFS, FS,
Cherenkov, FF transistors)

e Physics of layered HTS (dynamics+losses)

e Studying “fine” properties: fluxon in a potential,
energy level quantization, etc.

e Some JJ are just long

e |t is nice non-linear physical system ;—)
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Equation of long Josephson
junction
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We get rid of I%: % vz = J(x) — Jo
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Sine-Gordon Equation

RSJ model & | = pod' /w, J(z) = j(x)w, J. = jow
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Normalized units: £ = x/\;, t = twp.
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perturbed sine-Gordon equation
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Other normalized quantities:
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Characteristic velocity: ¢y = Ajw,, u=1v/¢y

o =
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Boundary conditions

Boundary conditions for linear LJJ:

¢53|x:0,£ =h

Boundary conditions for annular LJJ:
Olz—o = Plg—p + 27N

Qbi‘.f;:o — €b:‘ﬁ|53:£

Perturbations are small: o < 1, v < 1.

For Nb-AI-AlO_-Nb junctions at 7' = 4.2 K ae ~ 1072.
The typical value of v ~ 0.1.

Taking a = v = 0 we get:

Tr {{—Sinqb:()
unperturbed sine-Gordon equation
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1: Josephson plasma waves

Consider small amplitude waves:
o(x,t) = Asin(kr —wt), AK1

Substituting into ¢, — ¢4 — sing = 0 and using
approximation

sin [Asin(kx — wt)| = Asin(kx — wt)
we get the dispersion relation for EM waves in the LJJ:

w(k) =1+ k2

Picture. Non-Josephson strip-line. ¢y = 1 is the Swi-
hart velocity. Plasma gap.
Phase velocity:

w / 1
U/ph:E: 1+ﬁ>1

l.e. upp > Cp — Swihart velocity in the LJJ is the
minimum phase velocity and maximum group velocity
of linear EM waves.
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frequency, @

Dispersion of linear waves

0 L Y | | | |
o) 1 2 3

wave vector, k
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Mechanical analog of LJJ
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Josephson phase ¢ angle of pendulum
bias current v  torque
damping coefficient « friction in the axis

Josephson voltage ¢; angular frequency
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2: Soliton

Unperturbed sine-Gordon equation has exact solution:

¢(:C7 t) = 4 arctan exp (j: r—ut )

1—u?

This is a solitary wave or soliton. It can move with
velocity 0 < u < 1 (i.e. ¢!). Picture. Soliton is a
kink which changes the Josephson phase from 0 to 27

(soliton) or from 27 to 0 (anti-soliton).
The field of soliton is

2
h=do¢, = ., h|l._,=2
¢ cosh( 5’“%_“52) |x_0

Existence of the soliton

dispersion
ﬁ

non-linearity
ﬁ
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Fluxon shape & contraction

-~
_——

coordinate, x
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Lorentz invariance

Sine-Gordon equation is invariant with respect to the
Lorentz transformation:
xr — ut t—x/u
r—x = t—t = /

V1—u2’ V1 —u?

Thus, soliton behaves as relativistic object and con-
tracts when approaching the velocity of (our!) light
— Swihart velocity! Picture.

In spite of contraction, soliton always carries one quan-
tum of magnetic flux:

/ " 6ude = $(00) — B(—o0) = 21

Since ¢ = %, ® = ®,. Therefore, the soliton in LJJ
Is called fluxon. An antifluxon carries —®.
The energy (mass) of the soliton (next slide):

8
V1 —u?

E(u) =m(u) =
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Mechanical analog of LJJ
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Josephson phase

angle of pendulum

bias current torque

e 2 ©

damping coefficient friction in the axis

Josephson voltage ¢; angular frequency
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Fluxon interaction

Hamiltonian (energy) of the LJJ:

+o0
H = / —+ﬁ+(1—cosgb)d:c

U

Substituting two solitons with the distance Ax be-
tween them

24 ; , ; ,
_ \ U(Ay) -
ﬁ: 8 - F({x) -
0 ! - |

coordinate, x

e two fluxons repel each other.

e fluxon and anti-fluxon attract.
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3: Chain of fluxons

Fluxons can form a dense chain
¢(x,t) =2am(x —ut, k) +

For h > 1:

d(z,t) ~ h(z — ut) — sin [h(z — ut)]

h2 (1 — u?)

. BB N\
e I =7l wﬂn W"P
e INN\Ssei NNl \\5’0'..

NSNS NN N

NSt (NN NN NN

RN WK NN
AN \
DRSNS

\Q“ W

(-: mincing machine :-)

Intuitive explanation of repelling.
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: Resistive (McCumber) state




5. Breather

Since fluxon and antifluxon attract each other, they
can form a bound state which oscillates around com-
mon center of mass:

d(x,t) = 4arctan [tan@ sin(t cos ©) ]

cosh(zx sin ©)

where ©® = 0...7/2. A breather with the moving
center of mass can be obtained using Lorentz trans-
formations.

Fluxon-antifluxon collision:

. . -
sinh ( 1_u2>
_ucosh( 19iu2>_

There is a positive phase-shift !
Fluxon-fluxon collision:

¢(x,t) = 4arctan

| sinh ( 1fu2) |
¢(x,t) = 4arctan
u cosh ( L )

There is a negative phase-shift !
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Penetration of magnetic field into
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Penetration of magnetic field into
LJJ

When h exceeds 2, the fluxons enter the junction and
fill it with some density, forming a dense fluxon chain.
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h=2.01 h=21
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coordinate x coordinate x coordinate x

time ¢

0 1

Example: h = 4, ¢ = hx, so ¢(L) — ¢(0) = h¢,
N = g—f_ — % ~ 31.8. Looking at picture, we
see 30 fluxons. For smaller fields the correspondence
Is worse, since the dense fluxon chain approximation
works not so good, and at h < 2 does not work at
all. eg. for h = 2.1, N = 16.7, but we see only 10
fluxons.
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Lecture 2: Dynamics of fluxon

e Perturbation theory

e Fluxon steps in annular LJJ

e /FS in linear LJJ

e Flux-Flow and FFS (Eck peak)

o Fiske Steps
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Perturbation theory of
McLoughlin and Scott

All solutions of s-G equation (except resistive state)
considered during the previous lection are solutions of
the unperturbed sG equation:

¢xw _¢tt —Siﬂ¢: 0

We also have seen that:

H— f %0 cose) d| (1)

2
v ! N
K U

The real equation which governs the Josephson phase
dynamics in the system is perturbed s-G equation:

oz — Pre —SING = Py — (2)

The Hamiltonian (1) corresponds only to the |.h.s. of
(2) while r.h.s. describes the energy dissipation and
Injection.

Let us write down the change of energy with time.
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Energy balance equations

_|_
2
- /dt [¢t+¢—+(1—cosgb)]

dt 2
+o0
- / (1601 + dudbus + br5in @) da

400

= \¢x¢t‘i—; + / (PtPtt — Puat + Prsing) dx

zero if localized

= / — ¢ ¢m ¢tt—3m¢) dx

|.h.s. of sine-Gordon

+o0
— — @y \(O@t — Vz dx
—o0 r.h.s. of s?;]e—Gordon
+o0 5
= | [ (v¢r —a¢?) dz =0
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Energy balance for fluxon

—+ o0 + 00
[ 2oudz= [ agtaa
— 00 —00
T — ut
x,t) = 4arctanex
o) Vs
—U 2
T, t) =
¢t( ) /1 L u2 COSh :El—_u,lfQ
5 8u?
—V2TTU = «
! V1 —u?
u| = 1

i (22

u| ~ —7, for v < 1
4o

lu| — 1, forvy—1
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I-V Characteristic
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velocity, u

Example: annular LJJ
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Collision with the edge

magnetic field, @

/- boundary condition

magnetic field, @

magnetic field, @

magnetic field, @

magnetic field, @

magnetic field, @

6 8 10 12 14
coordinate, x

Collision with edge = fluxon-antifluxon collision
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Fluxon trajectories

ZFS1 ZFS2 ZFS3 ZFS4 ZFS5
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animations see at http://christo.pit.physik.uni-tuebingen.de:88/FluxonDynamics/

Introduction to the fluxon dynamics in LJJ Nr. 8



Zero Field Steps

_A® P9 —(—Py)  Pou

V="Ar = 2L /u L

But frequency of collisions is f = u/2L, i.e., two
times lower!

1.0

0.8 -

bias current, vy

0.0 l ,

voltage (velocity)

Introduction to the fluxon dynamics in LJJ Nr. 9



junction?




Flux-flow

Let us suppose that LJJ is filled with fluxons e.g. some
field H > H_.; is applied to the linear LJJ.
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Flux-flow IVC
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The maximum on the IVC at u = ¢y is called a flux-
flow resonance or Eck peak.

Application: tunable oscillators for the frequencies 50—
800 GHz.
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Interaction with edges

4 - N -
NV AVAVAVAVA
T 2- — >
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coordinate, x

e The boundary conditions ¢, = h are not satis-
fied if we take running solutions ¢(x — ut).

e = we have to add “reflected wave” which prop-
agates towards the middle of LJJ.

e This wave decays on the distances ~ 1/a.

e ol » 1 results in the formation of the standing
wave.

e moving fluxons synchronize with this standing
wave, resulting in geometrical resonances on the

IVC at: | VIS = By
Ca Vn 02Ln
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Fiske Steps
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e Linear theory (H > 2,L > 1) is developed.

e Non-linear theory (any H, any L) in the present
state gives only the amplitude of resonances in

1-harmonic approximation.

e General nonlinear theory is not developed yet.

e Experimental IVC contains some features (shift
or sub-families, fine structure of FSs) which are

not explained.
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